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Abstract

Short tandem repeats (STRs) have been implicated in a variety of complex traits in humans. 

However, genome-wide studies of the effects of STRs on gene expression thus far have had limited 

power to detect associations and provide insights into putative mechanisms. Here, we leverage 

whole genome sequencing and expression data for 17 tissues from the Genotype-Tissue 

Expression Project to identify more than 28,000 STRs for which repeat number is associated with 

expression of nearby genes (eSTRs). We employ fine-mapping to quantify the probability that 

each eSTR is causal and characterize the top 1,400 fine-mapped eSTRs. We identify hundreds of 

eSTRs linked with published GWAS signals and implicate specific eSTRs in complex traits 

including height, schizophrenia, inflammatory bowel disease, and intelligence. Overall, our results 

support the hypothesis that eSTRs contribute to a range of human phenotypes and our data will 

serve as a valuable resource for future studies of complex traits
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Introduction

Expression quantitative trait loci (eQTL) studies attempt to link genetic variation to gene 

expression changes as potential molecular intermediates that drive disease and variation in 

complex traits. Recent studies have identified tens of thousands of eQTLs (genetic variants 

associated with expression of nearby genes) across multiple human tissue types1,2. Most of 

these have focused on bi-allelic single nucleotide polymorphisms (SNPs) or short indels. Yet 

multiple studies dissecting genome wide association study (GWAS) loci have found 

repetitive3,4 and structural variants5–7 to be the underlying causal variants, highlighting the 

need to consider additional variant classes beyond SNPs.

Short tandem repeats (STRs), consisting of consecutively repeated units of 1–6bp, represent 

a large source of genetic variation. STR mutation rates are orders of magnitude higher than 

those of SNPs8 and short indels9, and each individual is estimated to harbor around 100 de 

novo mutations in STRs10. Expansions at several dozen STRs have been known for decades 

to cause Mendelian disorders11 including Huntington’s Disease and hereditary ataxias. 

Importantly, these pathogenic STRs represent a small minority of the more than 1.5 million 

STRs in the human genome12. Due to bioinformatics challenges of analyzing repetitive 

regions, many STRs are often filtered from genome-wide studies13. However, increasing 

evidence supports a widespread role of common variation at STRs in complex traits such as 

gene expression14–17.

STRs may regulate gene expression through a variety of mechanisms18. For example, the 

CCG repeat implicated in Fragile X Syndrome was shown to disrupt DNA methylation, 

altering expression of FMR119. Yeast studies have demonstrated that homopolymer repeats 

act as nucleosome positioning signals with downstream regulatory effects20,21. Dinucleotide 

repeats may alter affinity of nearby DNA binding sites22. Furthermore, certain STR repeat 

units may form non-canonical DNA and RNA secondary structures such as G-

quadruplexes23, R-loops24, and Z-DNA25.

We previously identified more than 2,000 STRs for which the number of repeats were 

associated with the expression of nearby genes14, termed expression STRs (eSTRs). 

However, the quality of the datasets available for that study reduced our power to detect 

associations and prevented accurate fine-mapping of individual signals. STR genotypes were 

based on low coverage (4–6x) whole genome sequencing data performed using short reads 

(50–100bp) which are unable to span many STRs. As a result, STR genotype calls exhibited 

poor quality with less than 50% genotyping accuracy12. Additionally, the study used a single 

cell-type (lymphoblastoid cell lines; LCLs) with potentially limited relevance to most 

complex traits26. While our study and others14,16 demonstrated that eSTRs explain a 

significant portion (10–15%) of the cis heritability of gene expression, the resulting eSTR 

catalogs were not powered to robustly implicate eSTRs over other nearby variants.

Here, we leverage deep whole genome sequencing (WGS) and gene expression data 

collected by the Genotype-Tissue Expression Project (GTEx)1 to identify more than 28,000 

eSTRs in 17 tissues. We employ fine-mapping to quantify the probability of causality of 

each eSTR and characterize the top 1,400 (top 5%) fine-mapped eSTRs. We additionally 
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identify hundreds of eSTRs that are in strong linkage disequilibrium (LD) with published 

GWAS signals and implicate specific eSTRs in height, schizophrenia, inflammatory bowel 

disease, and intelligence. To further validate our findings, we demonstrate evidence of a 

causal link between height and an eSTR for the gene RFT1 and use a reporter assay to 

experimentally validate an effect of this STR on expression. Finally, our eSTR catalog is 

publicly available as a resource for future studies of complex traits.

Results

Profiling expression STRs across 17 human tissues

We performed a genome-wide analysis to identify associations between the number of 

repeats at each STR and expression of nearby genes (expression STRs, or “eSTRs”, which 

we use to refer to a unique STR by gene association). We focused on 652 individuals from 

the GTEx1 dataset for which both high coverage WGS and RNA-sequencing of multiple 

tissues were available (Fig. 1a). We used HipSTR27 to genotype STRs in each sample. After 

filtering low quality calls (Methods), 175,226 STRs remained for downstream analysis. To 

identify eSTRs, for each gene and for each STR within 100 kb of that gene, we performed a 

linear regression between the average length of the STR in each person and normalized 

expression of the gene, controlling for sex, population structure, and technical covariates 

(Methods, Supplementary Figs. 1–3). Analysis was restricted to 17 tissues where we had 

data for at least 100 samples (Supplementary Table 1, Methods) and to genes with median 

Reads Per Kilobase of transcript, per Million mapped reads (RPKM) greater than 0. 

Altogether, we performed an average of 262,593 STR-gene tests across 15,840 protein-

coding genes per tissue.

Using this approach, we identified 28,375 unique eSTRs associated with 12,494 genes in at 

least one tissue at a gene-level false discovery rate (FDR) of 10% (Fig. 1b, Supplementary 

Table 1, Supplementary Data 1). The number of eSTRs detected per tissue correlated with 

sample size as expected (Pearson r = 0.75; p = 0.00059; n = 17), with the smallest number of 

eSTRs detected in the two brain tissues presumably due to their low sample sizes (Extended 

Data Fig. 1). eSTR effect sizes previously measured in LCLs were significantly correlated 

with effect sizes in all GTEx tissues (p < 0.01 for all tissues, mean Pearson r = 0.45). We 

additionally examined previously reported eSTRs28–35 that were mostly identified using in 

vitro constructs. Six of eight examples were significant eSTRs in GTEx (p < 0.01) in at least 

one tissue analyzed (Supplementary Table 2).

eSTRs identified above could potentially be explained by their tagging nearby causal 

variants. To prioritize potentially causal eSTRs we employed CAVIAR36, a statistical fine-

mapping framework. CAVIAR models the relationship between LD-structure and 

association statistics of local variants to quantify the posterior probability of causality for 

each variant (which we refer to as the CAVIAR score). We used CAVIAR to fine-map 

eSTRs against all SNPs nominally associated (p < 0.05) with each gene under our model 

(Methods, Fig. 1a). On average across tissues, 12.2% of eSTRs had the highest causality 

scores of all variants tested.
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We ranked eSTRs by their best CAVIAR score across tissues and chose the top 5% for 

downstream analysis (1,420 unique eSTRs with best CAVIAR score >0.3). We hereby refer 

to these as fine-mapped eSTRs (FM-eSTRs) (Supplementary Table 1, Supplementary Data 

2). Expected gene annotations are more strongly enriched in this subset compared to the 

entire set (Extended Data Fig. 2), and stricter thresholds reduced power to detect eSTR-

enriched features described below. Of FM-eSTRs in each tissue, on average 78% explained 

gene expression variation beyond that explained by the best SNP (ANOVA q < 0.1). 

