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Hyperspectral datasets contain spectral noise, the presence of which adversely affects the classifier performance to generalize
accurately. Despite machine learning algorithms being regarded as robust classifiers that generalize well under unfavourable
noisy conditions, the extent of this is poorly understood. This study aimed to evaluate the influence of simulated spectral noise
(10%, 20%, and 30%) on random forest (RF) and oblique random forest (oRF) classification performance using two node-
splitting models (ridge regression (RR) and support vector machines (SVM)) to discriminate healthy and low infested water
hyacinth plants. Results from this study showed that RF was slightly influenced by simulated noise with classification accuracies
decreasing for week one and week two with the addition of 30% noise. In comparison to RF, oRF-RR and oRF-SVM yielded
higher test accuracies (oRF-RR: 5.36%–7.15%; oRF-SVM: 3.58%–5.36%) and test kappa coefficients (oRF-RR: 10.72%–14.29%;
oRF-SVM: 7.15%–10.72%). Notably, oRF-RR test accuracies and kappa coefficients remained consistent irrespective of simulated
noise level for week one and week two while similar results were achieved for week three using oRF-SVM. Overall, this study
has demonstrated that oRF-RR can be regarded a robust classification algorithm that is not influenced by noisy spectral conditions.

1. Introduction

Hyperspectral sensors capture detailed spectral information;
however, they are often sensitive to noise from a range of
different sources [1, 2]. The presence of spectral noise in
hyperspectral data is of critical concern in classification
approaches due to the performance of the classifier deterio-
rating with the presence of noise [3, 4]. Poor classification
performance is unfavourable because it hinders the interpret-
ability of models constructed and negatively influences the
decisions gleaned from them [4]. Despite numerous
researchers recognising the detrimental effects of noise on
classifier performance, it is a concept that is poorly explored
and understood [3–5]. Classifying hyperspectral data in a
controlled environment, that is in the presence and absence
of simulated noise, is essential to understanding and evaluat-
ing the impact of noise on classifier performance. In addition,
classifying hyperspectral data under increasing levels of
simulated noise is critical to evaluating if the deterioration

in classification performance is considerable or within
acceptable limits. While significant attention has been
placed on the quality of the training data, maximum accu-
racy can only be achieved through a combination of both
high-quality training data and the implementation of a
robust classification algorithm that is insensitive to noise
[3, 4, 6]. Consequently, appropriate denoising and classifi-
cation techniques should be explored to effectively deal
with noisy data and enhance classification performance.

Over the past decade, several researchers have developed
and implemented novel techniques to effectively minimize
the effects of noise in hyperspectral data [7–11]. Denoising
techniques implemented include minimum noise fraction
transformation, noise-filtering methods, spectral smoothing
algorithms, wavelet transformations, and a range of novel
denoising algorithms [9–13]. Contrary to most researchers
that advocate denoising as an important preprocessing step
[1, 8, 11], denoising techniques are also limited in their
approaches. For example, estimating the number of noisy

Hindawi
Journal of Spectroscopy
Volume 2018, Article ID 8316918, 8 pages
https://doi.org/10.1155/2018/8316918

http://orcid.org/0000-0002-3454-3498
https://doi.org/10.1155/2018/8316918


components is a challenge for the minimum noise fraction
transformation. This estimation is different for bands with
different signal to noise ratios as it is not possible to achieve
an optimal denoising for all the bands at the same time [9].
While noise-filtering methods remove noisy attributes, they
can also remove valuable spectral information that can be
essential for specific applications [2]. Even though most
denoising algorithms take into consideration some prior
knowledge about the noise and remove one or two types of
noise, real-world datasets incorporate a combination of
noises [10]. Consequently, given these limitations, it is better
suited to explore classification algorithms that do not require
complex preprocessing denoising steps and are robust in
dealing with spectral noise. This study attempts to classify
hyperspectral data under increasing levels of simulated noise
to evaluate the robustness of classification algorithms. One
machine learning algorithm that is regarded as being a robust
classifier that incorporates mechanisms to be less influenced
by noise is random forest (RF).

