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Abstract

The relationship between recent episodes of poor sleep and cognitive testing performance in 

healthy cognitively intact older adults is not well understood. In this exploratory study, we 

examined the impact of recent sleep disturbance, sleep duration, and sleep variability on cognitive 

performance in 63 cognitively intact older adults using a novel unobtrusive in-home sensor based 

sleep assessment methodology. Specifically, we examined the impact of sleep the night prior, the 

week prior, and the month prior to a neuropsychological evaluation on cognitive performance. 

Results showed that mildly disturbed sleep the week prior and month prior to cognitive testing was 

associated with reduced working memory on cognitive evaluation. One night of mild sleep 

disturbance was not associated with decreased cognitive performance the next day. Sleep duration 

was unrelated to cognition. In-home, unobtrusive sensor monitoring technologies provide a novel 

method for objective, long-term, and continuous assessment of sleep behavior and other everyday 

activities that might contribute to decreased or variable cognitive performance in healthy older 

adults.
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Introduction

Neuropsychological test performance impacts diagnostic and personal decision making and 

yet often demonstrates intraindividual variability, particularly in older adults (Gamaldo, 

Allaire, & Whitfield, 2010, 2012). Currently, it is not well understood how recent lifestyle 

factors such as episodes of poor sleep can contribute to cognitive performance in healthy 

cognitively intact older adults. It is well known that disturbed sleep is common in normal 
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aging (Tractenberg, Singer, & Kaye, 2006) and MCI (Beaulieu-Bonneau & Hudon, 2009; 

Westerberg et al., 2010) and that poor sleep has cognitive consequences in healthy young 

and middle-age adults (Waters & Bucks, 2011), particularly in the domains of speed of 

processing and attention.

The relationship between sleep and cognitive functioning in healthy aging is less clear and 

warrants further exploration. Studies of sleep and cognition in community dwelling, 

cognitively healthy aging samples are rare, and the few existing studies of sleep and older 

adults are limited by methodological differences that have affected the consistency of the 

findings and obscure a complex relationship. Across studies, there are large differences in 

participants’ cognitive status, presence of sleep disorders, cognitive tests used as outcome 

measures, sleep assessment methodology, and control for factors such as pain, mood, and 

medications that could impact both sleep and cognition. The relationship between sleep and 

cognition in older adults seems to partially depend on the specific sleep variable being 

measured, either sleep quality or sleep duration. In one study, self-reported sleep quality in 

cognitively intact older adults was not related to cognitive performance (Westerberg et al., 

2010), whereas in another study, self-reported sleep duration in older adults was associated 

with an increased risk of MCI classification (Galmaldo et al., 2012). Blackwell and 

colleagues (2011a) showed that self-reported sleep duration was associated with decreased 

cognition in mostly non-demented older men, with longer self-reported sleep duration 

related to poorer executive functioning.

The type of sleep assessment used differs widely among studies of sleep and cognition with 

older adults. Objective sleep assessment methods include polysomnography, which provides 

detailed information about sleep stages and structure, actigraphy, and bed mats and are often 

considered to be the most reliable and least biased methods (Ancoli-Israel et al., 2003; 

Blood, Sack, Percy, & Pen, 1997). In actigraphy, a device similar to a wristwatch is worn on 

the wrist that detects movement each time the actigraph is moved (Blackwell et al., 2011b). 

Studies of sleep and cognition in mostly non-demented older adults that have used objective 

sleep assessments have generally found that sleep disturbance is associated with reduced 

cognition. For example, a recent actigraphy study demonstrated that in non-demented older 

adults, higher sleep fragmentation was associated with incident dementia and over a 20% 

increase in the annual rate of cognitive decline over a follow-up period of 6 years (Lim, 

Kowgier, Yu, Buchman, & Bennett, 2013). Results from an in-home polysomnography 

study showed that less time spent in REM and stage 1 sleep was associated with poorer 

attention, processing speed, and executive functioning scores in a large sample of mostly 

non-demented community dwelling older men (Blackwell et al., 2011b). In an actigraphy 

study by the same group, higher objectively measured minutes awake after sleep onset 

(WASO) was related to poorer executive functioning (Blackwell et al., 2011a).

