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RESEARCH ARTICLE Open Access

The impact of skin care products on skin
chemistry and microbiome dynamics
Amina Bouslimani1†, Ricardo da Silva1†, Tomasz Kosciolek2, Stefan Janssen2,3, Chris Callewaert2,4, Amnon Amir2,

Kathleen Dorrestein1, Alexey V. Melnik1, Livia S. Zaramela2, Ji-Nu Kim2, Gregory Humphrey2, Tara Schwartz2,

Karenina Sanders2, Caitriona Brennan2, Tal Luzzatto-Knaan1, Gail Ackermann2, Daniel McDonald2,

Karsten Zengler2,5,6, Rob Knight2,5,6,7* and Pieter C. Dorrestein1,2,5,8*

Abstract

Background: Use of skin personal care products on a regular basis is nearly ubiquitous, but their effects on

molecular and microbial diversity of the skin are unknown. We evaluated the impact of four beauty products (a

facial lotion, a moisturizer, a foot powder, and a deodorant) on 11 volunteers over 9 weeks.

Results: Mass spectrometry and 16S rRNA inventories of the skin revealed decreases in chemical as well as in bacterial

and archaeal diversity on halting deodorant use. Specific compounds from beauty products used before the study

remain detectable with half-lives of 0.5–1.9 weeks. The deodorant and foot powder increased molecular, bacterial, and

archaeal diversity, while arm and face lotions had little effect on bacterial and archaeal but increased chemical diversity.

Personal care product effects last for weeks and produce highly individualized responses, including alterations in

steroid and pheromone levels and in bacterial and archaeal ecosystem structure and dynamics.

Conclusions: These findings may lead to next-generation precision beauty products and therapies for skin disorders.

Keywords: Skin, Skin care products, Mass spectrometry, Metabolomics, 16S rRNA sequencing, Bacteria

Background

The human skin is the most exposed organ to the exter-

nal environment and represents the first line of defense

against external chemical and microbial threats. It

harbors a microbial habitat that is person-specific and

varies considerably across the body surface [1–4]. Recent

findings suggested an association between the use of an-

tiperspirants or make-up and skin microbiota compos-

ition [5–7]. However, these studies were performed for a

short period (7–10 days) and/or without washing out the

volunteers original personal care products, leading to in-

complete evaluation of microbial alterations because the

process of skin turnover takes 21–28 days [5–9]. It is

well-established that without intervention, most adult

human microbiomes, skin or other microbiomes,

remain stable compared to the differences between

individuals [3, 10–16].

Although the skin microbiome is stable for years [10],

little is known about the molecules that reside on the

skin surface or how skin care products influence this

chemistry [17, 18]. Mass spectrometry can be used to

detect host molecules, personalized lifestyles including

diet, medications, and personal care products [18, 19].

However, although the impact of short-term dietary in-

terventions on the gut microbiome has been assessed

[20, 21], no study has yet tested how susceptible the skin

chemistry and Microbiome are to alterations in the sub-

jects’ personal care product routine.

In our recent metabolomic/microbiome 3D cartog-

raphy study [18], we observed altered microbial commu-

nities where specific skin care products were present.

Therefore, we hypothesized that these products might

shape specific skin microbial communities by changing

their chemical environment. Some beauty product ingre-

dients likely promote or inhibit the growth of specific

bacteria: for example, lipid components of moisturizers
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could provide nutrients and promote the growth of lipo-

philic bacteria such as Staphylococcus and Propionibac-

terium [18, 22, 23]. Understanding both temporal

variations of the skin microbiome and chemistry is

crucial for testing whether alterations in personal habits

can influence the human skin ecosystem and, perhaps,

host health. To evaluate these variations, we used a

multi-omics approach integrating metabolomics and

microbiome data from skin samples of 11 healthy hu-

man individuals. Here, we show that many compounds

from beauty products persist on the skin for weeks

following their use, suggesting a long-term contribution

to the chemical environment where skin microbes live.

Metabolomics analysis reveals temporal trends corre-

lated to discontinuing and resuming the use of beauty

products and characteristic of variations in molecular

composition of the skin. Although highly personalized,

as seen with the microbiome, the chemistry, including

hormones and pheromones such as androstenone and

androsterone, were dramatically altered. Similarly, by ex-

perimentally manipulating the personal care regime of

participants, bacterial and molecular diversity and struc-

ture are altered, particularly for the armpits and feet.

Interestingly, a high person-to-person molecular and

bacterial variability is maintained over time even though

personal care regimes were modified in exactly the same

way for all participants.

Results

Skin care and hygiene products persist on the skin

Systematic strategies to influence both the skin chemis-

try and microbiome have not yet been investigated. The

outermost layer of the skin turns over every 3 to 4 weeks

[8, 9]. How the microbiome and chemistry are influ-

enced by altering personal care and how long the chemi-

cals of personal care products persist on the skin are

essentially uncharacterized. In this study, we collected

samples from skin of 12 healthy individuals—six males

and six females—over 9 weeks. One female volunteer

had withdrawn due to skin irritations that developed,

and therefore, we describe the remaining 11 volunteers.

Samples were collected from each arm, armpit, foot, and

face, including both the right and left sides of the body

(Fig. 1a). All participants were asked to adhere to the

same daily personal care routine during the first 6 weeks

of this study (Fig. 1b). The volunteers were asked to

refrain from using any personal care product for weeks

1–3 except a mild body wash (Fig. 1b). During weeks 4–

a b

Fig. 1 Study design and representation of changes in personal care regime over the course of 9 weeks. a Six males and six females were recruited

and sampled using swabs on two locations from each body part (face, armpits, front forearms, and between toes) on the right and left side. The

locations sampled were the face—upper cheek bone and lower jaw, armpit—upper and lower area, arm—front of elbow (antecubitis) and forearm

(antebrachium), and feet—in between the first and second toe and third and fourth toe. Volunteers were asked to follow specific instructions for the

use of skin care products. b Following the use of their personal skin care products (brown circles), all volunteers used only the same head to toe

shampoo during the first 3 weeks (week 1–week 3) and no other beauty product was applied (solid blue circle). The following 3 weeks (week 4–week

6), four selected commercial beauty products were applied daily by all volunteers on the specific body part (deodorant antiperspirant for the armpits,

soothing foot powder for the feet between toes, sunscreen for the face, and moisturizer for the front forearm) (triangles) and continued to use the

same shampoo. During the last 3 weeks (week 7–week 9), all volunteers went back to their normal routine and used their personal beauty products

(circles). Samples were collected once a week (from day 0 to day 68—10 timepoints from T0 to T9) for volunteers 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, and 12,

and on day 0 and day 6 for volunteer 8, who withdraw from the study after day 6. For 3 individuals (volunteers 4, 9, 10), samples were collected twice

a week (19 timepoints total). Samples collected for 11 volunteers during 10 timepoints: 11 volunteers × 10 timepoints × 4 samples × 4 body sites =

1760. Samples collected from 3 selected volunteers during 9 additional timepoints: 3 volunteers × 9 timepoints × 4 samples × 4 body sites = 432. See

also the “Subject recruitment and sample collection” section in the “Methods” section
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6, in addition to the body wash, participants were asked

to apply selected commercial skin care products at spe-

cific body parts: a moisturizer on the arm, a sunscreen

on the face, an antiperspirant on the armpits, and a

soothing powder on the foot (Fig. 1b). To monitor

adherence of participants to the study protocol, molecu-

lar features found in the antiperspirant, facial lotion,

moisturizer, and foot powder were directly tracked with

mass spectrometry from the skin samples. For all partici-

pants, the mass spectrometry data revealed the accumu-

lation of specific beauty product ingredients during

weeks 4–6 (Additional file 1: Figure S1A-I, Fig. 2a

orange arrows). Examples of compounds that were

highly abundant during T4–T6 in skin samples are avo-

benzone (Additional file 1: Figure S1A), dexpanthenol

(Additional file 1: Figure S1B), and benzalkonium chlor-

ide (Additional file 1: Figure S1C) from the facial

sunscreen; trehalose 6-phosphate (Additional file 1:

Figure S1D) and glycerol stearate (Additional file 1: Fig-

ure S1E) from the moisturizer applied on arms; indolin

(Additional file 1: Figure S1F) and an unannotated

compound (m/z 233.9, rt 183.29 s) (Additional file 1:

Figure S1G) from the foot powder; and decapropylene

glycol (Additional file 1: Figure S1H) and nonapropylene

glycol (Additional file 1: Figure S1I) from the antiper-

spirant. These results suggest that there is likely a com-

pliance of all individuals to study requirements and even

if all participants confirmed using each product every

day, the amount of product applied by each individual

may vary. Finally, for weeks 7–9, the participants were

asked to return to their normal routine by using the

same personal care products they used prior to the

study. In total, excluding all blanks and personal care

products themselves, we analyzed 2192 skin samples for

both metabolomics and microbiome analyses.