RF is a popular tree-based ensemble classification algo-
rithm that uses many classification trees to classify unknown
samples [14–16]. For a detailed review on the applications
and future directions of RF in remote sensing, see [17]. RF
offers numerous advantages as a robust classification algo-
rithm; however, one of the primary features of the algorithm
is that it is less sensitive to noise and avoids overfitting [14].
Firstly, RF is able to efficiently process noisy data through
randomization by constructing each decision tree in the
ensemble using bootstrap samples which are created by
resampling the original training dataset with replacement
[14]. Secondly, RF selects a random subset of predictor vari-
ables at each node to grow each tree; therefore, it is most
likely that individual decision trees avoid noise contributing
input records and predictor variables [14]. Thirdly, RF learns
many variable unbiased decision trees. Models that overfit
model the noise in the training dataset and tend to have a
high variance and low bias. RF reduces the variance by apply-
ing the majority vote rule, therefore producing a model that
has a low bias and low variance [14]. Given the above, it is
evident that RF could be well suited to deal with noisy data
which can be associated with remotely sensed data. However,
while RF can process noisy data efficiently, splitting the fea-
ture space using univariate hyperplanes that are orthogonal
might be suboptimal for class separation and classifying
spectral data [18]. In instances where collinearity exists (i.e.,
hyperspectral data), the marginal distributions of the input
variables may lose their power to separate classes requiring
complex decision boundaries and deeply nested trees [18].
Consequently, an algorithm such as the oblique random for-
est (oRF), that uses multivariate hyperplanes that are oblique,
might be better suited for tasks when dealing with noisy data,
thus offering better classification performances.

oRF is a novel classification algorithm that is an improve-
ment over the standard RF algorithm. The algorithm
employs the same underlying principles to effectively process
noisy data as the standard RF algorithm; making it well suited
to process remotely sensed data. The primary difference
between RF and oRF is that oRF splits the feature space by
using multivariate hyperplanes that are oblique [18, 19]. In

addition, oRF uses supervised linear models, for example
ridge regression (RR) and support vector machines (SVMs),
to perform multivariate node splitting at each node, thereby
providing individual classifiers that are stronger in the stan-
dard forest and an overall improvement in classification
accuracies [19]. Despite the numerous benefits associated
with oRF, only a few studies have implemented oRF for clas-
sification tasks [15, 18–20]. For example, Bassa et al. [15]
reported high classification accuracies when implementing
oRF to classify the highly heterogeneous iSimangaliso wet-
land park, South Africa. Poona et al. [20] showed that oRF
using three different node-splitting models outperformed
traditional RF classifiers when classifying healthy and
infected Pinus radiata seedlings using spectroscopic data.
It is evident that the benefits of implementing oRF within
a remote sensing context offer the potential to process
noisy data efficiently as well as classify more effectively
than the standard RF.

Water hyacinth (Eichhornia crassipes) is an exotic macro-
phyte that is typically controlled by two host-specific weevil
species, the chevroned water hyacinth weevil (Neochetina
bruchi) and the mottled water hyacinth weevil (Neochetina
eichhorniae) [21–23]. To establish the efficacy of biocontrol
agents, variable infestation levels can be monitored using
hyperspectral remote sensing [24]. However, remotely
detecting low infestation levels is a challenge because water
hyacinth plants occur in an aquatic environment that is
influenced by noise from a range of different sources, the
effect of which may mask the detection of low infestation
levels. To the authors’ knowledge, no studies have
attempted to detect low infestation levels on water hya-
cinth plants under noisy hyperspectral conditions. The
robust nature of RF and oRF offers the potential to detect
low infestation levels on water hyacinth under noisy spec-
tral conditions.

Considering the above, the aim of this study was to deter-
mine the impact of hyperspectral spectral noise on RF and
oRF classification performance. More specifically, the objec-
tives of this study were (1) to discriminate healthy and low
infested water hyacinth plants under simulated noise condi-
tions, (2) to understand the effect of increasing levels (10%,
20%, and 30%) of simulated noise on classification accura-
cies, (3) to compare RF and oRF classification accuracies
and robustness under simulated noise conditions, and (4)
to compare oRF classification accuracies and robustness
using RR and SVM node-splitting models.