Traditional objective sleep measures such as actigraphy, polysomnography, and bed mats 

have several limitations that make them less ideal to study sleep and cognition in older 

adults. Wearable devices such as actigraphs could be taken off, forgotten, or lost, and could 

also be considered aesthetically unappealing or inconvenient. Polysomnography is 

performed in a sleep laboratory in which staff is present for monitoring, which has limited 

generalizability to a real world home environment. Bed mats provide information about in-
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bed activity, but do not capture information when people get out of bed at night. With these 

traditional sleep assessment methods, data are typically obtained over a brief period of time 

(e.g., less than one week) and not necessarily close in time to a relevant clinic visit, which 

limits our understanding of how sleep over longer periods of time, sleep the night before an 

evaluation, or sleep variability can impact cognitive functioning.

Unobtrusive, passive motion sensor based monitoring of sleep that occurs in one’s home 

environment is a novel alternate approach to traditional objective sleep assessment methods 

(Hayes, Riley, Mattek, Pavel, & Kaye, 2013; Hayes, Riley, Pavel, & Kaye, 2010). Daily 

sleep assessment that requires no worn devices and that occurs within the everyday 

environment will make it possible to obtain larger and more accurate samples of sleep data 

than by episodic sleep assessment in a lab or by self-report. In addition, continuously 

assessing sleep in the days and weeks leading up to a cognitive evaluation could enable 

more meaningful characterization of associations between sleep and cognition as compared 

to self-report sleep data. Home-based sensor assessment also provides information about 

what people are doing when they get out of bed (going to the bathroom, kitchen, etc.), which 

is an advantage over traditional sleep assessment methods. No studies to our knowledge 

have used unobtrusive, in-home sensor based sleep assessment to examine the relationship 

of sleep and cognition in high functioning, cognitively intact older adults. In the present 

exploratory study, we used this novel sleep assessment methodology to examine the impact 

of sleep disturbance, duration, and variability on cognitive performance in community 

dwelling, cognitively intact older adults who had unobtrusive in-home monitoring 

technologies installed in their homes. We were particularly interested in examining how 

sleep the night immediately prior to a neuropsychological evaluation impacts cognitive 

testing performance in cognitively intact older adults relative to the prior week and prior 

month’s sleep. Prior actigraphy and polysomnography research has shown that disturbed 

sleep in non-demented older adults has a negative impact on attention, processing speed, and 

executive abilities (Blackwell et al., 2011a, 2011b). Attention and working memory are two 

components of the broad, multidimensional, and hierarchical construct of executive 

functioning (Baddeley, 1986; Lezak, Howieson, Bigler, & Tranel, 2012). Attention and 

working memory, however, likely have a lower threshold of disruption than higher level 

executive skills such as mental flexibility, strategic search and execution, decision making, 

and others. It was hypothesized that disturbed sleep the night, week, and month prior to 

neuropsychological testing in our sample of cognitively intact older adults would contribute 

to poorer cognitive performance in the lower level executive skills of attention/processing 

speed and working memory.

Method

Participants

Participants were 63 community dwelling cognitively intact older adults (mean age = 87 

years; 83% female) who were part of a larger Oregon Center for Aging and Technology 

(ORCATECH) longitudinal cohort study (Kaye et al., 2011). Participants lived in a variety 

of settings—from apartments in organized retirement communities to freestanding single-

family homes. The research protocol was approved by the Oregon Health and Science 
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University Institutional Review Board (OHSU IRB no. 2353). All participants provided 

written informed consent. Participants were recruited from the Portland, Oregon, 

metropolitan area through advertisement and presentations at local retirement communities 

as part of the ORCATECH study. Entry criteria for the present study included being a man 

or woman age 70 or older, living independently as the sole resident in the home, not 

demented as evidenced by a Mini-Mental State Examination (MMSE) (Folstein, Folstein, & 

