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Abstract—The impact of CMOS technology scaling on the
various radio frequency (RF) circuit components such as active,
passive and digital circuits is presented. Firstly, the impact of
technology scaling on the noise and linearity of the low-noise
amplifier (LNA) is thoroughly analyzed. Then two new circuits,
i.e., CMOS complementary parallel push-pull (CCPP) circuit
and vertical-NPN (V-NPN) circuit for direct-conversion receiver
(DCR), are introduced. In CCPP, the high RF performance of
pMOS comparable to nMOS provides single ended differential
RF signal processing capability without the use of a bulky balun.
The use of parasitic V-NPN bipolar transistor, available in triple
well CMOS technology, has shown to provide more than an order
of magnitude improvement in 1 noise and dc offset related
problems, which have been the bottleneck for CMOS single chip
integration. Then CMOS technology scaling for various passive
device performances such as the inductor, varactor, MIM capac-
itor, and switched capacitor, is discussed. Both the forward scaling
of the active devices and the inverse scaling of interconnection
layer, i.e., more interconnection layers with effectively thicker
total dielectric and metal layers, provide very favorable scenario
for all passive devices. Finally, the impact of CMOS scaling on the
various digital circuits is introduced, taking the digital modem
blocks, the various digital calibration circuits, the switching RF
power amplifier, and eventually the software defined radio, as
examples.

Index Terms—CMOS scaling, digital RF, integrated passives, RF
CMOS, wireless digital circuits.

I. INTRODUCTION

RECENTLY, we have seen a widespread variety of mo-
bile computing and communication services. Based on the

Edholm’s law of bandwidth, which is the exponential law of
telecommunication data rates versus year, being equivalent to
Moore’s law in semiconductors, it is predicted that all telecom-
munication will eventually become both wireless and mobile
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[1]. The driving force for this is the low cost and low power
consumption provided by the continuous semiconductor tech-
nology scaling. Therefore, it is now time to see how the semi-
conductor technology scaling influences future wireless circuits
and systems. In Section II, the impact of active device scaling
on radio frequency (RF) active circuits as well as transceiver ar-
chitectures will be introduced. Then the impact of technology
scaling on various passive devices will be discussed in Sec-
tion III, which is as important as the active ones for RF circuits.
In Sections IV and V, the impact of device scaling for digital
baseband as well as digital RF circuits will be illustrated, fol-
lowed by the Conclusion.

II. IMPACT OF ACTIVE DEVICE SCALING ON RF ACTIVE

CIRCUITS AND SYSTEMS

The simplicity of the following MOSFET drain saturation
current ( ) equation has contributed greatly to integrated cir-
cuit technology development

(1)

In (1), is the mobility, is the unit area gate oxide capaci-
tance, is the channel width, and is the channel length,
is the gate-to-source voltage, and is the threshold voltage.
In scaled CMOS, due to the mobility degradation by vertical as
well as lateral electric fields, (1) reduces to the following simple
equation with reasonable accuracy:

(2)

Here, is a constant that is technology dependent. Equation (2)
states that is a constant independent of channel length as well
as gate overdrive voltage. In RF circuits, interfacing off-chip
components such as antennas and filters, the impedance level
should be determined at of 50 Ohm. Thus transistor width
is chosen so as to satisfy the desired impedance level. Once
transistor width is chosen in this way, we obtain the following
scaling rule:

(3)
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Fig. 1. NF at 2.4 GHz versus gate length. Solid dots are obtained from
fabricated devices using standard 0.18-�m technology and open dots are from
[3].

Here, is the technology-scaling factor. According to Fukui [2],
however, the minimum noise figure of a FET can be expressed
as

(4)

In (4), is a constant called Fukui parameter. Equations (3)
and (4) state that scales as in dB scale, which is ver-
ified as shown in Fig. 1. It is very interesting to notice that
Fukui’s formula, which is an empirical formula originally pro-
posed for GaAs MESFET in the 1970s, works remarkably well
even for deep-submicron MOSFET.