Furthermore, on average each FM-eSTR had CAVIAR score 0.41 higher (41% higher 

posterior probability) than the top-scoring SNP (Supplementary Fig. 4). Multiple STRs with 

known disease implications35,37–40 were captured by this list (Fig. 1c). In many cases, FM-

eSTRs show clear relationships between the number of repeats and gene expression across a 

wide range of repeat lengths (Extended Data Fig. 3).

To minimize power differences across tissues and enable cross-tissue comparisons of eSTR 

effects, we applied multivariate adaptive shrinkage (mash41) (Fig. 1a). Mash takes the per-

tissue effect sizes and standard errors computed above as input and recomputes posterior 

estimates for each while considering cross-tissue effect size correlations. We compared FM-

eSTR mash effect sizes across all pairs of tissues (Fig. 1d) and recovered previously 

observed relationships41. For example, tissues with similar origins (e.g., Adipose-Visceral/

Adipose-Subcutaneous) are highly concordant, whereas Whole Blood effects are less 

correlated with other tissues. These tissue sharing patterns are similar to those obtained 

using unadjusted effect sizes of single-tissue eSTRs (Supplementary Fig. 5). We further 

examined tissue sharing of FM-eSTRs by counting for each FM-eSTR the number of tissues 

for which mash computed a posterior Z-score with absolute value >4. Most eSTRs are either 

shared across all tissues analyzed or are shared by only a small number of tissues (Extended 

Data Fig. 4), again similar to previously reported SNP analyses in this cohort1.

FM-eSTRs demonstrate unique genomic characteristics

We next sought to characterize properties of STRs that might provide insights into their 

biological function. We reasoned that genomic characteristics that distinguish FM-eSTRs 

from all analyzed STRs would support the hypothesis that a subset of them are acting as 

causal variants. While results below are presented for FM-eSTRs as defined above 

(CAVIAR score >0.3), we additionally provide results recomputed using a range of score 

thresholds in the Supplementary Material These results show that the major characteristics 

of FM-eSTRs identified below are robust to the precise threshold used.

We first considered whether the localization of FM-eSTRs differ from that of STRs overall 

(Fig. 2a–b, Extended Data Fig. 5). Overall, the majority of FM-eSTRs occur in intronic or 

intergenic regions, and only 11 FM-eSTRs fall in coding exons (Supplementary Table 3). 

However, compared to all STRs, those closest to transcription start sites (TSSs) and near 

DNAseI hypersensitive (HS) sites are more likely to be FM-eSTRs (Fig. 2c–d, Extended 

Data Fig. 6). FM-eSTRs are strongly enriched at 5’ UTRs (odd’s ratio (OR) = 5.0; Fisher’s 

two-sided p = 4.9 × 10−13), 3’ UTRs (OR = 2.78; p = 5.85 × 10−10), and within 3 kb of 

transcription start sites (OR = 3.39; p = 3.94 × 10−70). These enrichments are considerably 
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stronger for FM-eSTRs compared to all eSTRs (Supplementary Table 4), suggesting as 

expected that FM-eSTRs are more likely to be causal.

We next examined nucleosome occupancy in the lymphoblastoid cell line GM12878 and 

DNA accessibility (measured by DNAseI-seq) in a variety of cell and tissue types within 500 

bp of FM-eSTRs (Extended Data Fig. 7). As expected from previous studies42, regions near 

homopolymer repeats are strongly nucleosome-depleted. STRs with other repeat lengths also 

show distinct patterns of nucleosome positioning (Extended Data Fig. 7a–c). Nucleosome 

occupancy is broadly similar for FM-eSTRs compared to all STRs. Yet FM-eSTRs are 

generally located in regions with higher DNAseI-seq read count compared to non-eSTRs 

(Mann-Whitney two-sided p = 3.9 × 10−37 in GM12878; Extended Data Fig. 7d–f). DNAseI 

HS signal around homopolymer FM-eSTRs shows a periodic pattern in multiple cell and 

tissue types with peaks located at multiples of 147 bp upstream and downstream from the 

STR (Extended Data Fig. 7d). Given that 147 bp is the length of DNA typically wrapped 

around a single nucleosome42, we hypothesize that a subset of homopolymer FM-eSTRs 

may act by shifting nucleosome positions and thus modulating accessibility of adjacent sites.

Next, we compared the sequence characteristics of FM-eSTRs to all STRs. We find that the 

total lengths of FM-eSTRs are significantly higher (Mann-Whitney two-sided p = 0.00032 

and p = 2.4 × 10−10 when comparing total repeat number and total length in bp, respectively, 

based on the sequence present in hg19). We tested FM-eSTRs combined across all tissues 

for enrichment of each canonical STR repeat unit (defined lexicographically, see Methods) 

and found that FM-eSTRs are most strongly enriched for repeats with GC-rich repeat units 

(Fig. 2e, Supplementary Table 5, Supplementary Fig. 6). For example, the canonical repeat 

units CCCCGG, CCCCCG, and CCG are 22, 13, and 7-fold enriched in FM-eSTRs 

compared to all STRs, respectively. During transcription, these GC-rich repeat units have 

been shown to form highly stable secondary structures such as G4 quadruplexes in single-

stranded DNA43 or RNA44 that may be involved in regulation of gene expression. We found 

that in general higher repeat numbers at GC-rich eSTRs are associated with greater DNA or 

RNA stability and increased expression of nearby genes (Supplementary Note, Fig. 2f–h, 

Supplementary Fig. 7–10).

We next examined effect size biases in FM-eSTR associations. Overall, FM-eSTRs are 

equally likely to show positive vs. negative correlations between repeat length and gene 

expression (Supplementary Fig. 11; two-sided binomial p = 0.94). We additionally observe 

that FM-eSTRs with repeat units of the form (AnC/GnT) show strand-specific effects when 

in or near transcribed regions. Transcribed FM-eSTRs are more likely to have the T-rich 

version of the repeat unit on the template strand (two-sided binomial p = 0.0015). These T-

rich FM-eSTRs tend to have more positive effect sizes, with the most notable differences for 

AC vs. GT repeats. These patterns are observed in transcribed regions across multiple 

distinct repeat types (A/T, AC/GT, AAC/GTT, AAAC/GGGT) but are not present in 

intergenic regions (Extended Data Fig. 8).

Finally, we wondered whether eSTRs might exhibit distinct characteristics in different 

tissues. We clustered tissue-specific Z-scores (absolute value) for each FM-eSTR calculated 

jointly across tissues by mash (Methods) to identify eight categories of FM-eSTR 
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(Supplementary Fig. 12– 13). These include two clusters of FM-eSTRs present across many 

tissues (Clusters 2 and 8) as well as several more tissue-specific clusters (e.g., Thyroid for 

Cluster 1). Notably, clusters do not necessarily imply tissue specificity, but rather enrich for 

FM-eSTRs with particularly strong effects in one or more tissues (Supplementary Fig. 13). 