McHugh, 1975) score greater than 24 and a Clinical Dementia Rating (CDR) (Morris, 1993) 

scale score of 0, clinician consensus agreement of age appropriate cognitive function, and in 

average health for age. A CDR of 0 indicates that the participant, the participant’s collateral 

source, and clinician collectively rated the individual as having normal cognitive abilities 

and normal everyday functioning. Exclusionary criteria included medical illnesses that 

would limit physical participation (e.g., wheelchair bound) or likely lead to untimely death, 

such as certain cancers. Individuals with sleep disorders such as Sleep Apnea were not 

identified as part of the study and thus not excluded.

Procedure

Clinical Assessments and neuropsychological measures—Participants were 

clinically assessed during annual visits in their home using a standardized battery of tests 

including: the MMSE, the Geriatric Depression Scale (GDS) (Yesavage et al., 1982) and 

Functional Activities Questionnaire (FAQ) (Pfeffer, Kurosaki, Harrah, Chance, & Filos, 

1982). Health status was further assessed by the modified Cumulative Illness Rating Scale 

(CIRS) (Parmelee, Thuras, Katz, & Lawton, 1995). From a battery of neuropsychological 

tests that are administered annually as part of a longitudinal study (See Appendix 1), 

cognitive domain z-scores were tabulated from 2–3 representative neuropsychological tests 

for six cognitive domains. The use of composite cognitive scores is a common procedure for 

increasing reliability of results and decreasing Type 1 errors from excessive multiple 

comparisons (Manly et al., 2008). It also has the advantage of minimizing floor and ceiling 

effects and other types of random variability (Boyle, Yu, Wilson, Schneider, & Bennett, 

2013). Although each test requires multiple cognitive skills, we classified the tests assessing 

related abilities into representative cognitive domains in the most meaningful way. 

Cognitive domains included working memory: Letter-Number Sequencing (WMS-III) 

(Wechsler, 1987) and Digit Span Backward length (WAIS-R) (Wecshler, 1981); attention/

processing speed: Digit Span Forward length (WAIS-R), Digit Symbol (WAIS-R), and Trail 

Making Test- Part A (Armitage, 1946); memory: WMS-R Logical Memory II Story A, 

WMS-R Visual Reproduction II, and CERAD Word-List Recall (Rosen, Mohs, & Davis, 

1984); executive function: letter fluency (CFL), Trail Making Test Part B (Armitage, 1946), 

and Stroop color-word conflict (Jensen & Rohwer, 1966); and visual perception/

construction: WAIS-R Block Design, WAIS-R Picture Completion, and WMS-R Visual 

Reproduction I. A global cognition domain consisted of all cognitive tests in the domains of 

working memory, attention/processing speed, memory, executive function, and visual 

perception/construction. Cognitive domain z-scores were calculated using group mean and 

standard deviations of the raw test scores from all cognitively intact subjects (CDR=0) at 

study entry into the ORCATECH cohort (n=180). The 63 participants in the present study 

are part of the original normative cohort. The individual subject scores were z-normalized, 

summed, and averaged for each cognitive domain.
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Home sensor network and unobtrusive collection of sleep data—As part of an 

ongoing research study, sleep data were collected using an unobtrusive activity assessment 

system consisting of motion sensors in the home of each participant (Kaye et al., 2011). The 

timing and location of the sensor firings were used to create a number of variables that are 

commonly used to assess sleep, as described in more detail below. As with all movement 

based estimates of sleep measures, including actigraphy and bed mats, which are considered 

ground truth measures of movement on the bed, variables such as total sleep time must be 

inferred from periods of inactivity in bed. In a previous study we validated our sensor based 

algorithm used to derive these sleep measures against bed mats placed under the mattress 

that provided pressure, heart rate, and respiration data every 10 seconds (Hayes et al., 2010). 