In a low-noise amplifier (LNA) circuit, as input matching is
deviated from noise optimum point, the noise figure increases
as follows:

(5)

Here, is the equivalent input noise resistance, (
) is the complex source admittance, and is the com-

plex optimal noise admittance. Note that the noise parameters
include the small-signal parameters as well as the physical noise
source [4].

Although the improvement of due to scaling is shown
in Fig. 1, for practical purposes it should be collaborated with
the scaling of the noise resistance because indicates how
sensitively the noise performance deviates from the optimal
value. From (5), we can easily see that and ,
which indicates optimum noise matching becomes much more
sensitive to source impedance mismatch by times, while
the noise circle becomes broader by times. The former
is quite an unfavorable scaling scenario. However, scaling of

indicates a very small noise figure increase when
input matching deviates from the optimally matched condition.
This indicates that noise figure of scaled down device is very
insensitive to source impedance mismatch, leading to a very
favorable scenario. This insensitiveness of noise figure on input
source matching condition would make LNA circuit design
much easier. Fig. 2 shows another insensitiveness of scaling
on noise figure. for scaled CMOS is very immune to
the gate-to-source bias change. It is also worth noticing that

Fig. 2. NF at 2.4 GHz versus gate-to-source bias voltage.

Fig. 3. Noise resistance,R , as a function of V for the devices with various
gate lengths.

Fig. 4. g versus gate-to-source bias voltage. This data is obtained from
fabricated devices using standard 0.18 �m technology.

the noise resistance becomes very insensitive to gate bias
change as shown in Fig. 3. Note here that the modeled values of

and in Figs. 2 and 3 are calculated ones by thermal
noise models recently developed for short-channel MOSFETs
[4], [5].

On the other hand, the linearity of RF circuits is very impor-
tant circuit performance issue for wireless communication sys-
tems. In RF CMOS, most of the nonlinearity is due to that in the
transconductance. In Fig. 4, we plot second derivatives of nMOS
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Fig. 5. IIP versus gate-to-source bias voltage. This data is calculated from
g data in Fig. 4.

Fig. 6. IIP versus inverse channel length for the devices shown in Fig. 5.

transconductance measured for 0.18- m CMOS devices. Fig. 5
shows the calculated with the second derivatives of nMOS
transconductance in Fig. 4. In Fig. 6, we plot the in mod-
erate inversion which is most popularly used bias point for LNA,
versus channel length. It shows adverse scaling scenario, unfor-
tunately. Note, however, that there are many ways to improve
this for scaled CMOS circuits using various feed-forward and/or
feedback techniques. The use of linear superposition of several
FETs with different channel width biased at different gate and/or
substrate bias is a good example of feed-forward techniques [6],
[7]. On the other hand, higher RF performance expected from
scaled down transistors permits us to use various desensitizing
negative feedback techniques, allowing us to trade-off various
circuit performances such as gain and linearity. These include
source inductor degeneration, gate-to-source capacitor degener-
ation, resistive shunt feedback, and so forth [8], [9]. This is very
similar to an operation amplifier circuitry with negative feed-
back, where closed loop circuit transfer characteristics are very
linear because they are determined by passive feedback compo-
nents, sacrificing infinite gain of operational amplifier.

In CMOS technology, nMOS is mostly used for RF ap-
plications due to its superior performance. In scaled CMOS,
however, pMOS also has good small-signal RF performance,
as shown in Fig. 7 [10]–[13]. As a result, pMOS combined
with NMOS, can be used in push-pull RF circuits as shown
in Fig. 8(a) [14]. Fig. 8(b) illustrates how the complementary
CMOS parallel push-pull (CCPP) circuit gives a push-pull

Fig. 7. State-of-the-art transistor cutoff frequency versus year. Data are from
[10]–[13].