2. Materials and Methods

2.1. Experimental Procedure. Healthy water hyacinth (Eich-
hornia crassipes) plants (n = 90) were collected from the
Amanzimtoti River located in the KwaZulu-Natal province

of South Africa (30° 03′ 29.44″ S; 30° 52′ 38.53″ E) and were
transported to a laboratory at the University KwaZulu-Natal
[24]. Water hyacinth plants that were collected were of the
same size (i.e., phenostage five) [25] as well as free of any
biocontrol agents or biocontrol damage. At the laboratory,
individual circular plastic containers, 55 cm in diameter each,
were filled with 20 L of water [24]. Thereafter, nitrogen
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(potassium nitrate: 7.5mg N L−1) and phosphorus (dihydro-
gen orthophosphate: 1.37mg P L−1) were added to each
container to simulate conditions found within highly eutro-
phic environments [26]. Commercial iron chelate (13% Fe)
was also added to each container at a concentration of
11.2mg Fe L−1 [27, 28]. The nutrient medium was replaced
on a weekly basis to maintain a constant nutrient concentra-
tion for plant growth and development [24]. Fifteen water
hyacinth plants were placed in each container creating a
dense mat within each container [24]. Water hyacinth plants
were then acclimated to the surrounding environment for
one week prior to weevil exposure [29].

After the acclimation period, each water hyacinth plant
was cleaned of all debris by removing all dead leaves, dead
petioles, and daughter plants to maintain the original stock-
ing density [24]. Two adult male weevils per plant were
considered in order to study the effect of low infestation
levels on plant spectral characteristics [30]. The experiment
was set up in a complete random design with one control
and one treatment; each replicated three times [24]. After
the weevils were introduced, each container was covered with
a mesh (3m× 1.5m; 2mm× 2mm mesh cell size) to prevent
weevils from escaping [24]. The number of male weevils in
each container was maintained by replacing dead weevils
on a weekly basis [31]. Water hyacinth plants were exposed
to one week of weevil herbivory prior to plants being sampled
for canopy reflectance spectra [24].

2.2. Canopy Reflectance Measurements.A FieldSpec® 3 spec-
troradiometer [32] was used to collect reflectance data of
weevil herbivory. The ASD is a portable spectrometer that
uses a fibre optic cable for reflectance measurements and a
personal computer for data logging. The spectrometer has
a spectral range of 350–2500nm with a sampling interval
of 1.4 nm in the 350–1000 nm range and 2nm in the
1000–2500 nm range. Reflectance measurements were
taken at an ambient air temperature of 21°C [24]. All
reflectance measurements were taken within a black box
to account for any background reflectance [24]. The fibre
optic cable with a 10° field of view was pointed 0.5m
above each container with one 50W halogen lamp across
the container providing the only illumination [24]. The spec-
trometer was calibrated by measuring a “white reference”
reading using a Spectralon panel before sample reflectance
measurements were taken.

To measure canopy reflectance, the mesh from each
container was removed and the container was placed on the
target platform. Each container was rotated 45° eight times
with reflectance measurements being captured at the centre
of each container [24]. Four reflectance measurements were
captured at each rotation of the container totalling 32 per
container and 96 per treatment. After reflectance measure-
ments were captured, the mesh on each container was
replaced [24]. The first set of reflectance measurements were
taken after one week of infestation, thereafter, on a weekly
basis over a period of three weeks [24]. Prior to analysis,
reflectance spectra captured at each rotation were averaged
and atmospheric water absorption bands (1350–1450 nm;
1773–2020 nm; 2400–2500 nm) were removed [24].

2.3. Noise Simulation. A noise simulation algorithm was
developed to add white noise to the reflectance spectra
of 10%, 20%, and 30% of the training sample. The algorithm
generates normally distributed random numbers that are
added to the spectra achieving a signal to noise ratio of one.
The noise simulation algorithmwas developed in the R statis-
tics package version 2.0.0 [33].