To understand how long beauty products persist on

the skin, we monitored compounds found in deodorants

used by two volunteers—female 1 and female 3—before

the study (T0), over the first 3 weeks (T1–T3) (Fig. 1b).

During this phase, all participants used exclusively the

same body wash during showering, making it easier to

track ingredients of their personal care products. The

data in the first 3 weeks (T1–T3) revealed that many

ingredients of deodorants used on armpits (Fig. 2a) per-

sist on the skin during this time and were still detected

during the first 3 weeks or at least during the first week

following the last day of use. Each of the compounds

detected in the armpits of individuals exhibited its own

unique half-life. For example, the polyethylene glycol

(PEG)-derived compounds m/z 344.227, rt 143 s (Fig. 2b,

S1J); m/z 432.279, rt 158 s (Fig. 2b, S1K); and m/z

388.253, rt 151 s (Fig. 2b, S1L) detected on armpits of

volunteer 1 have a calculated half-life of 0.5 weeks

(Additional file 1: Figure S1J-L, all p values < 1.81e−07),

while polypropylene glycol (PPG)-derived molecules m/z

481.87, rt 501 s (Fig. 2c, S1M); m/z 560.420, rt 538 s

(Fig. 2c, S1N); m/z 788.608, rt 459 s (Fig. 2d, S1O); m/z

846.650, rt 473 s (Fig. 2d, S1P); and m/z 444.338, rt 486 s

(Fig. 2d, S1Q) found on armpits of volunteers 3 and 1

(Fig. 2a) have a calculated half-life ranging from 0.7 to

1.9 weeks (Additional file 1: Figure S1M-Q, all p values

< 0.02), even though they originate from the same

deodorant used by each individual. For some ingredients

of deodorant used by volunteer 3 on time 0

(Additional file 1: Figure S1M, N), a decline was

observed during the first week, then little to no traces of

these ingredients were detected during weeks 4–6 (T4–

T6), then finally these ingredients reappear again during

the last 3 weeks of personal product use (T7–T9). This

suggests that these ingredients are present exclusively in

the personal deodorant used by volunteer 3 before the

study. Because a similar deodorant (Additional file 1:

Figure S1O-Q) and a face lotion (Additional file 1:

Figure S1R) was used by volunteer 3 and volunteer 2, re-

spectively, prior to the study, there was no decline or ab-

sence of their ingredients during weeks 4–6 (T4–T6).

Polyethylene glycol compounds (Additional file 1:

Figure S1J-L) wash out faster from the skin than poly-

propylene glycol (Additional file 1: Figure S1M-Q)(HL

~ 0.5 weeks vs ~ 1.9 weeks) and faster than fatty acids

used in lotions (HL ~ 1.2 weeks) (Additional file 1:

Figure S1R), consistent with their hydrophilic (PEG) and

hydrophobic properties (PPG and fatty acids) [25, 26].

This difference in hydrophobicity is also reflected in the

retention time as detected by mass spectrometry.

Following the linear decrease of two PPG compounds

from T0 to T1, they accumulated noticeably during

weeks 2 and 3 (Additional file 1: Figure S1M, N). This

accumulation might be due to other sources of PPG

such as the body wash used during this period or the

clothes worn by person 3. Although PPG compounds

were not listed in the ingredient list of the shampoo, we

manually inspected the LC-MS data collected from this

product and confirmed the absence of PPG compounds

in the shampoo. The data suggest that this trend is char-

acteristic of accumulation of PPG from additional

sources. These could be clothes, beds, or sheets, in

agreement with the observation of these molecules

found in human habitats [27] but also in the public

GNPS mass spectrometry dataset MSV000079274 that

investigated the chemicals from dust collected from

1053 mattresses of children.

Temporal molecular and bacterial diversity in response to

personal care use

To assess the effect of discontinuing and resuming the

use of skin care products on molecular and microbiota

dynamics, we first evaluated their temporal diversity.
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Fig. 2 (See legend on next page.)
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Skin sites varied markedly in their initial level (T0) of

molecular and bacterial diversity, with higher molecular

diversity at all sites for female participants compared to

males (Fig. 3a, b, Wilcoxon rank-sum-WR test, p values

ranging from 0.01 to 0.0001, from foot to arm) and

higher bacterial diversity in face (WR test, p = 0.0009)

and armpits (WR test, p = 0.002) for females (Fig. 3c, d).

Temporal diversity was similar across the right and left

sides of each body site of all individuals (WR test, mo-

lecular diversity: all p values > 0.05; bacterial diversity: all

p values > 0.20). The data show that refraining from

using beauty products (T1–T3) leads to a significant

decrease in molecular diversity at all sites (Fig. 3a, b,

WR test, face: p = 8.29e−07, arm: p = 7.08e−09, armpit:

p = 1.13e−05, foot: p = 0.002) and bacterial diversity

mainly in armpits (WR test, p = 0.03) and feet (WR test,

p = 0.04) (Fig. 3c, d). While molecular diversity declined

(Fig. 3a, b) for arms and face, bacterial diversity (Fig. 3c,

d) was less affected in the face and arms when partici-

pants did not use skin care products (T1–T3). The

molecular diversity remained stable in the arms and face

of female participants during common beauty products

use (T4–T6) to immediately increase as soon as the vol-

unteers went back to their normal routines (T7–T9)

(WR test, p = 0.006 for the arms and face)(Fig. 3a, b). A

higher molecular (Additional file 1: Figure S2A) and

community (Additional file 1: Figure S2B) diversity was

observed for armpits and feet of all individuals during the

use of antiperspirant and foot powder (T4–T6) (WR test,

molecular diversity: armpit p = 8.9e−33, foot p = 1.03e−11;

bacterial diversity: armpit p = 2.14e−28, foot p = 1.26e

−11), followed by a molecular and bacterial diversity

decrease in the armpits when their regular personal

beauty product use was resumed (T7–T9) (bacterial

diversity: WR test, p = 4.780e−21, molecular diversity: WR

test, p = 2.159e−21). Overall, our data show that refraining

from using beauty products leads to lower molecular and

bacterial diversity, while resuming the use increases their

diversity. Distinct variations between male and female mo-

lecular and community richness were perceived at distinct

body parts (Fig. 3a–d). Although the chemical diversity of

personal beauty products does not explain these variations

(Additional file 1: Figure S2C), differences observed

between males and females may be attributed to many

environmental and lifestyle factors including different

original skin care and different frequency of use of beauty

products (Additional file 2: Table S1), washing routines,

and diet.

Longitudinal variation of skin metabolomics signatures

To gain insights into temporal metabolomics variation

associated with beauty product use, chemical inventories

collected over 9 weeks were subjected to multivariate

analysis using the widely used Bray–Curtis dissimilarity

metric (Fig. 4a–c, S3A). Throughout the 9-week period,

distinct molecular signatures were associated to each spe-

cific body site: arm, armpit, face, and foot (Additional file 1:

Figure S3A, Adonis test, p < 0.001, R2 0.12391). Mass

spectrometric signatures displayed distinct individual

trends at each specific body site (arm, armpit, face, and

foot) over time, supported by their distinct locations in

PCoA (principal coordinate analysis) space (Fig. 4a, b) and

based on the Bray–Curtis distances between molecular

profiles (Additional file 1: Figure S3B, WR test, all p values

< 0.0001 from T0 through T9). This suggests a high mo-

lecular inter-individual variability over time despite similar

changes in personal care routines. Significant differences

in molecular patterns associated to ceasing (T1–T3)

(See figure on previous page.)

Fig. 2 Monitoring the persistence of personal care product ingredients in the armpits over a 9-week period. a Heatmap representation of the

most abundant molecular features detected in the armpits of all individuals during the four phases (0: initial, 1–3: no beauty products, 4–6:

common products, and 7–9: personal products). Green color in the heatmap represents the highest molecular abundance and blue color the

lowest one. Orange boxes with plain lines represent enlargement of cluster of molecules that persist on the armpits of volunteer 1 (b) and

volunteer 3 (c, d). Orange clusters with dotted lines represent same clusters of molecules found on the armpits of other volunteers. Orange

arrows represent the cluster of compounds characteristic of the antiperspirant used during T4–T6. b Polyethylene glycol (PEG) molecular clusters

that persist on the armpits of individual 1. The molecular subnetwork, representing molecular families [24], is part of a molecular network (http://

gnps.ucsd.edu/ProteoSAFe/status.jsp?task=f5325c3b278a46b29e8860ec5791d5ad) generated from MS/MS data collected from the armpits of

volunteer 1 (T0–T3) MSV000081582 and MS/MS data collected from the deodorant used by volunteer 1 before the study started (T0)

MSV000081580. c, d Polypropylene glycol (PPG) molecular families that persist on the armpits of individual 3, along with the corresponding

molecular subnetwork that is part of the molecular network accessible here http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=

aaa1af68099d4c1a87e9a09f398fe253. Subnetworks were generated from MS/MS data collected from the armpits of volunteer 3 (T0–T3)

MSV000081582 and MS/MS data collected from the deodorant used by volunteer 3 at T0 MSV000081580. The network nodes were annotated

with colors. Nodes represent MS/MS spectra found in armpit samples of individual 1 collected during T0, T1, T2, and T3 and in personal

deodorant used by individual 1 (orange nodes); armpit samples of individual 1 collected during T0, T2, and T3 and personal deodorant used by

individual 1 (green nodes); armpit samples of individual 3 collected during T0, T1, T2, and T3 and in personal deodorant used by individual 3 (red

nodes); armpit samples of individual 3 collected during T0 and in personal deodorant used by individual 3 (blue nodes); and armpit samples of

individual 3 collected during T0 and T2 and in personal deodorant used by individual 3 (purple nodes). Gray nodes represent everything else.