Clusters show similar repeat unit enrichment to all FM-eSTRs and do not exhibit distinct 

enriched repeat units (Supplementary Fig. 14). Similar results were achieved using different 

numbers of clusters. Overall, our results suggest the majority of eSTRs act by global 

mechanisms and do not implicate tissue-specific characteristics of FM-eSTRs. However, low 

numbers of tissue-specific effects limit power to detect differences.

eSTRs are potential drivers of published GWAS signals

We wondered whether our eSTR catalog could identify STRs affecting complex traits in 

humans. We first leveraged the NHGRI/EBI GWAS catalog45 to identify FM-eSTRs that are 

nearby and in LD with published GWAS signals. Overall, 1,380 unique FM-eSTRs are 

within 1 Mb of GWAS hits (Methods, Supplementary Data 3). Of these, 847 are in moderate 

LD (r2 > 0.1) and 65 are in strong LD (r2 > 0.8) with the lead SNP. When considering a 

more stringent set of FM-eSTRs with CAVIAR score >0.5, 403 and 26 are in strong and 

moderate LD with a GWAS hit, respectively.

We next sought to determine whether specific published GWAS signals could be driven by 

changes in expression due to an underlying but previously unobserved FM-eSTR. We 

reasoned that such loci would exhibit the following properties: (i) strong similarity in 

association statistics across variants for both the GWAS trait and expression of a particular 

gene, indicating the signals may be co-localized, i.e., driven by the same causal variant; and 

(ii) strong evidence that the FM-eSTR causes variation in expression of that gene (Fig. 3a). 

Co-localization analysis requires high-resolution summary statistic data. Thus, we focused 

on several example complex traits (height46, schizophrenia47, inflammatory bowel disease 

(IBD)48, and intelligence49) for which detailed summary statistics computed on cohorts of 

tens of thousands or more individuals are publicly available (Methods).

For each trait, we identified FM-eSTRs within 1 Mb of published GWAS signals from 

Supplementary Dataset 3. We then used coloc50 to compute the probability that the FM-

eSTR signals we derived from GTEx and the GWAS signals derived from other cohorts are 

co-localized. The coloc tool compares association statistics at each SNP in a region for 

expression and the trait of interest and returns a posterior probability that the signals are co-

localized. We used coloc to test a total of 276 gene×trait pairs (138, 45, 29, and 64 for 

height, intelligence, IBD, and schizophrenia, respectively). In total, we identified 62 GWAS 

loci with (1) an FM-eSTR in at least moderate LD (r2 > 0.1) with a nearby SNP for that trait 

in the GWAS catalog and (2) co-localization posterior probability between the target gene 

and the trait >50%, meaning co-localization of the eQTL and GWAS signals is the most 

probable model (Extended Data Fig. 9–10). Out of the 62 FM-eSTRs co-localized with 

GWAS signals, 40 have CAVIAR scores >0.5. Results of all co-localization tests are 

provided in Supplementary Table 6.

A top example is an FM-eSTR for RFT1, a gene encoding enzyme involved in the N-

glycosylation of proteins51, that has 97.8% co-localization probability with a GWAS signal 
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for height (Fig. 3b–c). The lead SNP in the NHGRI catalog (rs2336725:C>T) is in high LD 

(r2 = 0.85) with an AC repeat that is a significant eSTR in 15 tissues. This STR falls in a 

cluster of transcription factor and chromatin regulator binding regions identified by 

ENCODE near the 3’ end of the gene (Fig. 3d) and exhibits a positive correlation with 

expression.

To more directly test for association between this FM-eSTR and height, we used our 

recently developed STR-SNP reference haplotype panel52 to impute STR genotypes into 

available GWAS data. We focused on the eMERGE cohort (Methods) for which imputed 

genotype array data and height measurements are available. We tested for association 

between height and SNPs as well as for height and AC repeat number after excluding 

samples with low STR imputation quality (Methods). Imputed AC repeat number is 

significantly associated with height in the eMERGE cohort (p = 0.00328; beta = 0.010; n = 

6,393), although with a slightly weaker p-value compared to the top SNP (Fig. 3e). Notably, 

even in the case that the STR is the causal variant, power is likely reduced due to the lower 

quality of imputed STR genotypes. Notably, AC repeat number shows a strong positive 

relationship with height across a range of repeat lengths (Fig. 3f), similar to the relationship 

between repeat number and RFT1 expression.

To further investigate whether the FM-eSTR for RFT1 could be a causal driver of gene 

expression variation, we devised a dual reporter assay in HEK293T cells to test for an effect 

of the number of repeats on gene expression (0, 5, 10, or 12 repeats plus approximately 170 

bp of genomic sequence context on either side) (Supplementary Table 7, Methods). We 

observed a positive linear relationship between the number of AC repeats and reporter 

expression as predicted (Fig. 3g) (Pearson r = 0.97; p = 0.013). Furthermore, all pairs of 

constructs with consecutive repeat numbers showed significantly different expression (one-

sided t-test p < 0.01) with the exception of 10 vs. 12 repeats. Overall, these results further 

support the hypothesis that eSTRs may act as causal drivers of gene expression.

Discussion

Here we present the most comprehensive resource of eSTRs to date, which reveals more 

than 28,000 associations between the number of repeats at STRs and expression of nearby 

genes across 17 tissues. We performed fine-mapping to quantify the probability that each 

eSTR causally effects gene expression and characterize top fine-mapped eSTRs. eSTRs 

analyzed here consist of a large spectrum of repeat classes with a variety of repeat unit 

lengths and sequences. Based on the diverse characteristics of eSTRs, we hypothesize that 

different repeat classes work by distinct regulatory effects (Fig. 4). While we explored 

several potential mechanisms, including nucleosome positioning and the formation of non-

canonical DNA or RNA secondary structures, our results do not rule out other potential 

mechanisms.

We leveraged our resource to provide evidence that FM-eSTRs may drive a subset of 

published GWAS associations for a variety of complex traits. STRs have a unique ability 

compared to bi-allelic SNPs to drive phenotypic variation along a spectrum of multiple 

alleles. In multiple examples, eSTRs show a linear trend between repeat length and 
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expression across a range of repeat numbers, a signal that cannot be easily explained by 

tagging nearby bi-allelic variants. Notably, our analysis is based only on signals that could 

be detected by standard SNP-based GWAS, which are underpowered to detect underlying 

multi-allelic associations from STRs52. Further work to directly test for associations 

between STRs and phenotypes may reveal a widespread role for repeat number variation in 

complex traits.

Our study faced several limitations: (i) While we applied stringent fine-mapping approaches 

to find eSTRs whose signals are likely not explained by nearby SNPs in LD, some signals 

could plausibly be explained by other variant classes such as structural variants53 or Alu 

elements54 that were not considered. Furthermore, our fine-mapping procedure may be 

vulnerable to false negatives for STRs in strong or perfect LD with nearby SNPs or false 

positives due to noise present with small sample sizes. (ii) Our study was limited to tissues 

available from GTEx with sufficient sample sizes. While this greatly expanded on the single 

tissue used in our previous eSTR analysis, some tissues such as brain were not well 

represented. Further, due to overwhelming sharing of eSTRs across tissues, we were unable 

to identify tissue-specific characteristics of eSTRs. (iii) Despite strong evidence that the FM-

eSTRs for RFT1 and other genes may drive published GWAS signals, we have not 

definitively proved causality. Additional work is needed to validate effects on expression and 

evaluate the impact of these STRs in trait-relevant cell types.

Altogether, our eSTR catalog provides a valuable resource for studying the role of STRs in 

complex traits. Example applications of this resource include: further analysis of the genetic 

architecture of gene expression by quantifying the contribution of different variant classes, 

genome-wide analyses to confirm or refute hypotheses about eSTR mechanisms, and 

integration of eSTRs into GWAS fine-mapping to identify candidate variants not identified 

by SNP-based analyses. To facilitate these and other studies, all summary-level eSTR data 

are publicly available at http://webstr.ucsd.edu.