2.4. Statistical Analysis

2.4.1. The Random Forest Algorithm. RF is a classification
algorithm that combines several univariate classification
trees to build an ensemble that uses the entire forest as a com-
plex composite classifier [14]. Random bootstrap samples are
drawn from the original training data set with replacement,
thereafter an unpruned classification tree is built for each
bootstrap sample. To build each tree, RF randomly selects a
subset of candidate predictors at each node and computes
the Gini index for all possible orthogonal splits. The best
orthogonal split, that is, the largest Gini index measure, is
used to partition the data and generate child nodes. The final
classification label of a new observation is decided by aggre-
gating the predictions of the trees in the ensemble through
majority voting [14]. In this study, the default hyperpara-
meters were used for classification procedures as they pro-
duce acceptable results [34]. The randomForest software
library [35] developed in the R statistics package version
2.5.1 [33] was used for all analysis.

2.4.2. The Oblique Random Forest Algorithm. oRF is a tree-
based ensemble classifier similar to RF which grows many
multivariate classification trees to a data set; combining the
predictions of all the trees to classify the input data. oRF
employs the same ensemble creating process (i.e., bootstrap
aggregation and random selection of bands at each node) as
RF [20]. However, oRF is differentiated from the standard
RF algorithm by learning optimal oblique split directions
using linear discriminative models at each node [18, 19]. Lin-
ear discriminative models implemented at each node include
RR, SVM’s, partial least squares regression and the logistic
regression. In this study, two linear discriminative models
were implemented, RR and SVM. These models are discussed
in greater detail below.

RR is a multiple linear regression model that finds the
minimum sum of squared prediction errors while limiting
the sum of squares of the regression coefficients [36, 37].
RR employs a regularization parameter (λ) on the regres-
sion coefficients which is optimized using the OOB sam-
ples occurring at the same node. It is the regularization
parameter that allows the classifier to adjust to an optimal
split direction [18].

SVM is a binary supervised classification model that aims
to find the optimal separating hyperplane in multidimen-
sional space that linearly separates two classes by maximizing
the margin and simultaneously minimizing misclassification
errors [38, 39]. The trade-off between misclassification errors
and margin maximization is controlled by the parameter C,
which is optimized using the OOB samples occurring at the
same node.
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Similar to the RF, oRF is also defined by two hyper-
parameters, ntree and mtry. The default ntree and mtry
hyperparameters as determined by the oRF algorithm were
used during classification. The obliqueRF library [40]
developed in the R statistics package version 2.0.0 [33]
was used for all analysis.

2.4.3. Accuracy Assessment. The classification performance
of the RF and oRF classifiers was evaluated by calculating
the overall accuracy and kappa coefficient. The overall
accuracy is a measure of the entire classification, whereas
the kappa coefficient is a measure of the difference
between the training dataset and the test dataset arising
due to chance [41, 42].

The workflow used to assess the impact of spectral noise
on random forest and oblique random forest classification
performance is presented in Figure 1.

3. Results

3.1. Description of Neochetina spp. Weevil Infestations.
Healthy and low infested water hyacinth plants over three
weeks of infestation is illustrated in Figure 2 graphically illus-
trates healthy and low infested water hyacinth plants over
three weeks of infestation. Low infested water hyacinth plants
were observed as vigorous and healthy after three weeks of
infestation (Figure 2). A closer inspection of the low infested
water hyacinth plants revealed that Neochetina spp. weevils
were actively feeding from week one to week three. Feeding
scar damage was observed on the leaves of the plants and
progressively increased from week one to week three.

3.2. Reflectance Spectra of Healthy and Low Infestation Levels.
Figure 3 documents the average spectral reflectance curves
for healthy and low infested water hyacinth plants after
three weeks of weevil infestation. Generally, water hyacinth
plants with low infestation exhibited a slightly lower reflec-
tance curve than the healthy water hyacinth plants.

3.3. Random Forest Classification Accuracies. Table 1 presents
RF classification accuracies exclusive and inclusive of three
simulated noise levels for three weeks of infestation. The
highest RF test accuracies and test kappa coefficients were
achieved for week one (test accuracy =91.07%; test kappa
coefficient = 82.14%) and week two (test accuracy =94.64%;
test kappa coefficient = 89.28%), excluding the addition of
simulated noise. It is evident that RF is slightly influenced
by noise due to classification accuracies slightly decreased
with increasing levels of simulated noise. RF test accura-
cies decreased by 7.15% for week one and 10.72% for week
two with the addition of 30% simulated noise. Similarly,
RF test kappa coefficients decreased by 14.29% for week
one and week two with the addition of 30% simulated
noise. However, RF test accuracies and test kappa coeffi-
cients increased slightly and remained consistent with
increasing levels of simulated noise for week three. In this
regard, RF test accuracies and test kappa coefficients
increased by 1.78% and 3.57%, respectively.

3.4. Oblique Random Forest-Ridge Regression Classification
Accuracies. oRF-RR classification accuracies exclusive and
inclusive of three simulated noise levels for three weeks of
infestation are presented in Table 2. Overall, oRF-RR yielded
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Figure 1: Flowchart outlining the process used to assess the impact of spectral noise on random forest and oblique random forest
classification performance for three weeks.

Infestation levels Week one Week two Week three

Control 

Low 

Figure 2: Photographs of healthy and low infested water hyacinth (E. crassipes) plants over three weeks of infestation (Adapted from Agjee et al.
[24]).
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higher classification accuracies than RF highlighting the
utility of oRF-RR to classify low infestation levels in the
absence of noise and under noisy conditions (Tables 1
and 2). For example, oRF-RR test accuracy and test kappa
coefficient increased by 5.35% and 10.71%, respectively, for
week one excluding the addition of simulated noise. From
Table 2, it is clearly evident that oRF-RR test accuracies
and test kappa coefficients remained consistent irrespective
of the inclusion of increasing levels of simulated noise for
weeks one and two. However, for week three, oRF-RR test
accuracies and test kappa coefficients remained consistent
up to 20% noise but improved slightly at 30% noise.
Despite this result, the difference in test accuracy and test
kappa coefficient was minimal (<3.57%) between noise
levels. oRF-RR training accuracies and training kappa
coefficients were higher than test accuracies and test kappa
coefficients for all noise levels for weeks one and three. For
week two, oRF-RR test accuracies (100%) and test kappa
coefficients (100%) were consistently higher than the
oRF-RR training accuracies and training kappa coefficients
for all simulated noise levels.

3.5. Oblique Random Forest-Support Vector Machine
Classification Accuracies. Table 3 presents the oRF-SVM

classification accuracies exclusive and inclusive of three
simulated noise levels for three weeks of infestation. The
implementation of oRF-SVM yielded higher classification
accuracies than RF highlighting the utility of oRF-SVM to
classify low infestation levels (Tables 1 and 3). Results
indicate that oRF-SVM test accuracies and test kappa
coefficients remained consistent at 100% across simulated
noise levels for week three. In addition, oRF-SVM test
accuracies and test kappa coefficients were higher than
training accuracies and training kappa coefficients across
simulated noise level. However, results show that oRF-
SVM classification accuracies are influenced by noise for
week one and week two. For week one, oRF-SVM test
accuracies and test kappa coefficients decreased by 7.14%
and 14.28%, respectively, with the addition of 30% of simu-
lated noise. However, for week two oRF-SVM test
accuracies and test kappa coefficients were variable with
increasing levels of simulated noise.

4. Discussion

This study showed that oRF (oRF-RR and oRF-SVM) out-
performs RF by consistently achieving better results under
conditions of increasing levels of spectral noise. oRF employs
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0.00

0.20

0.40

0.60

0.80

3
5

0

6
1

2

8
7

4

1
1

3
6

1
4

9
2

1
7

5
4

2
1

6
5

R
e�

ec
ta

n
ce

Bands (nm)

Control

Low

0.00

0.20

0.40

0.60

0.80

3
5

0

6
1

2

8
7

4

1
1

3
6

1
4

9
2

1
7

5
4

2
1

6
5

R
e�

ec
ta

n
ce

Bands (nm)

0.00

0.20

0.40

0.60

3
5

0

6
1

2

8
7

4

1
1

3
6

1
4

9
2

1
7

5
4

2
1

6
5

R
e�

ec
ta

n
ce

Bands (nm)

Figure 3: Reflectance spectra of healthy and low infested water hyacinth plants over three weeks of infestation (Adapted from Agjee et al.
[24]).