Error bars represent standard error of the mean calculated at each timepoint from four armpit samples collected from the right and left side of

each individual separately. See also Additional file 1: Figure S1
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(Fig. 4b, Additional file 1: Figure S3C, WR test, T0 vs T1–

T3 p < 0.001) and resuming the use of common beauty

products (T4–T6) (Additional file 1: Figure S3C) were ob-

served in the arm, face, and foot (Fig. 4b), although the

armpit exhibited the most pronounced changes (Fig. 4b,

Additional file 1: Figure S3D, E, random forest highlight-

ing that 100% of samples from each phase were correctly

predicted). Therefore, we focused our analysis on this

region. Molecular changes were noticeable starting the

first week (T1) of discontinuing beauty product use. As

shown for armpits in Fig. 4c, these changes at the chem-

ical level are specific to each individual, possibly due to

the extremely personalized lifestyles before the study and

match their original use of deodorant. Based on the initial

use of underarm products (T0) (Additional file 2: Table

S1), two groups of participants can be distinguished: a

group of five volunteers who used stick deodorant as evi-

denced by the mass spectrometry data and another group

of volunteers where we found few or no traces suggesting

they never or infrequently used stick deodorants

(Additional file 2: Table S1). Based on this criterion, the

chemical trends shown in Fig. 4c highlight that individuals

who used stick deodorant before the beginning of the

study (volunteers 1, 2, 3, 9, and 12) displayed a more pro-

nounced shift in their armpits’ chemistries as soon as they

stopped using deodorant (T1–T3), compared to individ-

uals who had low detectable levels of stick deodorant use

(volunteers 4, 6, 7, and 10), or “rarely-to-never” (volun-

teers 5 and 11) use stick deodorants as confirmed by the

volunteers (Additional file 1: Figure S3F, WR test, T0 vs

T1–T3 all p values < 0.0001, with greater distance for the

group of volunteers 1, 2, 3, 9, and 12, compared to volun-

teers 4, 5, 6, 7, 10, and 11). The most drastic shift in chem-

ical profiles was observed during the transition period,

when all participants applied the common antiperspirant

on a daily basis (T4–T6) (Additional file 1: Figure S3D, E).
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Fig. 3 Molecular and bacterial diversity over a 9-week period, comparing samples based on their molecular (UPLC-Q-TOF-MS) or bacterial (16S

rRNA amplicon) profiles. Molecular and bacterial diversity using the Shannon index was calculated from samples collected from each body part at

each timepoint, separately for female (n = 5) and male (n = 6) individuals. Error bars represent standard error of the mean calculated at each

timepoint, from up to four samples collected from the right and left side of each body part, of females (n = 5) and males (n = 6) separately. a, b

Molecular alpha diversity measured using the Shannon index from five females (left panel) and six males (right panel), over 9 weeks, from four

distinct body parts (armpits, face, arms, feet). c, d Bacterial alpha diversity measured using the Shannon index, from skin samples collected from

five female (left panel) and six male individuals (right panel), over 9 weeks, from four distinct body parts (armpits, face, arms, feet). See also

Additional file 1: Figure S2
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Finally, the molecular profiles became gradually more

similar to those collected before the experiment (T0) as

soon as the participants resumed using their personal

beauty products (T7–T9) (Additional file 1: Figure S3C),

although traces of skin care products did last through the

entire T7–T9 period in people who do not routinely apply

these products (Fig. 4c).

Comparing chemistries detected in armpits at the end

timepoints—when no products were used (T3) and

during product use (T6)—revealed distinct molecular

signatures characteristic of each phase (random forest

highlighting that 100% of samples from each group were

correctly predicted, see Additional file 1: Figure S3D, E).

Because volunteers used the same antiperspirant during

T4–T6, molecular profiles converged during that time des-

pite individual patterns at T3 (Fig. 4b, c, Additional file 1:

Figure S3D). These distinct chemical patterns reflect the

significant impact of beauty products on skin molecular

composition. Although these differences may in part be

driven by beauty product ingredients detected on the skin

(Additional file 1: Figure S1), we anticipated that additional

host- and microbe-derived molecules may also be involved

in these molecular changes.

To characterize the chemistries that vary over time,

we used molecular networking, a MS visualization ap-

proach that evaluates the relationship between MS/

MS spectra and compares them to reference MS/MS

spectral libraries of known compounds [29, 30]. We

recently showed that molecular networking can suc-

cessfully organize large-scale mass spectrometry data

collected from the human skin surface [18, 19].

Briefly, molecular networking uses the MScluster al-

gorithm [31] to merge all identical spectra and then

compares and aligns all unique pairs of MS/MS

b

c

a

Fig. 4 Individualized influence of beauty product application on skin metabolomics profiles over time. a Multivariate statistical analysis (principal

coordinate analysis (PCoA)) comparing mass spectrometry data collected over 9 weeks from the skin of 11 individuals, all body parts, combined

(first plot from the left) and then displayed separately (arm, armpits, face, feet). Color scale represents volunteer ID. The PCoA was calculated on

all samples together, and subsets of the data are shown in this shared space and the other panels. b The molecular profiles collected over 9

weeks from all body parts, combined then separately (arm, armpits, face, feet). c Representative molecular profiles collected over 9 weeks from

armpits of 11 individuals (volunteers 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12). Color gradient in b and c represents timepoints (time 0 to time 9), ranging

from the lightest orange color to the darkest one that represent the earliest (time 0) to the latest (time 9) timepoint, respectively. 0.5 timepoints

represent additional timepoints where three selected volunteers were samples (volunteers 4, 9, and 10). PCoA plots were generated using the

Bray–Curtis dissimilarity matrix and visualized in Emperor [28]. See also Additional file 1: Figure S3
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spectra based on their similarities where 1.0 indicates

a perfect match. Similarities between MS/MS spectra

are calculated using a similarity score, and are inter-

preted as molecular families [19, 24, 32–34]. Here, we

used this method to compare and characterize chem-

istries found in armpits, arms, face, and foot of 11

participants. Based on MS/MS spectral similarities,

chemistries highlighted through molecular networking

(Additional file 1: Figure S4A) were associated with

each body region with 8% of spectra found exclusively

in the arms, 12% in the face, 14% in the armpits, and

2% in the foot, while 18% of the nodes were shared

between all four body parts and the rest of spectra

were shared between two body sites or more

(Additional file 1: Figure S4B). Greater spectral

similarities were highlighted between armpits, face,

and arm (12%) followed by the arm and face (9%)

(Additional file 1: Figure S4B).

Molecules were annotated with Global Natural Prod-

ucts Social Molecular Networking (GNPS) libraries [29],

using accurate parent mass and MS/MS fragmentation

patterns, according to level 2 or 3 of annotation defined

by the 2007 metabolomics standards initiative [35].

Through annotations, molecular networking revealed

that many compounds derived from steroids (Fig. 5a–d),

bile acids (Additional file 1: Figure S5A-D), and

acylcarnitines (Additional file 1: Figure S5E-F) were ex-

clusively detected in the armpits. Using authentic stan-

dards, the identity of some pheromones and bile acids

were validated to a level 1 identification with matched

retention times (Additional file 1: Figure S6B, S7A, C,

D). Other steroids and bile acids were either annotated

using standards with identical MS/MS spectra but

slightly different retention times (Additional file 1:

Figure S6A) or annotated with MS/MS spectra match

with reference MS/MS library spectra (Additional file 1:

a c

b d

Fig. 5 Underarm steroids and their longitudinal abundance. a–d Steroid molecular families in the armpits and their relative abundance over a 9-

week period. Molecular networking was applied to characterize chemistries from the skin of 11 healthy individuals. The full network is shown in

Additional file 1: Figure S4A, and networking parameters can be found here http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=

284fc383e4c44c4db48912f01905f9c5 for MS/MS datasets MSV000081582. Each node represents a consensus of a minimum of 3 identical MS/MS

spectra. Yellow nodes represent MS/MS spectra detected in armpits samples. Hexagonal shape represents MS/MS spectra match between skin

samples and chemical standards. Plots are representative of the relative abundance of each compound over time, calculated separately from LC-

MS1 data collected from the armpits of each individual. Steroids detected in armpits are a, dehydroisoandrosterone sulfate (m/z 369.190, rt 247 s),

b androsterone sulfate (m/z 371.189, rt 261 s), c 1-dehydroandrostenedione (m/z 285.185, rt 273 s), and d dehydroandrosterone (m/z 289.216, rt

303 s). Relative abundance over time of each steroid compound is represented. Error bars represent the standard error of the mean calculated at

each timepoint from four armpit samples from the right and left side of each individual separately. See also Additional file 1: Figures S4-S8
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Figure S6C, D, S7B, S6E-G). These compounds were

therefore classified as level 3 [35]. Acylcarnitines were

annotated to a family of possible acylcarnitines (we

therefore classify as level 3), as the positions of double

bonds or cis vs trans configurations are unknown

(Additional file 1: Figure S8A, B).