Online Methods

Dataset and preprocessing

Next-generation sequencing data was obtained from the Genotype-Tissue Expression 

(GTEx) through dbGaP under phs000424.v7.p2. This included high coverage (30x) Illumina 

whole genome sequencing (WGS) data and expression data from 652 unrelated individuals 

(Supplementary Fig. 1). The WGS cohort consisted of 561 individuals with reported 

European ancestry, 75 of African ancestry, and 8, 3, and 5 of Asian, Amerindian, and 

Unknown ancestry, respectively. For each sample, we downloaded BAM files containing 

read alignments to the hg19 reference genome and VCFs containing SNP genotype calls.

STRs were genotyped using HipSTR27 v0.5, which returns the maximum likelihood diploid 

STR allele sequences for each sample based on aligned reads as input. Samples were 

genotyped separately with non-default parameters --min-reads 5 and --def-stutter-model. 

VCFs were filtered using the filter_vcf.py script available from HipSTR using recommended 

settings for high coverage data (--min-call-qual 0.9, --max-call-flank-indel 0.15, and --max-

call-stutter 0.15). VCFs were merged across all samples and further filtered to exclude STRs 
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meeting the following criteria: call rate <80%; STRs overlapping segmental duplications 

(UCSC Genome Browser55 hg19.genomicSuperDups table); penta- and hexamer STRs 

containing homopolymer runs of at least 5 or 6 nucleotides, respectively in the hg19 

reference genome, since we previously found these STRs to have high error rates due to 

indels in homopolymer regions52; and STRs whose frequencies did not meet the percentage 

of homozygous vs. heterozygous calls expected under Hardy-Weinberg Equilibrium 

(binomial two-sided p < 0.05). Additionally, to restrict to polymorphic STRs we filtered 

STRs with heterozygosity <0.1. Altogether, 175,226 STRs remained for downstream 

analysis.

We additionally obtained gene-level RPKM values for each tissue from dbGaP project 

phs000424.v7.p2. We focused on 15 tissues with at least 200 samples, and included two 

brain tissues with slightly more than 100 samples available (Supplementary Table 1). Genes 

with median RPKM of 0 were excluded and expression values for remaining genes were 

quantile normalized separately per tissue to a standard normal distribution. Analysis was 

restricted to protein-coding genes based on GENCODE version 19 (Ensembl 74) annotation.

Prior to downstream analyses, expression values were adjusted separately for each tissue to 

control for sex, population structure, and technical variation in expression as covariates. For 

population structure, we used the top 10 principal components resulting from performing 

principal components analysis (PCA) on the matrix of SNP genotypes from each sample. 

PCA was performed jointly on GTEx samples and 1000 Genomes Project56 samples 

genotyped using Omni 2.5 SNP genotyping arrays (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/

release/20130502/supporting/shapeit2_scaffolds/hd_chip_scaffolds/). Analysis was 

restricted to bi-allelic SNPs present in the Omni 2.5 data and resulting loci were LD-pruned 

using plink57 v1.90b3.44 with option --indep 50 5 2. PCA on resulting SNP genotypes was 

performed using smartpca58,59 v13050. To control for technical variation in expression, we 

applied PEER factor correction60. Based on an analysis of number of PEER factors vs. 

number of eSTRs identified per tissue (Supplementary Fig. 2), we determined an optimal 

number of N/10 PEER factors as covariates for each tissue, where N is the sample size. 

PEER factors were correlated with covariates reported previously for GTEx samples 

(Supplementary Fig. 3) such as ischemic time.

eSTR and eSNP identification

For each STR within 100kb of a gene, we performed a linear regression between STR 

lengths and adjusted expression values:

Y′ = βX + ϵ

Where X denotes STR genotypes, Y′ denotes expression values adjusted for the covariates 

described above, β denotes the effect size, and ε is the error term. A separate regression 

analysis was performed for each STR-gene pair in each tissue. For STR genotypes, we used 

the average repeat length of the two alleles for each individual, where repeat length was 

computed as a length difference from the hg19 reference, with 0 representing the reference 

allele. Linear regressions were performed using the OLS function from the Python 
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statsmodels.api module61 (https://www.statsmodels.org, v0.8.0), which returns estimated 

regression coefficients computed using ordinary least squares and two-sided p-values for 

each regression coefficient testing the null hypothesis β = 0 computed from t-statistics for 

each coefficient. As a control, for each STR-gene pair we performed a permutation analysis 

in which sample identifiers were shuffled.

Samples with missing genotypes or expression values were removed from each regression 

analysis. To reduce the effect of outlier STR genotypes, we removed samples with genotypes 

observed in fewer than 3 samples. If after filtering samples there were fewer than three 

unique genotypes, the STR was excluded from analysis. Adjusted expression values and 

STR genotypes for remaining samples were then Z-scaled to have mean 0 and variance 1 

before performing each regression. This step forces resulting effect sizes to be between −1 

and 1.

We used a gene-level FDR threshold (described previously14) of 10% to identify significant 

STR-gene pairs. We assume most genes have at most a single causal eSTR. For each gene, 

we determined the STR association with the strongest P-value. This P-value was adjusted 

using a Bonferroni correction for the number of STRs tested per gene to give a P-value for 

observing a single eSTR association for each gene. We then used the list of adjusted P-

values (one per gene) as input to the fdrcorrection function in the statsmodels.stats.multitest 

module to obtain a q-value for the best eSTR for each gene. FDR analysis was performed 

separately for each tissue.

eSNPs were identified using the same model covariates and normalization procedures but 

using SNP dosages (0, 1, or 2) rather than STR lengths. Similar to the STR analysis, we 

removed samples with genotypes occurring in fewer than 3 samples and removed SNPs with 

fewer than 3 unique genotypes remaining after filtering. On average, we tested 17 STRs and 

533 SNPs per gene.

Fine-mapping eSTRs

We used model comparison as an orthogonal validation to CAVIAR findings to determine 

whether the best eSTR for each gene explained variation in gene expression beyond a model 

consisting of the best eSNP. For each gene with an eSTR we determined the eSNP with the 

strongest p-value. We then compared two linear models: Y’~eSNP (SNP-only model) vs. 

Y’~eSNP+eSTR (SNP+STR model) using the anova_lm function in the python 

statsmodels.api.stats module. Q-values were obtained using the fdrcorrection function in the 

statsmodels.stats.multitest module. On average across tissues, 17.4% of eSTRs tested 

improved the model over the best eSNP for the target gene (10% FDR). When restricting to 

FM-eSTRs, 78% improved the model (10% FDR).

We used CAVIAR36 v2.2 to further fine-map eSTR signals against all nominally significant 

eSNPs (p < 0.05) within 100 kb of each gene. On average, 121 SNPs per gene passed this 

threshold and were included in CAVIAR analysis. Pairwise-LD between the eSTR and 

eSNPs was estimated using the Pearson correlation between SNP dosages (0, 1, or 2) and 

STR genotypes (average of the two STR allele lengths) across all samples. CAVIAR was run 

with parameters -f 1 -c 2 to model up to two independent causal variants per locus. In some 
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cases, initial association statistics for SNPs and STRs might have been computed using 

different sets of samples if some were filtered due to outlier genotypes. To provide a fair 

comparison between eSTRs and eSNPs, for each CAVIAR analysis we recomputed Z-scores 

for eSTRs and eSNPs using the same set of samples prior to running CAVIAR.