In the validation study, the pressure information was used to determine when the participant 

was lying on the bed. The sleep sensor algorithm accurately estimated in and out of bed 

states as compared to a bed mat that provided this information directly (correlation 

coefficients were 0.99 (bed time) and 0.96 (rise time) (Hayes et al., 2010)).

Development of objective sensor based sleep assessment measures—By 

combining the raw sensor stream from multiple sensor firings, our sleep algorithm estimates 

the probable state of the individual: out of the bed (OB), awake in the bed (IB), or asleep in 

the bed (AB) (Hayes et al., 2010). The transitions between states are determined by a set of 

context-sensitive grammars which describe the sequence of sensor firings that determine if a 

transition between states has occurred at any particular time. Out of the bed (OB) includes a 

normal going to bed pattern, which would occur with 20 minutes of inactivity prior to a 

bedroom firing, where the previous 4 sensor firings prior to the inactivity included at least 

one bedroom firing. The time of the most recent firing prior to the inactive period is marked 

as an OB to AB transition. Awake in bed (IB) occurs when all firings within the previous 20 

minutes have been in the bedroom with no more than 1.5 firings per minute over the entire 

in bed period. AB occurs after the OB to AB transition during a period of bedroom sensor 

inactivity. If the current bedroom firing is followed by a bathroom firing, more than 2 living 

room firings, or more than 1 of any other non-bedroom firing, then the time of the firing is 

marked as a transition to out of the bed.

We used the in- and out-of-bed estimations to calculate a number of traditional sleep 

measures. Asleep in bed (AB) events can happen at any time of day, since people nap, but 

many sleep measures of interest typically refer to nighttime sleep. Thus, the measures 

reported here were derived from application of the algorithm to bedroom firings between the 

hours of 5pm and 11am.The algorithms assumed that the individual was alone at night. Thus 

we excluded periods of data when the participant had visitors, as well as periods when 

sensor data could not be collected due to sensor malfunction or power outages or when the 

subject was away from home. Data from all sensors were received by a dedicated research 

laptop computer placed in the participant’s home, time stamped, and stored in a Structured 

Query Language database. All data were uploaded automatically daily to a central database 

in the project data center.

Objective sleep measures used in the current study—The objective sleep variables 

we examined for this study include: total movement in bed at night (MIB: number of 
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bedroom sensor firings while the participant was in bed, a measure of restlessness), times up 

at night (UP: when the participant actually got out of bed), and total sleep time (TST: the 

last time in which the subject woke up subtracted from total time in bed). The sleep 

measures were collected on a daily basis starting 30 days before the neuropsychological 

evaluation was conducted. We screened the sleep data and excluded outliers based on >3SD 

from the mean. Cases were excluded in which there were fewer than 3 nights of sleep data 

for the ‘week prior’, and fewer than 13 nights of sleep data for the ‘month prior’. The mean 

of each measure was taken for the week and month prior, together with the standard 

deviation to assess variability. Thus, for each objective sleep measure we obtained raw data 

for the night prior to the neuropsychological evaluation, and summaries of central tendency 

and variability for the week prior and the month prior. All analyses were performed by using 

SAS version 9.3 software.

Statistical Analysis—For each participant, we selected their neuropsychological 

evaluation that occurred between 2011 and 2012 and obtained their sleep data on a daily 

basis starting 30 days before the neuropsychological evaluation was conducted. Prior to 

conducting the regression analysis we obtained a correlation matrix with all available 

cognitive domain z-scores and sleep variables. The cognitive domains that correlated 

significantly with sleep variables (p<.05) were attention/processing speed and working 

memory, and thus were included as outcome variables in the regression analysis. Data from 

other cognitive domains could not be included in the regression analysis because of the need 

to limit the number of outcome variables according to the sample size. To reduce the 

number of predictor variables included in the regression analyses, only sleep variables that 

significantly correlated with cognitive domain outcome variables (p<.05) were 

simultaneously entered in the second step of each hierarchical multivariate regression model 

to determine if they held any unique and predictive value for the cognitive outcome 

variables controlling for age, education, low mood, pain, and psychotropic medications. 