Among the steroid compounds, several molecular fam-

ilies were characterized: androsterone (Fig. 5a, b, d),

androstadienedione (Fig. 5c), androstanedione (Add-

itional file 1: Figure S6E), androstanolone (Additional file 1:

Figure S6F), and androstenedione (Additional file 1: Figure

S6G). While some steroids were detected in the armpits of

several individuals, such as dehydroisoandrosterone sul-

fate (m/z 369.19, rt 247 s) (9 individuals) (Fig. 5a,

Additional file 1: Figure S6A), androsterone sulfate (m/z

371.189, rt 261 s) (9 individuals) (Fig. 5b, Additional file 1:

Figure S6C), and 5-alpha-androstane-3,17-dione (m/z

271.205, rt 249 s) (9 individuals) (Additional file 1: Figure

S6E), other steroids including 1-dehydroandrostenedione

(m/z 285.185, rt 273 s) (Fig. 5c, Additional file 1: Figure

S6B), dehydroandrosterone (m/z 289.216, rt 303 s) (Fig. 5d,

Additional file 1: Figure S6D), and 5-alpha-

androstan-17.beta-ol-3-one (m/z 291.231, rt 318 s)

(Additional file 1: Figure S6F) were only found in the arm-

pits of volunteer 11 and 4-androstene-3,17-dione (m/z

287.200, rt 293 s) in the armpits of volunteer 11 and vol-

unteer 5, both are male that never applied stick deodor-

ants (Additional file 1: Figure S6G). Each molecular

species exhibited a unique pattern over the 9-week period.

The abundance of dehydroisoandrosterone sulfate (Fig. 5a,

WR test, p < 0.01 for 7 individuals) and dehydroandroster-

one (Fig. 5a, WR test, p = 0.00025) significantly increased

during the use of antiperspirant (T4–T6), while androster-

one sulfate (Fig. 5b) and 5-alpha-androstane-3,17-dione

(Additional file 1: Figure S6E) display little variation over

time. Unlike dehydroisoandrosterone sulfate (Fig. 5a) and

dehydroandrosterone (Fig. 5d), steroids including

1-dehydroandrostenedione (Fig. 5c, WR test, p =

0.00024) and 4-androstene-3,17-dione (Additional file 1:

Figure S6G, WR test, p = 0.00012) decreased in abun-

dance during the 3 weeks of antiperspirant application

(T4–T6) in armpits of male 11, and their abundance

increased again when resuming the use of his normal

skin care routines (T7–T9). Interestingly, even within

the same individual 11, steroids were differently

impacted by antiperspirant use as seen for

1-dehydroandrostenedione that decreased in abun-

dance during T4–T6 (Fig. 5c, WR test, p = 0.00024),

while dehydroandrosterone increased in abundance

(Fig. 5d, WR test, p = 0.00025), and this increase was

maintained during the last 3 weeks of the study

(T7–T9).

In addition to steroids, many bile acids (Additional file 1:

Figure S5A-D) and acylcarnitines (Additional file 1: Figure

S5E-F) were detected on the skin of several individuals

through the 9-week period. Unlike taurocholic acid found

only on the face (Additional file 1: Figures S5A, S7A) and

tauroursodeoxycholic acid detected in both armpits and

arm samples (Additional file 1: Figures S5B, S7B), other

primary bile acids such as glycocholic (Additional file 1:

Figures S5C, S7C) and chenodeoxyglycocholic acid

(Additional file 1: Figures S5D, S7D) were exclusively de-

tected in the armpits. Similarly, acylcarnitines were also

found either exclusively in the armpits (hexadecanoyl car-

nitines) (Additional file 1: Figures S5E, S8A) or in the

armpits and face (tetradecenoyl carnitine) (Additional file 1:

Figures S5F, S8B) and, just like the bile acids, they were

also stably detected during the whole 9-week period.

Bacterial communities and their variation over time

Having demonstrated the impact of beauty products on

the chemical makeup of the skin, we next tested the ex-

tent to which skin microbes are affected by personal care

products. We assessed temporal variation of bacterial

communities detected on the skin of healthy individuals

by evaluating dissimilarities of bacterial collections over

time using unweighted UniFrac distance [36] and com-

munity variation at each body site in association to

beauty product use [3, 15, 37]. Unweighted metrics are

used for beta diversity calculations because we are pri-

marily concerned with changes in community member-

ship rather than relative abundance. The reason for this

is that skin microbiomes can fluctuate dramatically in

relative abundance on shorter timescales than that

assessed here. Longitudinal variations were revealed for

the armpits (Fig. 6a) and feet microbiome by their over-

all trend in the PCoA plots (Fig. 6b), while the arm

(Fig. 6c) and face (Fig. 6d) displayed relatively stable bac-

terial profiles over time. As shown in Fig. 6a–d, although

the microbiome was site-specific, it varied more between

individuals and this inter-individual variability was main-

tained over time despite same changes in personal care

routine (WR test, all p values at all timepoints < 0.05, T5

p = 0.07), in agreement with previous findings that indi-

vidual differences in the microbiome are large and stable

over time [3, 4, 10, 37]. However, we show that shifts in

the microbiome can be induced by changing hygiene

routine and therefore skin chemistry. Changes associated

with using beauty products (T4–T6) were more

pronounced for the armpits (Fig. 6a, WR test, p = 1.61e

−52) and feet (Fig. 6b, WR test, p = 6.15e−09), while lit-

tle variations were observed for the face (Fig. 6d, WR

test, p = 1.402.e−83) and none for the arms (Fig. 6c, WR

test, p = 0.296).

A significant increase in abundance of Gram-negative bac-

teria including the phyla Proteobacteria and Bacteroidetes

was noticeable for the armpits and feet of both females

(Fig. 6e; Mann–Whitney U, p = 8.458e−07) and males
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(Fig. 6f; Mann–Whitney U, p = 0.0004) during the use of

antiperspirant (T4–T6), while their abundance remained

stable for the arms and face during that time (Fig. 6e, f;

female arm p = 0.231; female face p value = 0.475; male arm

p= 0.523;male face p = 6.848751e−07). These Gram-negative

bacteria include Acinetobacter and Paracoccus genera that

increased in abundance in both armpits and feet of females

(Additional file 1: Figure S9A), while a decrease in abun-

dance of Enhydrobacter was observed in the armpits of

males (Additional file 1: Figure S9B). Cyanobacteria, poten-

tially originating from plant material (Additional file 1:

Figure S9C) also increased during beauty product use (T4–

T6) especially in males, in the armpits and face of females

(Fig. 6e) and males (Fig. 6f). Interestingly, although chloro-

plast sequences (which group phylogenetically within the

cyanobacteria [38]) were only found in the facial cream

(Additional file 1: Figure S9D), they were detected in other

locations as well (Fig. 6e, f. S9E, F), highlighting that the

application of a product in one region will likely affect other

regions of the body. For example, when showering, a face lo-

tion will drip down along the body and may be detected on

the feet. Indeed, not only did the plant material from the

cream reveal this but also the shampoo used for the study

for which molecular signatures were readily detected on the

feet as well (Additional file 1: Figure S10A). Minimal average

changes were observed for Gram-positive organisms

(Additional file 1: Figure S10B, C), although in some

individuals the variation was greater than others

(Additional file 1: Figure S10D, E) as discussed for spe-

cific Gram-positive taxa below.