Multi-tissue eSTR analysis

We used an R implementation of mash41 (mashR) v0.2.21 to compute posterior estimates of 

eSTR effect sizes and standard errors across tissues (https://stephenslab.github.io/mashr/

articles/intro_mash_dd.html). Briefly, mashR takes as input effect sizes and standard error 

measurements per-tissue, learns various covariance matrices of effect sizes between tissues, 

and outputs posterior estimates of effect sizes and standard errors accounting for global 

patterns of effect size sharing. We used all eSTRs with a nominal p-value of <1 × 10−5 in at 

least one tissue as a set of strong signals to compute covariance matrices. eSTRs that were 

not analyzed in all tissues were excluded from this step. We included “canonical” covariance 

matrices (identity matrix and matrices representing condition-specific effects) and matrices 

learned by extreme deconvolution initialized using PCA with 5 components as suggested by 

mashR documentation. After learning covariance matrices, we applied mashR to estimate 

posterior effect sizes and standard errors for each eSTR in each tissue. For eSTRs that were 

filtered from one or more tissues in the initial regression analysis, we set input effect sizes to 

0 and standard errors to 10 in those tissues to reflect high uncertainty in effect size estimates 

at those eSTRs. For Fig. 1d, rows and columns of the effect size correlation matrix were 

clustered using default parameters from the clustermap function in the Python seaborn 

library (https://seaborn.pydata.org/, v0.9.0).

Canonical repeat units

For each STR, we defined the canonical repeat unit as the lexicographically first repeat unit 

when considering all rotations and strand orientations of the repeat sequence. For example, 

the canonical repeat unit for the repeat sequence CAGCAGCAGCAG would be AGC.

Enrichment analyses

Enrichment analyses were performed using a two-sided Fisher’s exact test as implemented 

in the fisher_exact function of the python package scipy.stats (https://docs.scipy.org/doc/

scipy/reference/stats.html, v1.2.1). Overlapping STRs with each annotation was performed 

using the intersectBed tool of the BEDTools62 suite v2.28.0. Genomic annotations were 

obtained by downloading custom tables using the UCSC Genome Browser55 table browser 

tool to select either coding regions, introns, 5’UTRs, or 3’UTRs. An STR could be assigned 

to more than one category in the case of overlapping transcripts. STRs not assigned to one of 

those categories were labeled as intergenic. ENCODE DNAseI HS clusters were 

downloaded from the UCSC Genome Browser (http://hgdownload.cse.ucsc.edu/goldenpath/

hg19/encodeDCC/wgEncodeRegDnaseClustered/wgEncodeRegDnaseClusteredV3.bed.gz). 

Analysis was restricted to DNAseI HS clusters annotated in at least 20 cell types. The 

distance between each STR and the center of the nearest DNAseI HS cluster was computed 

using the closestBed tool from the BEDTools suite.
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Analysis of DNAseI-seq, ChIP-seq, and Nucleosome occupancy

Genome-wide nucleosome occupancy signal in GM12878 was downloaded from the UCSC 

Genome Browser (http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/

wgEncodeSydhNsome/wgEncodeSydhNsomeGm12878Sig.bigWig). ChIP-seq reads for 

RNAPII and DNAseI-seq reads were downloaded from the ENCODE Project website 

(https://www.encodeproject.org) (Accessions GM12878 RNAPII: ENCFF000OBB, heart 

RNAPII: ENCFF643EGO, lung RNAPII: ENCSR033NHF, tibial nerve RNAPII: 

ENCFF750HDH, human embryonic stem cells RNAPII: ENCFF526YGE; GM12878 

DNAseI: ENCFF775ZJX, fat DNAseI: ENCFF880CAD, tibial nerve DNAseI: 

ENCFF226ZCG, skin DNAseI: ENCFF238BRB). Histograms of aggregate read densities 

and heatmaps for individual STR regions were generated using the annoatePeaks.pl tool of 

Homer63 v4.10. For nucleosome occupancy and DNAseI analyses on all STRs, we used 

parameters -size 1000 -hist 1. For analysis of GC-rich repeats in promoters, we used 

parameters -size 10000 -hist 5.

Characterization of tissue-specific eSTRs

We clustered FM-eSTRs based on Z-scores computed by mash for each eSTR in each tissue. 

We first created a tissue by FM-eSTR matrix of the absolute value of the Z-scores. We then 

Z-normalized Z-scores for each FM-eSTR to have mean 0 and variance 1. We used the 

KMeans class from the Python sklearn.cluster module to perform K-means clustering with 

K=8 (https://scikit-learn.org/stable/, v0.20.3). The number of clusters was chosen by 

visualizing the sum of squared distances from centroids for values of K ranging from 1 to 20 

and choosing a value of K based on the “elbow method”. Using different values of K 

produced similar groups. We tested for non-uniform distributions of FM-eSTR repeat units 

across clusters using a chi-squared test implemented in the scipy.stats chi2_contingency 

function.

Analysis of DNA and RNA secondary structure

For each STR, we extracted the repeat plus 50 bp flanking sequencing from the hg19 

reference genome. We additionally created sequences containing each common allele for 

each STR. Common alleles were defined as those seen at least 5 times in a previously 

generated deep catalog of STR variation in 1,916 samples52. For each sequence and its 

reverse complement, we ran mfold64 v3.6 on the DNA and corresponding RNA sequences 

with mfold arguments NA=DNA and NA=RNA, respectively, and otherwise default 

parameters to estimate the free energy of each single-stranded sequence. Mann-Whitney 

tests were performed using the mannwhitneyu function of the scipy.stats python package.

Co-localization of FM-eSTRs with published GWAS signals

Published GWAS associations were obtained from the NHGRI/EBI GWAS catalog available 

from the UCSC Genome Browser Table Browser (table hg19.gwasCatalog) downloaded on 

July 24, 2019. Height GWAS summary statistics were downloaded from the GIANT 

Consortium website (https://portals.broadinstitute.org/collaboration/giant/images/0/0f/Meta-

analysis_Locke_et_al%2BUKBiobank_2018.txt.gz). Schizophrenia GWAS summary 

statistics were downloaded from the Psychiatric Genomics Consortium website 
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(Schizophrenia GWAS summary statistics, https://www.med.unc.edu/pgc/results-and-

downloads). IBD summary statistics were downloaded from the International Inflammatory 

Bowel Disease Genetics Consortium (IIBDGC) website. We used the file 

EUR.IBD.gwas_info03_filtered.assoc with summary statistics in Europeans (https://ftp://

ftp.sanger.ac.uk/pub/consortia/ibdgenetics/iibdgc-trans-ancestry-filtered-summary-stats.tgz). 

Intelligence summary statistics were downloaded from the Complex Trait Genomics lab 

website (https://ctg.cncr.nl/documents/p1651/SavageJansen_IntMeta_sumstats.zip). LD 

between STRs and SNPs was computed by taking the squared Pearson correlation between 

STR lengths and SNP dosages in GTEx samples for each STR-SNP pair. STR genotypes 

seen less than 3 times were filtered from LD calculations.