Sleep variables that were not correlated with cognitive outcome variables were not included 

in the regressions. Associations between the selected sleep variables (total movement in bed 

at night, times up at night, and total sleep time) and the selected cognitive domains (working 

memory and attention/processing speed) were examined by running separate multivariate 

regression models for the night prior, week prior, and month prior to evaluation. Due to 

availability of sleep data, the night prior analysis included 52 participants, the week prior 

analysis included 62 participants, and the month prior analysis included 63 participants.

Results

Demographic characteristics, sleep variables, and cognitive domain scores of the 63 

participants are reported in Table 1. Participants were well educated, healthy, cognitively 

intact older adults and most were female. Unadjusted Spearman’s non-parametric 

correlations between the six sleep variables and the six cognitive domains are presented in 

Table 2. The correlations between sleep variables and cognitive domains after adjusting for 

age, sex, education, pain, low mood, and psychotropic medications are given in Table 3. 

Statistically significant p-values after Bonferroni adjustment for multiple comparisons for 

each model/time period are presented.
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Sleep and Cognitive Domain Regressions—For the night prior, there were no 

significant associations between the sleep variables and the cognitive domains. Although the 

correlation coefficient between total movement in bed/restlessness and working memory 

was relatively high, it did not reach significance due to the smaller sample size in the night 

prior model (n=52). For the week prior and month prior time periods of sleep, mean total 

movement in bed/restlessness was negatively associated with working memory on 

evaluation (p’s<.05). For movement in bed both the week prior and the month prior to 

cognitive evaluation, an approximate increase of 33 movements in bed would be associated 

with a 1 standard deviation decrease in the working memory domain z-score (1/0.03= 33). 

After controlling for age, sex, education, pain, low mood, and psychotropic medications, no 

significant associations remained between any of the other week prior and month prior sleep 

variables and the cognitive domains.

Discussion

In this exploratory study, we examined the impact of sleep disturbance, sleep duration, and 

sleep variability on cognitive performance in community dwelling, cognitively intact older 

adults using novel in-home sensor based sleep assessment technology in their homes. 

Results showed that minor sleep disturbance as measured by slightly higher movements in 

bed the week prior and month prior to cognitive testing was associated with lower working 

memory scores. Working memory is an executive skill that is thought to consist of storage 

and central executive components that emphasize functional manipulation of information 

(Baddeley, 1986; INS Dictionary of Neuropsychology, 1999). Given our finding that mild 

sleep disturbance negatively impacted test performance in the working memory domain and 

not the executive functioning domain, it is possible that working memory abilities have a 

lower threshold of disruption by mild sleep disturbance compared to higher level executive 

skills such as planning, decision making, and mental flexibility that are assessed by tests we 

grouped in that domain.

It was calculated that approximately 33 movements in bed during each time period would be 

needed to be associated with a 1 standard deviation unit decrease below age based normative 

data in the working memory domain. Given that the average number of movements in bed 

during each time period was relatively low in our sample (mean = 6), the associated 

decrease in working memory scores although statistically significant would not be expected 

to reach the threshold of clinical or diagnostic significance. We did not find any significant 

associations between total sleep duration and cognitive performance at any of the three 

measured time periods. These results are consistent with previous studies (Blackwell et al., 

2006; Wilckens, Woo, Erickson, & Wheeler, 2014), which demonstrated that sleep 

continuity was more important to cognitive functioning than total sleep time for older adults. 

In the present study, disturbed sleep lost its significant association with working memory 

when we examined only the one night’s sleep prior to testing, suggesting that only one night 

of mildly disturbed sleep has less of an impact on cognitive performance than chronic mildly 

disturbed sleep in healthy, cognitively intact older adults.