Fig. 8. (a) CCPP amplifier schematic diagram and (b) AC I-V curve of CCPP
amplifier.

action. In CMOS push-pull RF circuits, highly symmetric
differential circuit action is feasible without the use of a bulky
balun, providing very good performance as well as large
isolation. In the resistive mixer using pMOS combined with
NMOS, our experimental results show more than an order
of magnitude improvement in and port isolation perfor-
mances as shown in [15]. The complementary characteristics
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Fig. 9. Cross-sectional view of the triple-well CMOS technology, providing parasitic V-NPN.

Fig. 10. Noise figure for: (a) nMOS mixer (calculated) and (b) V-NPN mixer
(measured from chip fabricated using TSMC 0.18 �m CMOS technology) [13].

of nMOS and pMOS can indeed be fully utilized in RF core
circuits without significantly degrading RF performance.

Nowadays, most of the deep submicron CMOS technology
adopts deep triple n-well process, which provides parasitic
vertical-NPN (V-NPN) bipolar junction transistor as shown
in Fig. 9. As shown in Fig. 7, because the unit current gain
cutoff frequency of parasitic V-NPNs can be from 600 MHz
to several gigahertz, the parasitic V-NPN can be a very useful
device option in the design of analog and RF CMOS circuits.
By combining V-NPN and MOSFET devices on the same chip,
we can optimize the analog/digital circuits as shown in the
following example.

Fig. 10 shows the noise performance of nMOS Gilbert mixer
and V-NPN Gilbert mixer, respectively. The V-NPN mixer
has excellent low-frequency noise performance, showing only
thermal noise and almost noise-free characteristic. On
the contrary, as shown in Fig. 10(a), the low-frequency noise
performance of nMOS Gilbert mixer is deteriorated by
noise. Fig. 11 also shows the output dc offset voltage of V-NPN
mixer measured as a function of local oscillator (LO) input
power, zero-power limit of which is 0.6 mV. On the other hand,
typical value for that of nMOS mixer is measured as 5–10 mV.
Consequently, V-NPN can provide superb solution to inherent

Fig. 11. Measured dc offset from nMOS and V-NPN mixer. The latter gives
an order of magnitude improvement [13].

Fig. 12. Single-IF DCR receiver using V-NPN in second mixers, greatly
relaxing the frequency limitation of V-NPN.

problems of CMOS direct-conversion receiver (DCR) such as
noise and dc offset and can open a new horizon for CMOS

implementation of DCR [13].
As the triple n-well CMOS technology scales down, the cutoff

frequency of V-NPN is expected to improve because the base
width of V-NPN will be thinner. It should be noted here, how-
ever, that the use of parasitic V-NPN in existing CMOS tech-
nology should be limited for low frequency RF circuits because
its unit current gain cutoff frequency is an order of magnitude
lower than that of CMOS. One such example is the dual conver-
sion zero-IF receiver shown in Fig. 12. Here V-NPN is adopted
in the zero-IF DCR mixer and baseband analog (BBA) circuits,
whose operating frequency is much lower than that of the RF
signal from an antenna [13].

III. IMPACT OF CMOS SCALING FOR PASSIVE DEVICES

In CMOS scaling, both active devices and lowest intercon-
nection line scale down, which is called forward scaling. How-
ever, top-level metallization scales inversely; n other words, top
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Fig. 13. Integrated inductor quality factor and the corresponding frequency
versus number of interconnection layers. The solid squares are measured from
chip fabricated using TSMC 0.18 �m technology and the dashed lines are
calculated from scaled CMOS technology scaled following SIA load map [17].

metal thickness as well as total dielectric insulator thickness be-
comes thicker, both of which are indispensable for increasing
the quality factor of an integrated inductor [16]. These com-
bined with better transistor scaling, therefore, will lead all the
passive devices performance to scale favorably. For example, in-
ductor will have smaller parasitic capacitance to substrate, var-
actor’s quality factor will be better, and switched capacitor will
have much better quality factor, all in a favorable direction, as
shown from Figs. 13–16, respectively. The predicted and calcu-
lated values were based on both the SIA roadmap [17] and the
accurate RF models found in [18], [20], and [21].

Fig. 13 predicts the integrated inductor quality factor and
the corresponding frequency versus number of interconnection
layers. As depicted in Fig. 13, the thicker top metal leads to an
improvement in the quality factor. Furthermore, together with
lower dielectric constant and farther top-level to substrate dis-
tance, the great reduction of the substrate loss and parasitics
results in the significant improvement of quality-factor [18].
Cu interconnect technology will replace current Al technology
gradually, and therefore the performance of on-chip inductors
will improve greatly. However, inductance will not scale as tran-
sistor. In other words, silicon areas being occupied by on-chip
inductors will not scale down even though CMOS technology
advances.

Fig. 14 shows the quality factor scaling of an accumulated-
type MOS varactor. The equivalent capacitance of the MOS
varactor is the sum of variable gate capacitance and fixed
overlap capacitance [20]. The dominant contribution of the
series equivalent resistance is the channel resistance. Because
the channel resistance scales down as the channel length scales,
the quality factor will increase significantly. In addition, the
gate-oxide thickness also scales down, and so the layout density
will improve.

Fig. 15 shows the quality factor and parasitic bottom plate ca-
pacitance scaling for the MIM (metal-insulator-metal) capacitor
[21]. To inspect the scaling properties of the MIM capacitor, the
physical MIM capacitor model [21] is simplified to the equiva-

Fig. 14. Accumulated type MOS varactor quality factor scaling. The solid
squares are measured from TSMC 0.18-�m technology and the solid line is the
calculated one.

Fig. 15. Quality factor and parasitic bottom plate capacitance scaling for
0.9-pF MIM capacitors. The squares are measured from TSMC 0.18-�m
technology and the solid and dashed lines are calculated ones.

lent series and model as shown in the insert of Fig. 15. The
equivalent and are [22]

(6)

and

(7)

where is a factor for the contact resistance to the metal,
is the top-metal resistivity, is the area, is the dielectric

constant, and is the dielectric thickness. From (6) and (7),
the resulting is

(8)

The MIM capacitor density, i.e., capacitance per unit area, in-
creases slightly [22]. But, because the metal resistivity ( ) de-
creases greatly and the substrate parasitics reduces as shown in
Fig. 15, the quality factor of MIM capacitor will be better.
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Fig. 16. On-off impedance ratio and quality factor of scaled switched
capacitors at 2.4 GHz. The squares are measured from TSMC 0.18-�m
technology and the solid and dashed lines are calculated ones.

Fig. 16 shows the on/off impedance ratio and quality factor
of scaled switched capacitors at 2.4 GHz. The performance of
scaled switched capacitors will improve because they consist of
both better transistor and MIM capacitor as scaling continues.

Consequently, all passive devices scale in a favorable direc-
tion as CMOS technology scales down. Because the power con-
sumption of RF/microwave circuits is largely affected by the
performance of passive devices, the scaling of passive devices
is advantageous in low-power circuit design. For example, one
of the key design issues in the low phase noise and low power
VCO (voltage-controlled oscillator) is how to design and opti-
mize the tank inductor and varactors [23].

IV. IMPACT OF CMOS SCALING FOR DIGITAL

BASEBAND CIRCUITRY

Because digital signal processing provides inherent accuracy
(6 dB/bit and ppm accuracy of clock), adaptability, flexibility,
and programmability, we see more and more digital circuitry
in modern radio. These allow sophisticated signal processing,
which enables a radio to obtain selectivity and sensitivity
up to Shannon’s limit, and auto calibration (trimming) for
RF/IF/BBA analog circuit imperfections, and so forth. Fig. 17
shows that power consumption for the digital matched filter
scales down very fast as technology scales while the analog
matched filter does not scale and there is a crossover at 0.18 m
for this particular circuit example. These calculations were
done using the formula developed in [24]. In this example, the
scaling effect on the power consumption of the analog matched
filter is rather independent of process technology. The great
power reduction like the digital matched filter cannot generally
be achieved in the analog matched filter. Fig. 18 shows how
Moore’s law helps us to obtain the Shannon’s limit with afford-
able power consumption in hand-held phones. The data shown
in Fig. 18 is calculated based on the following assumption: the
data rate is 200 kbps and only a single digital signal processor
(DSP) is available to carry out to the decoding of forward error
correction (FEC) codes such as several convolutional codes or
turbo codes. As shown in Fig. 18, the power efficiency of DSP

Fig. 17. Calculated power consumption comparison between digital and
analog matched filer. This is calculated following the model assumed in [24].

Fig. 18. Impact of Moore’s Law in achieving Shannon’s limit with affordable
power consumption. This figure shows that Moore’s law at 0.13-�m technology
allows us to achieve 2.1-dB sensitivity away from Shannon’s limit of �1:6 dB
at only 25-mW power consumption [26]–[28].

is exponentially increasing by a factor of 4 every three years
[25]. Consequently, given limited power consumption budget,
CMOS scaling allows us to obtain the well-known Shannon’s
limit [26]–[28]. Note that the bars in Fig. 18 represent the
differences of required signal-to-noise ratio (SNR) to obtain
0.1% bit error rate from the Shannon’s limit of dB. For
example, the logarithmic maximum a posteriori (LogMAP)
decoder for Turbo Codes being implemented in 0.13 m CMOS
technology with power consumption as low as 25 mW, requires
the SNR approaching the Shannon’s limit within 2.1 dB.

All RF circuits need calibration or trimming for manufac-
turing and temperature dependent circuit imperfections such as
gain mismatch, phase mismatch, and nonlinearity, etc. This has
traditionally been done in a laborious way using external mea-
surement equipments, which make it very expensive and time
consuming. CMOS, however, is the only technology that pro-
vides circuits and algorithm for measurement and correction as
well as memory devices to store calibration data, and all the ne-
cessities for the automatic calibration for the circuit imperfec-
tions in a single chip. Thus, fully automated calibration or trim-
ming is feasible in CMOS radio [29].
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V. IMPACT OF CMOS SCALING FOR DIGITAL RF

As transistor speed becomes faster, completely new concepts
of digital RF technology have been proposed. Among them, dig-
ital RF power amplifier and radio using ultra-wide band (UWB)
signals are two notable examples.

As for the digital RF power amplifier, one of the most
promising candidates is the switching mode power amplifier
[30]. In conventional analog power amplifier, it is very difficult
to obtain both high power efficiency and linearity at the same
time. However, in switching mode power amplifier, 100%
power efficiency without any signal distortion can theoretically
be obtained. This is very similar to pulsewidth modulated
(PWM) signal for audio power amplifier. Because it is digitally
modulated, it is very programmable, too.

The UWB radio recently being standardized as 802.15.3a and
802.15.4a by IEEE is another interesting digital wireless com-
munication concept [31]. Conventional radio has evolved from
old narrow band radio, where the uses of high quality passive
filters are preferred to those of transistors in obtaining sensi-
tivity and selectivity requirement for multiple access commu-
nication. However, the success of CDMA system using direct
sequence spread spectrum (DSSS) signal has opened the fea-
sibility to remove some of narrow band filters by using wider
bandwidth baseband signal. UWB is the extreme case where RF
baseband digital signal is directly used for radio communica-
tion. Therefore, it is very suitable for being implemented using
digital circuitry.

The above two examples indicate that we will see an all-
digital radio in the near future, where all circuitry will be digital
except for LNA and analog-to-digital converter (ADC). These
radios, being digital, will be highly programmable, so that they
can easily be configured by software, just like computers.

VI. CONCLUSION

Endless scaling of modern semiconductor technology has
changed mobile hand-held radio system and service drastically
during the last two decades. Soon everyone will carry billions
of transistors in his mobile information terminal consuming
only few hundreds of milliwatt power. In this paper, we showed
that technology scaling helps continuously for us to design
more smart systems in a less costly way. We will see all digital
except RF LNA, mixer, and RF filter in the near future radio.
Someday, we will have all digital radio except LNA and ADC,
such as ideal software radio and ultra-wide band transceivers,
where everything will be defined by software just like the
computer at present.
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