Co-localization analysis of eQTL and GWAS signals was performed using the coloc.abf 

function of the coloc50 package. For all traits, dataset 1 was specified as type=”quant” and 

consisted of SNP effect sizes and their variances as input. We specified sdY=1 since 

expression was quantile normalized to a standard normal distribution. Dataset 2 was 

specified differently for height and schizophrenia to reflect quantitative vs. case-control 

analyses. For height and intelligence, we specified type=”quant” and used effect sizes and 

their variances as input. We additionally specified minor allele frequencies listed in the 

published summary statistics file and the total sample size of N = 695,647 and N = 269,720 

for height and intelligence, respectively. For schizophrenia and IBD, we specified 

type=”CC” and used effect sizes and their variances as input. We additionally specified the 

fraction of cases as 33%.

Capture Hi-C interactions (Extended Data Fig. 10) were visualized using the 3D Genome 

Browser65. The visualization depicts interactions profiled in GM1287866 and only shows 

interactions overlapping the STR of interest.

Association analysis in the eMERGE cohort

We obtained SNP genotype array data and imputed genotypes from dbGaP accessions 

phs000360.v3.p1 and phs000888.v1.p1 from consent groups c1 (Health/Medical/

Biomedical), c3 (Health/Medical/Biomedical - Genetic Studies Only - No Insurance 

Companies), and c4 (Health/Medical/Biomedical - Genetic Studies Only). Height data was 

available for samples in cohorts c1 (phs000888.v1.pht004680.v1.p1.c1), c3 

(phs000888.v1.pht004680.v1.p1.c3), and c4 (phs000888.v1.pht004680.v1.p1.c4). We 

removed samples without age information listed. If height was collected at multiple times 

for the same sample, we used the first data point listed.

Genotype data was available for 7,190, 6100, and 3,755 samples from the c1, c3, and c4 

cohorts respectively (dbGaP study phs000360.v3.p1). We performed PCA on the genotypes 

to infer ancestry of each individual. We used plink to restrict to SNPs with minor allele 

frequency at least 10% and with genotype frequencies expected under Hardy-Weinberg 

Equilibrium (p > 1 × 10−4). We performed LD pruning using the plink option --indep 50 5 

1.5 and used pruned SNPs as input to PCA analysis. We visualized the top two PCs and 

identified a cluster of 14,147 individuals overlapping samples with annotated European 

ancestry. We performed a separate PCA using only the identified European samples and 

used the top 10 PCs as covariates in association tests.
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A total of 11,587 individuals with inferred European ancestry had both imputed SNP 

genotypes and height and age data available. Samples originated from cohorts at Marshfield 

Clinic, Group Health Cooperative, Northwestern University, Vanderbilt University, and the 

Mayo Clinic. We adjusted height values by regressing on top 10 ancestry PCs, age, and 

cohort. Residuals were inverse normalized to a standard normal distribution. Adjustment 

was performed separately for males and females.

Imputed genotypes (from dbGaP study phs000888.v1.p1) were converted from IMPUTE267 

to plink’s binary format using plink, which marks calls with uncertainty >0.1 (score<0.9) as 

missing. SNP associations were performed using plink with imputed genotypes as input and 

with the “linear” option with analysis restricted to the region chr3:53022501–53264470.

The RFT1 FM-eSTR was imputed into the imputed SNP genotypes using Beagle 568 with 

option gp=true and using our SNP-STR reference haplotype panel52. We previously 

estimated imputation concordance of 97% at this STR in a separate European cohort. 

Samples with imputed genotype probabilities of less than 0.9 were removed from the STR 

analysis. We additionally restricted analysis to STR genotypes present in at least 100 

samples to minimize the effect of outlier genotypes. We regressed STR genotype (defined 

above as the average of an individual’s two repeat lengths) on residualized height values for 

the remaining 6,393 samples using the Python statsmodels.regression.linear_model.OLS 

function (https://www.statsmodels.org).

Dual luciferase reporter assay

Constructs for 0, 5, or 10 copies of AC at the FM-eSTR for RFT1 (chr3:53128363–

53128413 plus approximately 170bp genomic context on either side (RFT1_0rpt, 

RFT1_5rpt, RFT1_10rpt in Supplementary Table 7) were ordered as gBlocks from 

Integrated DNA technologies (IDT). Each construct additionally contained homology arms 

for cloning into pGL4.27 (below). We additionally PCR amplified the region from genomic 

DNA for sample NA12878 with 12 copies of AC (NIGMS Human Genetic Repository, 

Coriell) using PrimeSTAR max DNA Polymerase (Clontech R045B) and primers 

RFT1eSTR_F and RFT1eSTR_R (Supplementary Table 7) which included the same 

homology arms.

Constructs were cloned into plasmid pGL4.27 (Promega, E8451), which contains the firefly 

luciferase coding sequence and a minimal promoter. The plasmid was linearized using 

EcoRV (New England Biolabs, R3195) and purified from agarose gel (Zymo Research, 

D4001). Constructs were cloned into the linearized vector using In-Fusion (Clontech, 

638910). Sanger sequencing of isolated clones for each plasmid validated expected repeat 

numbers in each construct.

Plasmids were transfected into the human embryonic kidney 293 cell line (HEK293T; ATCC 

CRL-3216) and grown in DMEM media (Gibco, 10566–016), supplemented with 10% fetal 

bovine serum (Gibco, 10438–026), 2 mM glutamine (Gibco, A2916801), 100 units/mL of 

penicillin, 100 μg/mL of streptomycin, and 0.25 μg/mL Amphotericin B (Anti-Anti Gibco, 

15240062). Cells were maintained at 37°C in a 5% CO2 incubator. 2×105 HEK293T cells 

were plated onto each well of a 25 ug/ml poly-D lysine (EMD Millipore, A-003-E) coated 
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24-well plate, the day prior to transfection. On the day of the transfection medium was 

changed to Opti-MEM. We conducted co-transfection experiments to test expression of each 

construct. 100ng of the empty pGL4.27 vector (Promega, E8451) or 100 ng of each one of 

the pGL4.27 derivatives, were mixed with 5ng of the reference plasmid, pGL4.73 (Promega, 

E6911), harboring SV40 promoter upstream of Renilla luciferase, and added to the cells in 

the presence of Lipofectamine™ 3000 (Invitrogen, L3000015), according to the 

manufacturer’s instructions. Cells were incubated for 24 h at 37°C, washed once with 

phosphate-buffered saline, and then incubated in fresh completed medium for an additional 

24 h.

48 hours after transfection the HEK293T cells were washed 3 times with PBS and lysed in 

100μl of Passive Lysis Buffer (Promega, E1910). Firefly luciferase and Renilla luciferase 

activities were measured in 10 μl of HEK293T cell lysate using the Dual-Luciferase 

Reporter assay system (Promega, E1910) in a Veritas™ Microplate Luminometer. Relative 

activity was defined as the ratio of firefly luciferase activity to Renilla luciferase activity. For 

each plasmid, transfection and the expression assay were done in triplicates using three wells 

of cultured cells that were independently transfected (biological repeats), and three 

individually prepared aliquots of each transfection reaction (technical repeats). Values from 

each technical replicate were averaged to get one ratio for each biological repeat.

Data Availability

All eSTR summary statistics are available for download on WebSTR http://webstr.ucsd.edu/

downloads.

Code Availability

Code for performing analyses and generating figures is available at http://github.com/

gymreklab/gtex-estrs-paper.