Correlations between the global cognition, executive function, memory, visual-spatial, and 

attention cognitive domains and the sleep variables did not remain significant in this study 
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after controlling for demographics, pain, low mood, and psychotropic medications. These 

results suggest that in community dwelling cognitively intact older adults who generally 

sleep well (about 8 hours per night), small reductions in sleep duration and sleep quality 

might be less directly related to cognitive performance than other lifestyle factors such as 

pain, low mood, overall health, and medications that can impact cognition. The most 

consistent findings in the literature regarding the impact of sleep on cognition in older adults 

have been shown in the areas of attention, working memory, and executive functioning 

(Blackwell et al., 2011a; Wilckens et al., 2014). However, methodological differences 

between these previous studies and the current study could explain why we did not find 

stronger associations between sleep and cognition in the current study. For example, in 

Blackwell’s study (Blackwell et al., 2011b), the sample consisted of men only, 43% who 

had moderate to severe sleep apnea, and 5% who had probable dementia. Additionally, pain 

was not included as a covariate in that study and only 3 cognitive tests were used as 

individual outcome measures. In another study by the same group (Blackwell et al., 2011a), 

the majority of the all-male sample slept for less than 7 hours. In contrast to these studies, 

the present study’s sample was all cognitively intact, mostly female, healthy, and generally 

slept well (average 8 hours).

The present study included a relatively homogenous sample of predominately Caucasian, 

highly educated community dwelling volunteers from single person homes with low levels 

of self-reported depression, which limits the generalizability of findings. Findings from the 

regression analyses were limited by study sample size and to the specific sleep measures 

chosen as predictor variables and to the cognitive domains chosen as outcome variables. 

Although our sample was cognitively intact and in overall good health, the number of 

individuals with diagnosed sleep disorders was unknown and is a limitation of the present 

study. Currently, it is difficult to determine how sensor-based sleep assessment compares to 

traditional objective measures of sleep dysfunction such as polysomnography. 

Polysomnography is traditionally performed in a laboratory where movements by nurses and 

other patients could easily convolute sensor data. For instance, a sleep nurse could walk into 

the room before the patient rose from bed. In addition, for our sensor based assessment 

method, trips out of bed require a bathroom and living room sensor. The electronic sensor 

based sleep algorithm does not work well for multi-person homes, since the additional 

sensor firings due to other residents make it difficult to identify the individual of interest. To 

address this limitation, we are experimenting with placement of additional sensors, such as 

restricted field motion sensors on either side of the bed, to improve our ability to detect sleep 

patterns in multi-person homes and validate against other methods, such as actigraphy and 

polysomnography. In the present study, using our novel home sensor based sleep assessment 

method we found a significant association between sleep and cognitive functioning 

consistent with results from studies using other established sleep assessments (Blackwell et 

al., 2011b), which provides preliminary evidence of convergent validity of this new 

methodology.

Future longitudinal studies of normal aging and MCI using sensor based sleep assessment 

should explore whether sleep disturbance contributes to intraindividual variability in 

cognitive test scores over time with serial observations of cognition or diagnostic “yo-

yoing” between MCI and Intact diagnoses. Sleep duration was not strongly associated with 
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cognitive functioning in our sample of cognitively intact older adults. However, given the 

large variability in total sleep time among participants in this exploratory study, future 

studies with larger sample sizes could examine the impact of sleep duration on cognitive 

functioning in subgroups of “long” and “short” duration sleepers. It is possible that disturbed 

sleep might have a stronger impact on cognitive functioning in older adults who sleep less 

than 8 hours, for example. In a clinical setting, minor variations in recent sleep in high 

functioning, healthy, non-demented older adults should be considered within the greater 

context of other lifestyle factors when interpreting cognitive test results. One week to one 

month of mild restlessness in bed in this healthy aging population could slightly impact 

working memory performance, but likely not to a level of clinical or diagnostic significance. 

Other lifestyle factors such as pain, mood, health conditions, and medications are likely to 

impact cognition over and above mildly disturbed sleep. Only one night of mildly disturbed 

sleep would not be expected to have a measurable impact on cognitive performance the 

following day.

In-home, unobtrusive sensor monitoring technologies provide a novel methodology for 

objective, long-term, and non-invasive assessment of sleep behavior and other everyday 

activities that might contribute to fluctuating or decreased cognitive performance. Future 

work will explore how high-frequency, longitudinal unobtrusive measurement of sleep and 

other daily activities might signal or predict subtle yet meaningful within-person changes in 

cognitive function or health status in community dwelling individuals.
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Appendix

Appendix 1

Neuropsychological Tests Administered

Working
memory

Attention/
Processing
speed

Memory Executive
Function

Visual-
Perception/
Construction

WMS-R Digits
Backward
length

WAIS-R Digit
Symbol

WMS-R Logical
Memory II Story
A

Letter fluency
(CFL)

WAIS-R Block
Design

WAIS-IV Digit
Sequencing

Trail Making
Test Part A

WMS-R Visual
Reproduction II

Trail Making
Test Part B

WAIS-R Picture
Completion

Digit Span
Forward length

CERAD Word-
List Recall

Stroop color-
word conflict

WMS-R Visual
Reproduction I

WMS-R = Wechsler Memory Scale-Revised, WAIS-IV= Wechsler Adult Intelligence Scale-IV, WAIS-R= Wechsler Adult 
Intelligence Scale-Revised, CERAD= Consortium to Establish a Registry of Alzheimer’s disease
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Table 1

Participant Characteristics and Sleep Measures

Variables Mean SD

Demographics

 Age (years) 87.2 6.2

 Gender (% Women) 83%

 Education (years) 14.9 2.6

 Non-white (%) 17%

 MMSE 28.2 1.5

 GDS 1.3 2.2

 FAQ 0.4 1.3

 CIRS 20.3 2.4

 Maximum pain intensity prior month 2.3 2.6

 Maximum pain interference prior month 1.0 1.1

 Low mood in the prior month (% yes) 10%

 Psychotropic medication use (% yes) 22%

Sleep Variables

  Night Prior n=52

  TST 484 163

  MIB 6.6 11.9

  UP 2.3 1.6

Week Prior n=62

  TST Mean 506 125

  TST SD 99 63

  MIB Mean 6.2 8.0

  MIB SD 5.2 5.8

  UP Mean 2.3 1.4

  UP SD 1.0 0.5

Month Prior n=63

  TST Mean 502 117

  TST SD 105 50

  MIB Mean 6.1 8.2

  MIB SD 5.5 5.0

  UP Mean 2.2 1.3

  UP SD 1.1 0.4

Cognitive test domain z-scores

  Global cognition −0.13 0.7

  Executive function −0.19 0.9

  Working memory −0.23 0.8

  Attention −0.15 1.0

  Memory −0.19 0.8

  Visual 0.23 1.0

Clin Neuropsychol. Author manuscript; available in PMC 2016 February 02.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Seelye et al. Page 13

MMSE= Mini-Mental Status Examination; GDS= Geriatric Depression Scale; FAQ = Functional Activities Questionnaire; CIRS= Cumulative 
Illness Rating Scale; TST = total sleep time (numeric minutes), TST SD= total sleep time variability; MIB = firings while in bed (sensor count), 
UP= times up at night (sensor count); Maximum pain intensity prior month =0-10 scale; Maximum pain interference prior month=0-4 scale.
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Table 3

Multivariate regression coefficients for relationships between movement in bed measures and cognitive 

measures that were significant in correlation analyses (Table 2)

Cognitive Variables

Sleep
Variables

Attention/Processing
Speed

Working Memory

Week Prior

 MIB Mean −0.008 −0.03*+

 MIB SD −0.01 -----

Month Prior

 MIB Mean ----- −0.03*+

 MIB SD −0.005 −0.04

Standardized Coefficients Beta reported in table. Models adjusted for age, sex, education, maximum pain intensity, low mood prevalence and 
psychotropic med use. MIB = bedroom sensor firings (movement) while in bed; MIB SD= variability in bedroom sensor firings (movement) while 
in bed.

*
p<0.05;

+
meets Bonferroni multiple comparison adjustment level of significance
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