At T0, the armpit’s microflora was dominated by

Staphylococcus (26.24%, 25.11% of sequencing reads for

females and 27.36% for males) and Corynebacterium

genera (26.06%, 17.89% for females and 34.22% for

males) (Fig. 7a—first plot from left and Additional file 1:

Figure S10D, E). They are generally known as the dom-

inant armpit microbiota and make up to 80% of the

armpit microbiome [39, 40]. When no deodorants were

used (T1–T3), an overall increase in relative abundance

of Staphylococcus (37.71%, 46.78% for females and

30.47% for males) and Corynebacterium (31.88%, 16.50%

for females and 44.15% for males) genera was noticeable

(WR test, p < 3.071e−05) (Fig. 7a—first plot from left),

while the genera Anaerococcus and Peptoniphilus

e f

a b c d

Fig. 6 Longitudinal variation of skin bacterial communities in association with beauty product use. a-d Bacterial profiles collected from skin samples of

11 individuals, over 9 weeks, from four distinct body parts a) armpits, b) feet, c) arms and d) face, using multivariate statistical analysis (Principal

Coordinates Analysis PCoA) and unweighted Unifrac metric. Each color represents bacterial samples collected from an individual. PCoA were

calculated separately for each body part. e, f Representative Gram-negative (Gram -) bacteria collected from arms, armpits, face and feet of e) female

and f) male participants. See also Additional file 1: Figure S9A, B showing Gram-negative bacterial communities represented at the genus level
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decreased in relative abundance (WR test, p < 0.03644)

(Fig. 7a—first plot from left and Additional file 1: Figure

S10D, E). When volunteers started using antiperspirants

(T4–T6), the relative abundance of Staphylococcus

(37.71%, 46.78% females and 30.47% males, to 21.71%,

25.02% females and 19.25% males) and Corynebacterium

(31.88%, 16.50% females and 44.15% males, to 15.83%,

10.76% females and 19.60% males) decreased (WR test,

p < 3.071e−05) (Fig. 7a, Additional file 1: Figure S10D,

E) and at the same time, the overall alpha diversity in-

creased significantly (WR test, p = 3.47e−11) (Fig. 3c, d).

The microbiota Anaerococcus (WR test, p = 0.0006018),

Peptoniphilus (WR test, p = 0.008639), and Micrococcus

(WR test, p = 0.0377) increased significantly in relative

abundance, together with a lot of additional low-abun-

dant species that lead to an increase in Shannon alpha

diversity (Fig. 3c, d). When participants went back to

normal personal care products (T7–T9), the underarm

microbiome resembled the original underarm

community of T0 (WR test, p = 0.7274) (Fig. 7a). Be-

cause armpit bacterial communities are person-specific

(inter-individual variability: WR test, all p values at all

timepoints < 0.05, besides T5 p n.s), variation in bacterial

abundance upon antiperspirant use (T4–T6) differ

between individuals and during the whole 9-week period

(Fig. 7a—taxonomic plots per individual). For example,

the underarm microbiome of male 5 exhibited a unique

pattern, where Corynebacterium abundance decreased

drastically during the use of antiperspirant (82.74 to

11.71%, WR test, p = 3.518e−05) while in the armpits of fe-

male 9 a huge decrease in Staphylococcus abundance was

observed (Fig. 7a) (65.19 to 14.85%, WR test, p = 0.000113).

Unlike other participants, during T0–T3, the armpits of in-

dividual 11 were uniquely characterized by the dominance

of a sequence that matched most closely to the Enhydro-

bacter genera. The transition to antiperspirant use (T4–T6)

induces the absence of Enhydrobacter (30.77 to 0.48%, WR

test, p = 0.01528) along with an increase of Corynebacter-

ium abundance (26.87 to 49.74%, WR test, p = 0.1123)

(Fig. 7a—male 11).

In addition to the armpits, a decline in abundance of

Staphylococcus and Corynebacterium was perceived dur-

ing the use of the foot powder (46.93% and 17.36%, re-

spectively) compared to when no beauty product was used

(58.35% and 22.99%, respectively) (WR test, p = 9.653e−06

and p = 0.02032, respectively), while the abundance of

low-abundant foot bacteria significantly increased such as

Micrococcus (WR test, p = 1.552e−08), Anaerococcus (WR

test, p = 3.522e−13), Streptococcus (WR test, p = 1.463e

−06), Brevibacterium (WR test, p = 6.561e−05),

a

b

Fig. 7 Person-to-person bacterial variabilities over time in the armpits and feet. a Armpit microbiome changes when stopping personal care

product use, then resuming. Armpit bacterial composition of the 11 volunteers combined, then separately, (female 1, female 2, female 3, male 4,

male 5, male 6, male 7, female 9, male 10, male 11, female 12) according to the four periods within the experiment. b Feet bacterial variation

over time of the 12 volunteers combined, then separately (female 1, female 2, female 3, male 4, male 5, male 6, male 7, female 9, male 10, male

11, female 12) according to the four periods within the experiment. See also Additional file 1: Figure S9-S13
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Moraxellaceae (WR test, p = 0.0006719), and Acinetobac-

ter (WR test, p = 0.001487), leading to a greater bacterial

diversity compared to other phases of the study (Fig. 7b

first plot from left, Additional file 1: Figure S10D, E,

Fig. 3c, d).

We further evaluated the relationship between the two

omics datasets by superimposing the principal coordinates

calculated from metabolome and microbiome data (Pro-

crustes analysis) (Additional file 1: Figure S11) [34, 41, 42].

Metabolomics data were more correlated with patterns ob-

served in microbiome data in individual 3 (Additional file 1:

Figure S11C, Mantel test, r = 0.23, p < 0.001), individual 5

(Additional file 1: Figure S11E, r = 0.42, p < 0.001), individ-

ual 9 (Additional file 1: Figure S11H, r = 0.24, p < 0.001),

individual 10 (Additional file 1: Figure S11I, r = 0.38,

p < 0.001), and individual 11 (Additional file 1: Figure

S11J, r = 0.35, p < 0.001) when compared to other individ-

uals 1, 2, 4, 6, 7, and 12 (Additional file 1: Figure S11A, B,

D, F, G, K, respectively) (Mantel test, all r < 0.2, all p values

< 0.002, for volunteer 2 p n.s). Furthermore, these correla-

tions were individually affected by ceasing (T1–T3) or re-

suming the use of beauty products (T4–T6 and T7–T9)

(Additional file 1: Figure S11A-K).

Overall, metabolomics–microbiome correlations were

consistent over time for the arms, face, and feet although

alterations were observed in the arms of volunteers 7

(Additional file 1: Figure S11G) and 10 (Additional file 1:

Figure S11I) and the face of volunteer 7 (Additional file 1:

Figure S11G) during product use (T4–T6). Molecular–

bacterial correlations were mostly affected in the armpits

during antiperspirant use (T4–T6), as seen for

volunteers male 7 (Additional file 1: Figure S11G) and

11 (Additional file 1: Figure S11J) and females 2

(Additional file 1: Figure S11B), 9 (Additional file 1:

Figure S11H), and 12 (Additional file 1: Figure S11K).

This perturbation either persisted during the last 3

weeks (Additional file 1: Figure S11D, E, H, I, K) when

individuals went back to their normal routine (T7–T9)

or resembled the initial molecular–microbial correlation

observed in T0 (Additional file 1: Figure S11C, G, J).

These alterations in molecular–bacterial correlation are

driven by metabolomics changes during antiperspirant

use as revealed by metabolomics shifts on the PCoA

space (Additional file 1: Figure S11), partially due to the

deodorant’s chemicals (Additional file 1: Figure S1J, K)

but also to changes observed in steroid levels in the

armpits (Fig. 5A, C, D, Additional file 1: Figure S6G),

suggesting metabolome-dependant changes of the skin

microbiome. In agreement with previous findings that

showed efficient biotransformation of steroids by

Corynebacterium [43, 44], our correlation analysis asso-

ciates specific steroids that were affected by antiperspir-

ant use in the armpits of volunteer 11 (Fig. 5c, d,

Additional file 1: Figure S6G) with microbes that may

produce or process them: 1-dehydroandrostenedione,

androstenedione, and dehydrosterone with Corynebacter-

ium (r = − 0.674, p = 6e−05; r = 0.671, p = 7e−05; r = 0.834,

p < 1e−05, respectively) (Additional file 1: Figure S12A, B,

C, respectively) and Enhydrobacter (r = 0.683, p = 4e−05;

r = 0.581, p = 0.00095; r = 0.755, p < 1e−05 respectively)

(Additional file 1: Figure S12D, E, F, respectively).

Discussion

Despite the widespread use of skin care and hygiene

products, their impact on the molecular and microbial

composition of the skin is poorly studied. We estab-

lished a workflow that examines individuals to systemat-

ically study the impact of such lifestyle characteristics on

the skin by taking a broad look at temporal molecular

and bacterial inventories and linking them to personal

skin care product use. Our study reveals that when the

hygiene routine is modified, the skin metabolome and

microbiome can be altered, but that this alteration de-

pends on product use and location on the body. We also

show that like gut microbiome responses to dietary

changes [20, 21], the responses are individual-specific.