Extended Data
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Extended Data Fig. 1: Relationship between sample size and number of eSTRs detected
The x-axis shows the number of samples per tissue. The y-axis shows the number of eSTRs 

(gene-level FDR<10%) detected in each tissue. Each dot represents a single tissue, using the 

same colors as shown in Fig. 1 in the main text (see box on the right). Notably, although 

whole blood and skeletal muscle had the highest number of samples, we identified fewer 

eSTRs in those tissues than in others with lower sample sizes. This is concordant with 

previous results for SNPs in the GTEx cohort and may reflect higher cell-type heterogeneity 

in these tissue samples.
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Extended Data Fig. 2: Enrichment of genomic annotations as a function of CAVIAR threshold
The x-axis represents CAVIAR thresholds in terms of the percentile (percentage of all 

28,375 eSTRs excluded by those thresholds). The y-axis represents the odds ratio for 

enrichment in eSTRs above each percentile threshold in each of these categories: a. 5’UTRs 

(purple); b. 3’UTRs (blue); c. promoters (orange; TSS +/− 3kb); d. Coding regions (red) and 

e. Introns (green). The y-axis center values denote the log2 odds ratios comparing eSTRs 

passing each threshold to all STRs. Error bars represent +/−1 s.e.
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Extended Data Fig. 3: Example multi-allelic FM-eSTRs
For each plot, the x-axis represents the mean number of repeats in each individual and the y-

axis represents normalized expression in the tissue for which the eSTR was most significant. 

Boxplots summarize the distribution of expression values for each genotype. Horizontal 

lines show median values, boxes span from the 25th percentile (Q1) to the 75th percentile 

(Q3). Whiskers extend to Q1–1.5*IQR (bottom) and Q3+1.5*IQR (top), where IQR gives 

the interquartile range (Q3-Q1). The red line shows the mean expression for each x-axis 

value.
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Extended Data Fig. 4: Sharing of eSTRs across tissues
The x-axis represents the number of tissues that share a given eSTR (absolute value of 

mashR Z-score >4). The y-axis represents the number of eSTRs shared across a given 

number of tissues.
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Extended Data Fig. 5: Localization of all STRs around putative regulatory regions
Left and right plots show localization around transcription start sites and DNAseI HS 

clusters, respectively. The y-axis denotes the fraction of STRs of each type in each bin. For 

promoters, the x-axis is divided into 100bp bins. For DNAseI HS sites, the x-axis is divided 

into 50bp bins. In each plot, values were smoothed by taking a sliding average of each four 

consecutive bins. Only STR-gene pairs included in our analysis are considered. Each plot 

compares localization of the two possible sequences of a given repeat unit on the coding 

strand. i.e. top plots compare repeat units of the form CnG vs. their reverse complement on 

the opposite strand, middle plots compare AC vs. GT repeats, and bottom plots compare A 

vs. T repeats. The strand of each STR was determined based on the coding strand of each 

target gene.
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Extended Data Fig. 6: Relative probability of eSTRs around TSSs and DNAseI HS sites for a 
range of CAVIAR scores
Plots are shown for FM-eSTRs defined using multiple CAVIAR thresholds (0, 

corresponding to all eSTRs, 0.3, as used in the main text, or 0.5). a., c., and e. show the 

relative probability of an STR to be an FM-eSTR around TSSs. The black lines represent the 

probability of an STR in each bin to be an FM-eSTR. Values were scaled relative to the 

genome-wide average. b., d., and f. show the relative probability of an STR to be an FM-

eSTR around DNAseI HS clusters. Values were smoothed by taking a sliding average of 

each four consecutive bins.
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Extended Data Fig. 7: Nucleosome occupancy and DNAseI hypersensitivity show distinct 
patterns around eSTRs
a-c. Nucleosome density around STRs with different repeat unit lengths. Nucleosome 

density in GM12878 in 5bp windows is averaged across all STRs analyzed (dashed) and 

FM-eSTRs (solid) relative to the center of the STR. b. DNAseI HS density around STRs 
with different repeat unit lengths. The number of DNAseI HS reads in GM12878 (gray), 

fat (red), tibial nerve (yellow), and skin (cyan) is averaged across all STRs in each category. 

Solid lines show FM-eSTRs. Dashed lines show all STRs. Left=homopolymers, 

middle=dinucleotides, right=tetranucleotides. Other repeat unit lengths were excluded since 

they have low numbers of FM-eSTRs (see Fig. 4a). Dashed vertical lines in (d) show the 

STR position +/− 147bp.
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Extended Data Fig. 8: Strand-biased characteristics of FM-eSTRs
Top panel: the y-axis shows the number of FM-eSTRs with each repeat unit on the template 

strand. Bottom panel: the y-axis shows the percentage of FM-eSTRs with each repeat unit 

on the template strand that have positive effect sizes. Gray bars denote A-rich repeat units 

(A/AC/AAC/AAAC) and red bars denote T-rich repeat units (T/GT/GTT/GTTT). Single 

asterisks denote repeat units nominally enriched or depleted (two-sided binomial p<0.05). 

Double asterisks denote repeat units significantly enriched after controlling for multiple 

hypothesis testing (Bonferroni adjusted p<0.05). Asterisks above brackets show significant 

differences between repeat unit pairs. Asterisks on x-axis labels denote departure from the 

50% positive effect sizes expected by chance. Error bars give 95% confidence intervals.
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Extended Data Fig. 9: Example GWAS signals co-localized with FM-eSTRs
Left: For each plot, the x-axis represents the mean number of repeats in each individual and 

the y-axis represents normalized expression in the tissue with the most significant eSTR 

signal at each locus. Boxplots summarize the distribution of expression values for each 

genotype. Box plots are as defined in Fig. 1c. The red line shows the mean expression for 

each x-axis value. Right: Top panels give genes in each region. The target gene for the eQTL 

associations is shown in black. Middle panels give the -log10 p-values of association of the 

effect-size between each SNP (black points) and the expression of the target gene. The FM-
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eSTR is denoted by a red star. Bottom panels give the -log10 p-values of association between 

each SNP and the trait based on published GWAS summary statistics. P-values are two-sided 

and are based on t-statistics computed for effect sizes (β) (see Methods). Dashed gray 

horizontal lines give the genome-wide significance threshold of 5E-8.
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Extended Data Fig. 10: Example GWAS signal for schizophrenia potentially driven by an eSTR 
for MED19
a. eSTR association for MED19. The x-axis shows STR genotypes at an AC repeat 

(chr11:57523883) as the mean number of repeats in each individual and the y-axis shows 

normalized MED19 expression in subcutaneous adipose. Each point represents a single 

individual. Red lines show the mean expression for each x-axis value. Boxplots are as 

defined in Fig. 1c. b. Summary statistics for MED19 expression and schizophrenia. The 

top panel shows genes in the region around MED19. The middle panel shows the -log10 p-

values of association between each variant and MED19 expression in subcutaneous adipose 

tissue in the GTEx cohort. The FM-eSTR is denoted by a red star. The bottom panel shows 

the -log10 p-values of association for each variant with schizophrenia reported by the 

Psychiatric Genomics Consortium. The dashed gray horizontal line shows genome-wide 

significance threshold of 5E-8. c. Detailed view of the MED19 locus. A UCSC genome 

browser screenshot is shown for the region in the gray box in (b). The FM-eSTR is shown in 

red. The bottom track shows transcription factor (TF) and chromatin regulator binding sites 

profiled by ENCODE. The bottom panel shows long-range interactions reported by Mifsud, 

et al. using Capture Hi-C on GM12878. Interactions shown in black include MED19. 