Table 1: RF classification accuracies for three simulated noise levels for three weeks of infestation.

Noise (%)
Week one Week two Week three

0 10 20 30 0 10 20 30 0 10 20 30

Train accuracy 96.19 93.88 93.22 92.50 93.34 92.39 90.18 84.07 92.73 92.08 89.12 88.28

Test accuracy 91.07 87.50 85.71 83.92 94.64 91.07 91.07 83.92 87.50 89.28 89.28 89.28

Train kappa 92.30 87.68 86.35 84.92 86.94 84.76 80.14 68.34 85.47 84.18 78.30 76.66

Test kappa 82.14 75.00 71.42 67.85 89.28 82.14 82.14 67.85 75.00 78.57 78.57 78.57

Table 2: oRF-RR classification accuracies for three simulated noise levels for three weeks of infestation.

Noise (%)
Week one Week two Week three

0 10 20 30 0 10 20 30 0 10 20 30

Train accuracy 99.28 98.51 97.14 97.03 98.79 98.63 98.62 97.71 95.65 95.49 95.38 95.24

Test accuracy 96.42 97.04 96.42 96.42 100.00 100.00 100.00 100.00 91.07 91.07 91.07 92.85

Train kappa 98.57 96.42 94.28 93.97 97.59 97.27 97.26 95.47 91.23 90.92 90.69 90.54

Test kappa 92.85 92.85 92.85 92.85 100.00 100.00 100.00 100.00 82.14 82.14 82.14 85.71
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the same underlying principles as RF to effectively deal
with noise. However, oRF uses oblique decision bound-
aries to classify low infestation levels, therefore improving
overall classification accuracies. oRF (oRF-RR and oRF-
SVM) can, therefore, be regarded as a robust classification
algorithm to classify low infestation levels on water hya-
cinth plants under noisy spectral conditions. This study
has demonstrated that RF and oRF have the capability to
discriminate between healthy and low infested water
hyacinth plants using hyperspectral data.

4.1. Classifying Healthy and Low Infested Water Hyacinth
Plants without Noise. RF and oRF classification accuracies
achieved in this study confirm that healthy and low infested
water hyacinth plants can be discriminated accurately in
the absence of spectral noise. The results from this study
showed that RF and oRF test accuracies were above 87.50%
and 91.07%, respectively. Similar results were achieved by
Adelabu et al. [43] who reported an overall RF classification
accuracy of 82.42% when discriminating three insect defolia-
tion levels (undefoliated, partly defoliated, and refoliated) in
mopane woodland. In the present study, spectral discrimina-
tion could be attributed to the morphological and physiolog-
ical damage caused by insect-induced stresses that altered
canopy reflectance. Both oRF-RR and oRF-SVM yielded
higher classification accuracies than RF without the addition
of spectral noise for all three weeks. The utility of oRF-RR
resulted in an increase in classification accuracies of 3.75%,
5.36%, and 3.50% for week one, week two, and week three,
respectively. The results achieved in this study compare
favourably with the results achieved by Menze et al. [18]
and Poona et al. [20]. The improvement in classification
accuracies can be attributed to the difference in which the
feature space was split. RF splits the feature space using uni-
variate hyperplanes that are orthogonal [14]. In contrast, oRF
splits the feature space using multivariate hyperplanes that
are oblique, therefore improving the generalization of
individual trees and overall classification accuracy [18, 19].
Overall, oRF classification accuracies achieved in this study
confirm that oRF performed better when classifying biocon-
trol damage on water hyacinth plants using hyperspectral
data over the standard RF algorithm.

4.2. Classifying Healthy and Low Infested Water Hyacinth
Plants with Noise. Many researchers advocate the utility
of RF as a robust algorithm that is insensitive to noise
[14, 44]. RF effectively deals with noisy data through (1)
bootstrap aggregation, (2) random selection of bands at

each node, and (3) learning many variable unbiased deci-
sion trees [14]. However, results achieved in this study
show that the RF results were influenced by noise due to
the slight decrease in classification accuracies with increas-
ing levels of simulated noise for all three weeks of the
experiment. RF test accuracies decreased by 7.15% for
week one and 10.72% for week two with the addition of
30% simulated noise. The decrease in classification accu-
racy with increasing simulated noise is not markedly high.
Ross and Kelleher [45] conducted a comparative study of
the effect of sensor noise on recognition models. Results
showed that the RF classifier performance decreased by
only 8.00% with the introduction of noise. RF can, there-
fore, be regarded as an effective classification algorithm
to classify low infestation levels under simulated noise
conditions. However, results from this study indicate that
generally oRF-RR classification accuracies remained con-
sistent with increasing levels of simulated noise confirming
it is better suited to deal with noisy data. oRF is able to
achieve this by employing the same underlying principles
as RF to effectively deal with noise as well as splitting
the feature space using multivariate hyperplanes that are
oblique [19]. To the authors’ knowledge, no studies have
investigated the utility oRF for remote sensing applications
under noisy conditions. The results achieved in this show
that oRF is robust to effectively deal with noise and
achieve higher classification accuracies.

4.3. Comparison between oRF-RR and oRF-SVM. oRF-RR
and oRF-SVM classification accuracies confirm that the
choice of the node-splitting model used does influence oRF
performance. The results achieved in this study showed that
oRF-RR produced higher classification accuracies than
oRF-SVM for week one and week two, however, lower classi-
fication accuracies for week three. Similarly, Poona et al. [20]
also found that oRF-SVM produced significantly higher
classification accuracies than oRF-RR and oRF-PLS. In con-
trast, Menze et al. [18] demonstrated that oRF-RR yielded
the best classification accuracy in comparison to oRF-lda
and oRF-rnd. In this study, even though oRF-SVM produced
higher classification accuracies than oRF-RR for week three,
implementing oRF-SVM is time consuming, computation-
ally demanding, and not practical. Bassa et al. [15] measured
the computational speed of oRF-RR and oRF-SVM reporting
that oRF-SVM was much slower to implement than oRF-RR.
Consequently, it is better suited to implement oRF-RR at an
operational level due to the difference between oRF-SVM

Table 3: oRF-SVM classification accuracies for three simulated noise levels for three weeks of infestation.

Noise (%)
Week one Week two Week three

0 10 20 30 0 10 20 30 0 10 20 30

Train accuracy 96.19 97.80 94.71 94.71 96.42 97.08 95.60 96.31 93.35 94.11 94.11 91.13

Test accuracy 94.64 91.07 89.28 87.50 94.64 96.42 94.64 94.64 100.00 100.00 100.00 100.00

Train kappa 92.30 95.57 89.23 89.33 92.85 94.14 91.26 92.69 86.66 88.23 88.23 82.28

Test kappa 89.28 82.14 78.57 75.00 89.28 92.85 89.28 89.28 100.00 100.00 100.00 100.00
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and oRF-RR is marginal and not markedly high as well as it
being a more efficient algorithm to implement.

5. Conclusion

This study demonstrates the benefit of using oRF to classify
healthy and low infestation levels. Generally, oRF outper-
forms RF for all three weeks in the absence of simulated
noise. oRF classification accuracies do not deteriorate under
increasing levels of simulated noise. oRF employs the same
underlying principles as RF to effectively deal with noise.
However, oRF uses oblique decision boundaries to classify
low infestation levels, therefore improving overall classifica-
tion accuracies. oRF-RR outperforms oRF-SVM for week
one and week two, however, oRF-SVM outperformed oRF-
RR for week three under conditions of simulated noise.
While oRF-SVM slightly outperformed oRF-RR, implement-
ing oRF-SVM is time consuming, computationally demand-
ing, and not practical at an operational scale. Consequently,
for operational use, water resource managers should imple-
ment oRF-RR. Future research should investigate the imple-
mentation of oRF-RR using noisy hyperspectral satellite
imagery. Overall, this study showed that oRF-RR is a robust
classification algorithm that is robust in the presence of noise.
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