We recently reported that traces of our lifestyle mole-

cules can be detected on the skin days and months after

the original application [18, 19]. Here, we show that

many of the molecules associated with our personal skin

and hygiene products had a half-life of 0.5 to 1.9 weeks

even though the volunteers regularly showered, swam,

or spent time in the ocean. Thus, a single application of

some of these products has the potential to alter the

microbiome and skin chemistry for extensive periods of

time. Our data suggests that although host genetics and

diet may play a role, a significant part of the resilience of

the microbiome that has been reported [10, 45] is due to

the resilience of the skin chemistry associated with per-

sonal skin and hygiene routines, or perhaps even con-

tinuous re-exposure to chemicals from our personal care

routines that are found on mattresses, furniture, and

other personal objects [19, 27, 46] that are in constant

contact. Consistent with this observation is that individ-

uals in tribal regions and remote villages that are infre-

quently exposed to the types of products used in this

study have very different skin microbial communities

[47, 48] and that the individuals in this study who rarely

apply personal care products had a different starting me-

tabolome. We observed that both the microbiome and

skin chemistry of these individuals were most signifi-

cantly affected by these products. This effect by the use

of products at T4–T6 on the volunteers that infre-

quently used them lasted to the end phase of the study

even though they went back to infrequent use of per-

sonal care products. What was notable and opposite to

what the authors originally hypothesized is that the use

of the foot powder and antiperspirant increased the
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diversity of microbes and that some of this diversity con-

tinued in the T7–T9 phase when people went back to

their normal skin and hygiene routines. It is likely that

this is due to the alteration in the nutrient availability

such as fatty acids and moisture requirements, or alter-

ation of microbes that control the colonization via

secreted small molecules, including antibiotics made by

microbes commonly found on the skin [49, 50].

We detected specific molecules on the skin that origi-

nated from personal care products or from the host.

One ingredient that lasts on the skin is propylene glycol,

which is commonly used in deodorants and antiperspi-

rants and added in relatively large amounts as a humec-

tant to create a soft and sleek consistency [51]. As

shown, daily use of personal care products is leading to

high levels of exposure to these polymers. Such polymers

cause contact dermatitis in a subset of the population

[51, 52]. Our data reveal a lasting accumulation of these

compounds on the skin, suggesting that it may be pos-

sible to reduce their dose in deodorants or frequency of

application and consequently decrease the degree of

exposure to such compounds. Formulation design of

personal care products may be influenced by performing

detailed outcome studies. In addition, longer term impact

studies are needed, perhaps in multiple year follow-up

studies, to assess if the changes we observed are perman-

ent or if they will recover to the original state.

Some of the host- and microbiome-modified mole-

cules were also detected consistently, such as acylcarni-

tines, bile acids, and certain steroids. This means that a

portion of the molecular composition of a person’s skin

is not influenced by the beauty products applied to the

skin, perhaps reflecting the level of exercise for acylcar-

nitines [53, 54] or the liver (dominant location where

they are made) or gallbladder (where they are stored)

function for bile acids. The bile acid levels are not re-

lated to sex and do not change in amount during the

course of this study. While bile acids are typically associ-

ated with the human gut microbiome [34, 55–58], it is

unclear what their role is on the skin and how they get

there. One hypothesis is that they are present in the

sweat that is excreted through the skin, as this is the

case for several food-derived molecules such as caffeine

or drugs and medications that have been previously re-

ported on the human skin [19] or that microbes

synthesize them de novo [55]. The only reports we could

find on bile acids being associated with the skin describe

cholestasis and pruritus diseases. Cholestasis and prur-

itus in hepatobiliary disease have symptoms of skin bile

acid accumulation that are thought to be responsible for

severe skin itching [59, 60]. However, since bile acids

were found in over 50% of the healthy volunteers, their

detection on the skin is likely a common phenotype

among the general population and not only reflective of

disease, consistent with recent reports challenging these

molecules as biomarkers of disease [59]. Other mole-

cules that were detected consistently came from per-

sonal care products.

Aside from molecules that are person-specific and

those that do not vary, there are others that can be

modified via personal care routines. Most striking is how

the personal care routines influenced changes in hor-

mones and pheromones in a personalized manner. This

suggests that there may be personalized recipes that

make it possible to make someone more or less attract-

ive to others via adjustments of hormonal and phero-

monal levels through alterations in skin care.

Conclusion

Here, we describe the utilization of an approach that

combines metabolomics and microbiome analysis to as-

sess the effect of modifying personal care regime on skin

chemistry and microbes. The key findings are as follows:

(1) Compounds from beauty products last on the skin

for weeks after their first use despite daily showering. (2)

Beauty products alter molecular and bacterial diversity

as well as the dynamic and structure of molecules and

bacteria on the skin. (3) Molecular and bacterial tem-

poral variability is product-, site-, and person-specific,

and changes are observed starting the first week of

beauty product use. This study provides a framework for

future investigations to understand how lifestyle charac-

teristics such as diet, outdoor activities, exercise, and

medications shape the molecular and microbial compos-

ition of the skin. These factors have been studied far

more in their impact on the gut microbiome and chem-

istry than in the skin. Revealing how such factors can

affect skin microbes and their associated metabolites

may be essential to define long-term skin health by

restoring the appropriate microbes particularly in the

context of skin aging [61] and skin diseases [49] as has

shown to be necessary for amphibian health [62, 63], or

perhaps even create a precision skin care approach that

utilizes the proper care ingredients based on the micro-

bial and chemical signatures that could act as key players

in host defense [49, 64, 65].

Methods

Subject recruitment and sample collection

Twelve individuals between 25 and 40 years old were re-

cruited to participate in this study, six females and six

males. Female volunteer 8 dropped out of the study as

she developed a skin irritation during the T1–T3 phase.

All volunteers signed a written informed consent in

accordance with the sampling procedure approved by

the UCSD Institutional Review Board (Approval Number

161730). Volunteers were required to follow specific in-

structions during 9 weeks. They were asked to bring in
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samples of their personal care products they used prior

to T0 so they could be sampled as well. Following the

initial timepoint time 0 and during the first 3 weeks

(week 1–week 3), volunteers were asked not to use any

beauty products (Fig. 1b). During the next 3 weeks (week

4–week 6), four selected commercial beauty products

provided to all volunteers were applied once a day at

specific body part (deodorant for the armpits, soothing

foot powder between the toes, sunscreen for the face, and

moisturizer for front forearms) (Fig. 1b, Additional file 3:

Table S2 Ingredient list of beauty products). During the

first 6 weeks, volunteers were asked to shower with a head

to toe shampoo. During the last 3 weeks (week 7–week 9),

all volunteers went back to their normal routine and used

the personal care products used before the beginning of

the study (Fig. 1b). Volunteers were asked not to shower

the day before sampling. Samples were collected by the

same three researchers to ensure consistency in sampling

and the area sampled. Researchers examined every subject

together and collected metabolomics and microbiome

samples from each location together. Samples were col-

lected once a week (from day 0 to day 68—10 timepoints

total) for volunteers 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, and 12, and

on day 0 and day 6 for volunteer 8. For individuals 4, 9,

and 10, samples were collected twice a week. Samples col-

lected for 11 volunteers during 10 timepoints: 11 volun-

teers × 10 timepoints × 4 samples × 4 body sites = 1760.

Samples collected from 3 selected volunteers during 9

additional timepoints: 3 volunteers × 9 timepoints × 4

samples × 4 body sites = 432. All samples were collected

following the same protocol described in [18]. Briefly,

samples were collected over an area of 2 × 2 cm, using

pre-moistened swabs in 50:50 ethanol/water solution for

metabolomics analysis or in Tris-EDTA buffer for 16S

rRNA sequencing. Four samples were collected from each

body part right and left side. The locations sampled were

the face—upper cheek bone and lower jaw, armpit—upper

and lower area, arm—front of the elbow (antecubitis) and

forearm (antebrachium), and feet—in between the first

and second toe and third and fourth toe. Including per-

sonal care product references, a total of 2275 samples

were collected over 9 weeks and were submitted to

both metabolomics and microbial inventories.

Metabolite extraction and UPLC-Q-TOF mass

spectrometry analysis

Skin swabs were extracted and analyzed using a previ-

ously validated workflow described in [18, 19]. All

samples were extracted in 200 μl of 50:50 ethanol/water

solution for 2 h on ice then overnight at − 20 °C. Swab

sample extractions were dried down in a centrifugal

evaporator then resuspended by vortexing and sonication

in a 100 μl 50:50 ethanol/water solution containing two in-

ternal standards (fluconazole 1 μM and amitriptyline 1 μM).

The ethanol/water extracts were then analyzed using a pre-

viously validated UPLC-MS/MS method [18, 19]. We used

a ThermoScientific UltiMate 3000 UPLC system for liquid

chromatography and a Maxis Q-TOF (Quadrupole-Ti-

me-of-Flight) mass spectrometer (Bruker Daltonics), con-

trolled by the Otof Control and Hystar software packages

(Bruker Daltonics) and equipped with ESI source. UPLC

conditions of analysis are 1.7 μm C18 (50 × 2.1mm)

UHPLC Column (Phenomenex), column temperature

40 °C, flow rate 0.5ml/min, mobile phase A 98% water/2%

acetonitrile/0.1% formic acid (v/v), mobile phase B 98%

acetonitrile/2% water/0.1% formic acid (v/v). A linear gradi-

ent was used for the chromatographic separation: 0–2min

0–20% B, 2–8min 20–99% B, 8–9min 99–99% B, 9–10

min 0% B. Full-scan MS spectra (m/z 80–2000) were ac-

quired in a data-dependant positive ion mode. Instrument

parameters were set as follows: nebulizer gas (nitrogen)

pressure 2 Bar, capillary voltage 4500V, ion source

temperature 180 °C, dry gas flow 9 l/min, and spectra rate

acquisition 10 spectra/s. MS/MS fragmentation of 10 most

intense selected ions per spectrum was performed using

ramped collision induced dissociation energy, ranged

from 10 to 50 eV to get diverse fragmentation patterns.

MS/MS active exclusion was set after 4 spectra and

released after 30 s.

Mass spectrometry data collected from the skin of 12

individuals can be found here MSV000081582.

LC-MS data processing

LC-MS raw data files were converted to mzXML format

using Compass Data analysis software (Bruker Daltonics).

MS1 features were selected for all LC-MS datasets col-

lected from the skin of 12 individuals and blank samples

(total 2275) using the open-source software MZmine

[66]—see Additional file 4: Table S3 for parameters. Sub-

sequent blank filtering, total ion current, and internal

standard normalization were performed (Additional file 5:

Table S4) for representation of relative abundance of mo-

lecular features (Fig. 2, Additional file 1: Figure S1), princi-

pal coordinate analysis (PCoA) (Fig. 4). For steroid

compounds in Fig. 5a–d, bile acids (Additional file 1: Fig-

ure S5A-D), and acylcarnitines (Additional file 1: Figure

S5E, F) compounds, crop filtering feature available in

MZmine [66] was used to identify each feature separately

in all LC-MS data collected from the skin of 12 individuals

(see Additional file 4: Table S3 for crop filtering parame-

ters and feature finding in Additional file 6: Table S5).

Heatmap in Fig. 2 was constructed from the bucket

table generated from LC-MS1 features (Additional file 7:

Table S6) and associated metadata (Additional file 8:

Table S7) using the Calour command line available here:

https://github.com/biocore/calour. Calour parameters

were as follows: normalized read per sample 5000 and

cluster feature minimum reads 50. Procrustes and
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Pearson correlation analyses in Additional file 1: Figures

S10 and S11 were performed using the feature table in

Additional file 9: Table S8, normalized using the prob-

abilistic quotient normalization method [67].

16S rRNA amplicon sequencing

16S rRNA sequencing was performed following the

Earth Microbiome Project protocols [68, 69], as

described before [18]. Briefly, DNA was extracted using

MoBio PowerMag Soil DNA Isolation Kit and the V4

region of the 16S rRNA gene was amplified using bar-

coded primers [70]. PCR was performed in triplicate for

each sample, and V4 paired-end sequencing [70] was

performed using Illumina HiSeq (La Jolla, CA). Raw

sequence reads were demultiplexed and quality

controlled using the defaults, as provided by QIIME

1.9.1 [71]. The primary OTU table was generated using

Qiita (https://qiita.ucsd.edu/), using UCLUST (https://

academic.oup.com/bioinformatics/article/26/19/2460/23

0188) closed-reference OTU picking method against

GreenGenes 13.5 database [72]. Sequences can be found

in EBI under accession number EBI: ERP104625 or in

Qiita (qiita.ucsd.edu) under Study ID 10370. Resulting

OTU tables were then rarefied to 10,000 sequences/sam-

ple for downstream analyses (Additional file 10 Table

S9). See Additional file 11: Table S10 for read count per

sample and Additional file 1: Figure S13 representing

the samples that fall out with rarefaction at 10,000

threshold. The dataset includes 35 blank swab controls

and 699 empty controls. The blank samples can be

accessed through Qiita (qiita.ucsd.edu) as study ID

10370 and in EBI with accession number EBI:

ERP104625. Blank samples can be found under the

metadata category “sample_type” with the name “empty

control” and “Swabblank.” These samples fell below the

rarefaction threshold at 10,000 (Additional file 11:

Table S10).

To rule out the possibility that personal care products

themselves contained the microbes that induced the

changes in the armpit and foot microbiomes that were

observed in this study (Fig. 7), we subjected the common

personal care products that were used in this study

during T4–T6 also to 16S rRNA sequencing. The data

revealed that within the limit of detectability of the

current experiment, few 16S signatures were detected.

One notable exception was the most dominant plant-

originated bacteria chloroplast detected in the sunscreen

lotion applied on the face (Additional file 1: Figure S9D),

that was also detected on the face of individuals and at a

lower level on their arms, sites where stable microbial

communities were observed over time (Additional file 1:

Figure S9E, F). This finding is in agreement with our

previous data from the 3D cartographical skin maps that

revealed the presence of co-localized chloroplast and

lotion molecules [18]. Other low-abundant microbial

signatures found in the sunscreen lotion include

additional plant-associated bacteria: mitochondria [73],

Bacillaceae [74, 75], Planococcaceae [76], and Rumino-

coccaceae family [77], but all these bacteria are not re-

sponsible for microbial changes associated to beauty

product use, as they were poorly detected in the armpits

and feet (Fig. 7).

To assess the origin of Cyanobacteria detected in

skin samples, each Greengenes [72] 13_8 97% OTU

table (per lane; obtained from Qiita [78] study

10,370) was filtered to only features with a p__Cyano-

bacteria phylum. The OTU maps for these tables—

which relate each raw sequence to an OTU ID—were

then filtered to only those observed p__Cyanobacteria

OTU IDs. The filtered OTU map was used to extract

the raw sequences into a single file. Separately, the

unaligned Greengenes 13_8 99% representative se-

quences were filtered into two sets, first the set of

representatives associated with c__Chloroplast (our

interest database), and second the set of sequences

associated with p__Cyanobacteria without the

c__Chloroplast sequences (our background database).

Platypus Conquistador [79] was then used to deter-

mine what reads were observed exclusively in the

interest database and not in the background database.

Of the 4,926,465 raw sequences associated with a

p__Cyanobacteria classification (out of 318,686,615

total sequences), at the 95% sequence identity level

with 100% alignment, 4,860,258 sequences exclusively

recruit to full-length chloroplast 16S by BLAST [80]

with the bulk recruiting to streptophytes (with

Chlorophyta and Stramenopiles to a lesser extent).

These sequences do not recruit non-chloroplast

Cyanobacteria full length 16S.

Half-life calculation for metabolomics data

In order to estimate the biological half-life of molecules

detected in the skin, the first four timepoints of the

study (T0, T1, T2, T3) were considered for the calcula-

tion to allow the monitoring of personal beauty products

used at T0. The IUPAC’s definition of biological half-life

as the time required to a substance in a biological

system to be reduced to half of its value, assuming an

approximately exponential removal [81] was used. The

exponential removal can be described as C(t) = C0e
−tλ

where t represents the time in weeks, C0 represents the

initial concentration of the molecule, C(t) represents the

concentration of the molecule at time t, and λ is the rate

of removal [http://onlinelibrary.wiley.com/doi/10.1002/

9780470140451.ch2/summary]. The parameter λ was

estimated by a mixed linear effects model in order to

account for the paired sample structure. The regression
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model tests the null hypothesis that λ is equal to zero

and only the significant (p value < 0.05) parameters were

considered.

Principal coordinate analysis

We performed principal coordinate analysis (PCoA) on

both metabolomics and microbiome data. For metabolo-

mics, we used MS1 features (Additional file 5: Table S4)

and calculated Bray–Curtis dissimilarity metric using Clus-

terApp (https://github.com/mwang87/q2_metabolomics).

For microbiome data, we used rarefied OTU table

(Additional file 10: Table S9) and used unweighted Uni-

Frac metric [36] to calculate beta diversity distance

matrix using QIIME2 (https://qiime2.org). Results from

both data sources were visualized using Emperor

(https://biocore.github.io/emperor/) [28].

Molecular networking

Molecular networking was generated from LC-MS/MS data

collected from skin samples of 11 individuals MSV00

0081582, using the Global Natural Products Social Molecu-

lar Networking platform (GNPS) [29]. Molecular network

parameters for MS/MS data collected from all body parts

of 11 individuals during T0–T9 MSV000081582 are access-

ible here http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=

284fc383e4c44c4db48912f01905f9c5. Molecular network

parameters for MS/MS data collected from armpits T0–T3

MSV000081582 and deodorant used by individual 1 and 3

MSV000081580 can be found here http://gnps.ucsd.edu/

ProteoSAFe/status.jsp?task=f5325c3b278a46b29e8860ec

57915ad and here http://gnps.ucsd.edu/ProteoSAFe/status.

jsp?task=aaa1af68099d4c1a87e9a09f398fe253, respectively.

Molecular networks were exported and visualized in Cytos-

cape 3.4.0. [82]. Molecular networking parameters were set

as follows: parent mass tolerance 1Da, MS/MS fragment

ion tolerance 0.5 Da, and cosine threshold 0.65 or greater,

and only MS/MS spectral pairs with at least 4 matched

fragment ions were included. Each MS/MS spectrum was

only allowed to connect to its top 10 scoring matches,

resulting in a maximum of 10 connections per node. The

maximum size of connected components allowed in the

network was 600, and the minimum number of spectra re-

quired in a cluster was 3. Venn diagrams were generated

from Cytoscape data http://gnps.ucsd.edu/ProteoSAFe/sta-

tus.jsp?task=284fc383e4c44c4db48912f01905f9c5 using

Cytoscape [82] Venn diagram app available here http://

apps.cytoscape.org/apps/all.

Shannon molecular and bacterial diversity

The diversity analysis was performed separately for 16S

rRNA data and LC-MS data. For each sample in each

feature table (LC-MS data and microbiome data), we

calculated the value of the Shannon diversity index. For

LC-MS data, we used the full MZmine feature table

(Additional file 5: Table S4). For microbiome data, we

used the closed-reference BIOM table rarefied to 10,000 se-

quences/sample. For diversity changes between timepoints,

we aggregated Shannon diversity values across groups of in-

dividuals (all, females, males) and calculated mean values

and standard errors. All successfully processed samples

(detected features in LC-MS or successful sequencing with

10,000 or more sequences/sample) were considered.

Beauty products and chemical standards

Samples (10 mg) from personal care products used dur-

ing T0 and T7–T9 MSV000081580 (Additional file 2:

Table S1) and common beauty products used during

T4–T6 MSV000081581 (Additional file 3: Table S2)

were extracted in 1 ml 50:50 ethanol/water. Sample ex-

tractions were subjected to the same UPLC-Q-TOF MS

method used to analyze skin samples and described

above in the section “Metabolite extraction and

UPLC-Q-TOF mass spectrometry analysis.” Authentic

chemical standards MSV000081583 including 1-dehy-

droandrostenedion (5 μM), chenodeoxyglycocholic acid

(5 μM), dehydroisoandrosterone sulfate (100 μM), glyco-

cholic acid (5 μM), and taurocholic acid (5 μM) were an-

alyzed using the same mass spectrometry workflow used

to run skin and beauty product samples.

Monitoring beauty product ingredients in skin samples

In order to monitor beauty product ingredients used

during T4–T6, we selected only molecular features

present in each beauty product sample (antiperspirant,

facial lotion, body moisturizer, soothing powder) and

then filtered the aligned MZmine feature table

(Additional file 5: Table S4) for the specific feature in

specific body part samples. After feature filtering, we

selected all features that had a higher average intensity

on beauty product phase (T4–T6) compared to

non-beauty product phase (T1–T3). The selected fea-

tures were annotated using GNPS dereplication output

http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=69319c

af219642a5a6748a3aba8914df, plotted using R package

ggplot2 (https://cran.r-project.org/web/packages/ggplot

2/index.html) and visually inspected for meaningful

patterns.

Random forest analysis

Random forest analysis was performed in MetaboAnalyst

3.0 online platform http://www.metaboanalyst.ca/faces/

home.xhtml. Using LC-MS1 features found in armpit

samples collected on T3 and T6. Random forest parame-

ters were set as follows: top 1000 most abundant

features, number of predictors to try for each node 7,

estimate of error rate (0.0%).
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BugBase analysis

To determine the functional potential of microbial com-

munities within our samples, we used BugBase [83]. Be-

cause we do not have direct access to all of the gene

information due to the use of 16S rRNA marker gene se-

quencing, we can only rely on phylogenetic information

inferred from OTUs. BugBase takes advantage of this in-

formation to predict microbial phenotypes by associating

OTUs with gene content using PICRUSt [84]. Thus,

using BugBase, we can predict such phenotypes as Gram

staining, or oxidative stress tolerance at each timepoint

or each phase. All statistical analyses in BugBase are per-

formed using non-parametric differentiation tests

(Mann–Whitney U).

Taxonomic plots

Rarefied OTU counts were collapsed according to the

OTU’s assigned family and genus name per sample, with

a single exception for the class of chloroplasts. Relative

abundances of each family-genus group are obtained by

dividing by overall reads per sample, i.e., 10,000. Samples

are grouped by volunteer, body site, and time/phase.

Abundances are aggregated by taking the mean overall

samples, and resulting abundances are again normalized

to add up to 1. Low-abundant taxa are not listed in the

legend and plotted in grayscale. Open-source code is

available at https://github.com/sjanssen2/ggmap/blob/

master/ggmap/snippets.py

Dissimilarity-based analysis

Pairwise dissimilarity matrices were generated for meta-

bolomics and 16S metagenomics quantification tables,

described above, using Bray–Curtis dissimilarity through

QIIME 1.9.1 [71]. Those distance matrices were used to

perform Procrustes analysis (QIIME 1.9.1), and Mantel

test (scikit-bio version 0.5.1) to measure the correlation

between the metabolome and microbiome over time.

The metabolomics dissimilarities were used to perform

the PERMANOVA test to assess the significance of body

part grouping. The PCoA and Procrustes plots were vi-

sualized in EMPeror. The dissimilarity matrices were

also used to perform distance tests, comparing the dis-

tances within and between individuals and distances

from time 0 to times 1, 2, and 3 using Wilcoxon

rank-sum tests (SciPy version 0.19.1) [19].

Statistical analysis for molecular and microbial data

Statistical analyses were performed in R and Python (R

Core Team 2018). Monotonic relationships between two

variables were tested using non-parametric Spearman

correlation tests. The p values for correlation significance

were subsequently corrected using Benjamini and Hoch-

berg false discovery rate control method. The relationship

between two groups was tested using non-parametric

Wilcoxon rank-sum tests. The relationship between mul-

tiple groups was tested using non-parametric Kruskal–

Wallis test. The significance level was set to 5%, unless

otherwise mentioned, and all tests were performed as

two-sided tests.

Additional files

Additional file 1: Figure S1. Beauty products ingredients persist on

skin of participants. Figure S2. Beauty product application impacts the

molecular and bacterial diversity on skin of 11 individuals while the

chemical diversity from personal beauty products used by males and

females on T0 is similar. Figure S3. Longitudinal impact of ceasing and

resuming the use of beauty products on the molecular composition of

the skin over time. Figure S4. Molecular networking to highlight MS/MS

spectra found in each body part. Figure S5. Longitudinal abundance of

bile acids and acylcarnitines in skin samples. Figure S6. Characterization

of steroids in armpits samples. Figure S7. Characterization of bile acids in

armpit samples. Figure S8. Characterization of Acylcarnitine family

members in skin samples. Figure S9. Beauty products applied at one

body part might affect other areas of the body, while specific products

determine stability versus variability of microflora at each body site.

Figure S10. Representation of Gram-positive bacteria over time and the

molecular features from the shampoo detected on feet. Figure S11.

Procrustes analysis to correlate the skin microbiome and metabolome

over time. Figure S12. Correlation between specific molecules and

bacteria that change over time in armpits of individual 11. Figure

S13. Representation of the number of samples that were removed

(gray) and those retained (blue) after rarefaction at 10,000 threshold.
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products and their frequency of use. (XLSX 30 kb)

Additional file 3: Table S2. List of ingredients of common beauty

products used during T4–T6. (PDF 207 kb)

Additional file 4: Table S3. Mzmine feature finding and crop filtering

parameters. (XLSX 4 kb)

Additional file 5: Table S4. Feature table for statistical analysis with

blank filtering and total ion current normalization. (CSV 150242 kb)

Additional file 6: Table S5. Feature table for individual feature

abundance in armpits. (XLSX 379 kb)

Additional file 7: Table S6. Feature table for Calour analysis. (CSV

91651 kb)

Additional file 8: Table S7. Metadata for Calour analysis. (TXT 129 kb)

Additional file 9: Table S8. feature table with Probabilistic quotient

normalization for molecular–microbial analysis. (ZIP 29557 kb)

Additional file 10: Table S9. OTU table rarefied to 10,000 sequences

per sample. (BIOM 9493 kb)

Additional file 11: Table S10. 16S rRNA sequencing read counts per
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(MSV000081582, MSV000081580 and MSV000081581). Molecular network

parameters for MS/MS data collected from all body parts of 11 individuals

during T0-T9 MSV000081582 are accessible here http://gnps.ucsd.edu/Proteo-

SAFe/status.jsp?task=284fc383e4c44c4db48912f01905f9c5. Molecular network

parameters for MS/MS data collected from armpits T0–T3 MSV000081582

and deodorant used by individual 1 and 3 MSV000081580 can be found here

http://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=f5325c3b278a46-

b29e8860ec5791d5ad and here http://gnps.ucsd.edu/ProteoSAFe/status.

jsp?task=aaa1af68099d4c1a87e9a09f398fe253, respectively. OTU tables can

be found in Qiita (qiita.ucsd.edu) as study ID 10370, and sequences can be

found in EBI under accession number EBI: ERP104625.
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