Interactions to loci outside of the window depicted are not shown.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Multi-tissue identification of eSTRs.
(a) Schematic of eSTR discovery pipeline. We analyzed eSTRs using RNA-seq from 17 

tissues and STR genotypes obtained from deep WGS for 652 individuals from the GTEx 

Project.

(b) eSTR association results. The quantile-quantile plot compares observed p-values for 

each STR-gene test vs. the expected uniform distribution for each tissue. Gray dots denote 

permutation controls (n = 336). Supplementary Table 1 gives the number of tests performed 

in each tissue.
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(c) Example eSTRs previously implicated in disease. Example FM-eSTRs previously 

implicated in myoclonus epilepsy (left), spinocerebellar ataxia 36 (middle), and reduced 

lung function and cardiovascular disease (right) are shown. Black points represent single 

individuals. For each plot, the x-axis represents the mean number of repeats in each 

individual and the y-axis represents normalized expression in a representative tissue. 

Boxplots summarize the distribution of expression values. Horizontal lines show median 

values, boxes span from the 25th percentile (Q1) to the 75th percentile (Q3). Whiskers 

extend to Q1–1.5*IQR (bottom) and Q3+1.5*IQR (top), where IQR gives the interquartile 

range (Q3-Q1). The red line shows the mean expression for each x-axis value. Gene 

diagrams not drawn to scale.

(d) eSTR correlations across tissues. Each cell shows the Spearman correlation between 

mashR FM-eSTR effect sizes for each pair of tissues. Only eSTRs with CAVIAR score >0.3 

(FM-eSTRs) in one of the two tissues were included in each correlation. Supplementary 

Table 1 gives the number of FM-eSTRs identified in each tissue. Rows and columns were 

clustered using hierarchical clustering (Methods).
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Figure 2: Characterization of FM-eSTRs
(a) Density of all STRs around transcription start sites (TSS). The y-axis shows the 

fraction of STRs with each repeat unit type located in each 100 bp bin around the TSS.

(b) Density of all STRs around DNAseI hypersensitive sites. Plots are centered at 

ENCODE DNAseI HS clusters and represent the fraction of STRs with each repeat unit type 

located in each 50 bp bin.

(c) Relative probability to be an FM-eSTR around TSSs.
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(d) Relative probability to be an FM-eSTR around DNAseI HS clusters. For a-d, values 

were smoothed using a sliding average of each four consecutive bins.

(e) Repeat unit enrichment at FM-eSTRs. The x-axis shows all repeat units for which 

there are at least 3 FM-eSTRs across all tissues. The y-axis center values denote the log2 

odds ratios comparing FM-eSTRs to all STRs. Error bars represent ± 1 s.e. Asterisks denote 

repeat units that are significantly enriched or depleted in FM-eSTRs (based on two-sided 

Fisher exact p-value). Per repeat unit sample sizes and Fisher exact statistics are provided in 

Supplementary Table 5.

(f-h) Example GC-rich FM-eSTRs in promoters predicted to modulate secondary 
structure. Top plots show mean expression across all individuals with each mean STR 

length. Vertical bars represent ± 1 s.d. Bottom plots show the free energy computed for each 

allele based on template (solid) and non-template (dashed) strands. The x-axis shows STR 

lengths relative to hg19 (bp). Gene diagrams are not drawn to scale.
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Figure 3: FM-eSTRs co-localize with GWAS signals.
(a) Overview of analyses to identify FM-eSTRs involved in complex traits. We assumed 

a model where variation in STR repeat number alters gene expression, which in turn affects 

the value of a particular complex trait.

(b) eSTR association for RFT1. The x-axis shows STR genotype as the mean number of 

AC repeats and the y-axis gives normalized RFT1 expression. Boxplots defined as in Fig. 1c.

(c) Summary statistics for RFT1 expression and height. The middle panel shows the -

log10 p-values of association between each variant and RFT1 expression. The bottom panel 
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shows the -log10 p-values of association for each variant with height. Black dots=SNPs; red 

star=FM-eSTR; gray dashed line=genome-wide significance threshold.

(d) Genomic view of the RFT1 locus.

(e) eSTR and SNP associations with height in the eMERGE cohort. The y-axis denotes 

association p-values for each variant. Black dots=SNPs; red star=imputed FM-eSTR; blue 

star=top eMERGE SNP.

(f) Imputed RFT1 repeat number is correlated with height. The x-axis shows the mean 

number of AC repeats. The y-axis shows the mean normalized height for all samples 

included in the analysis with a given genotype. Error bars show ± 1 s.e.

(g) Reporter assay testing repeat number vs. expression. A variable number of AC 

repeats plus genomic context were introduced upstream of a reporter gene. Gray dots show 

the value for each of n=3 transfections, each averaged across three technical replicates. 

Black lines show the mean across the three transfections.
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Figure 4: Summary of FM-eSTRs classes and potential regulatory mechanisms
(a) Distribution of FM-eSTR classes across genomic annotations. Each bar shows the 

fraction of FM-eSTRs falling in each annotation consisting of homopolymer (gray), 

dinucleotide (red), trinucleotide (orange), tetranucleotide (blue), pentanucleotide (green) or 

hexanucleotide (purple) repeats. The total number of FM-eSTRs and the top five most 

common repeat units in each category are shown on the right. Note, FM-eSTRs may be 

counted in more than one category.

(b) Homopolymer A/T STRs are predicted to modulate nucleosome positioning. 
Homopolymer repeats are depleted of nucleosomes (gray circles) and may modulate 

expression changes in nearby genes through altering nucleosome positioning.

(c) GC-rich STRs form DNA and RNA secondary structures during transcription. 
Highly stable secondary structures such as G4 quadruplexes may act by expelling 

nucleosomes (gray circle) or stabilizing RNAPII (light green circle). These structures may 

form in DNA (black) or RNA (purple) The stability of the structure can depend on the 

number of repeats.

(d) Dinucleotide STRs can alter transcription factor binding. Dinucleotides are prevalent 

in putative enhancer regions. They may potentially alter transcription factor binding by 

forming binding sites themselves (top), changing affinity of nearby binding sites (middle), or 

modulating spacing between nearby binding sites (bottom).
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For (b)-(d), text and arrows in the white boxes provide a summary of the predicted eSTR 

mechanism depicted in each panel.

Fotsing et al. Page 38

Nat Genet. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Results
	Profiling expression STRs across 17 human tissues
	FM-eSTRs demonstrate unique genomic characteristics
	eSTRs are potential drivers of published GWAS signals

	Discussion
	Online Methods
	Dataset and preprocessing
	eSTR and eSNP identification
	Fine-mapping eSTRs
	Multi-tissue eSTR analysis
	Canonical repeat units
	Enrichment analyses
	Analysis of DNAseI-seq, ChIP-seq, and Nucleosome occupancy
	Characterization of tissue-specific eSTRs
	Analysis of DNA and RNA secondary structure
	Co-localization of FM-eSTRs with published GWAS signals
	Association analysis in the eMERGE cohort
	Dual luciferase reporter assay

	Data Availability
	Code Availability
	Extended Data
	Extended Data Fig. 1:
	Extended Data Fig. 2:
	Extended Data Fig. 3:
	Extended Data Fig. 4:
	Extended Data Fig. 5:
	Extended Data Fig. 6:
	Extended Data Fig. 7:
	Extended Data Fig. 8:
	Extended Data Fig. 9:
	Extended Data Fig. 10:
	References
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:

