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Abstract

Dynamic light conditions require continuous adjustments of stomatal aperture. The kinetics of stomatal conductance (gs)
is hypothesized to be key to plant productivity and water use efficiency (WUE). Using step-changes in light intensity, we
studied the diversity of light-induced gs kinetics in relation to stomatal anatomy in five banana genotypes (Musa spp.) and
modeled the impact of both diffusional and biochemical limitations on photosynthesis (A). The dominant A limiting factor
was the diffusional limitation associated with gs kinetics. All genotypes exhibited a strong limitation of A by gs, indicating a
priority for water saving. Moreover, significant genotypic differences in gs kinetics and gs limitations of A were observed.
For two contrasting genotypes, the impact of differential gs kinetics was further investigated under realistic diurnally fluctu-
ating light conditions and at the whole-plant level. Genotype-specific stomatal kinetics observed at the leaf level was cor-
roborated at whole-plant level by transpiration dynamics, validating that genotype-specific responses are still maintained
despite differences in gs control at different locations in the leaf and across leaves. However, under diurnally fluctuating
light conditions the impact of gs speediness on A and intrinsic (iWUE) depended on time of day. During the afternoon
there was a setback in kinetics: absolute gs and gs responses to light were damped, strongly limiting A and impacting diur-
nal iWUE. We conclude the impact of differential gs kinetics depended on target light intensity, magnitude of change, gs
prior to the change in light intensity, and particularly time of day.

Introduction

In order to survive, plants need to balance CO2 uptake for
photosynthesis (A) with water loss via transpiration. By
adjusting their aperture, stomata control gaseous exchange
between the leaf interior, and the external atmosphere.
Stomatal aperture is adjusted by moving solutes into or out

of the guard cells. These changes in osmotic potential elicit
water movement in or out of the guard cells, altering turgor
pressure and subsequently aperture. In general, stomatal
opening in well-watered C3 and C4 species is triggered by
high light intensity, low vapor pressure deficit (VPD), and
low CO2 concentrations. Opposite environmental conditions
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(low light, high VPD, and high CO2) stimulate stomatal clo-

sure (Assmann and Shimazaki, 1999; Outlaw, 2003; Lawson

and Morison, 2004). Therefore, in a dynamic field environ-

ment, stomata are continuously adjusting the aperture to

achieve an appropriate balance between carbon gain and

water loss (Pearcy, 1990; Lawson and Blatt, 2014). Most re-

search has studied stomatal conductance (gs) and A under

steady-state conditions. A high gs under steady-state condi-

tions is associated with high A and consequently improved

growth (Fischer et al., 1998; Franks, 2006). However, as gs ki-

netics are typically a magnitude slower than those of A, the

speed at which these steady-state values are reached in a

fluctuating environment have a great influence on the

growth and water use efficiency (WUE; Lawson and Blatt,

2014; Kaiser et al., 2016; McAusland et al., 2016; Taylor and

Long, 2017; De Souza et al., 2020; Yamori et al., 2020). In a

fluctuating field environment, light intensity is one of the

most variable environmental conditions as it changes con-

tinuously by moving cloud covers and shading from adja-

cent plants (Pearcy, 1990; Slattery et al., 2018; Morales and

Kaiser, 2020). In this way, stomata frequently experience al-

ternating light intensities, inducing stomatal responses that

change A, gs, and the ratio of these, the intrinsic WUE

(iWUE). The balance between CO2 gain and H2O loss under

changing light intensities is disturbed by delayed gs
responses (Vialet-Chabrand et al., 2017; Slattery et al., 2018).

Limitations of A after an increase in light intensity are the

combination of diffusional and biochemical limitations.

Biochemical activation has been shown to majorly limit A

during short light flecks (Soleh et al., 2017; Taylor and Long,

2017; Acevedo-Siaca et al., 2020). Under longer light periods,

limitations have been mainly attributed to stomatal limita-

tions, with biochemical activation only limiting for a short

time (510min) because of rapid activation of RuBP regen-

eration and Rubisco (Mott and Woodrow, 2000; Kaiser

et al., 2016; Deans et al., 2019a; De Souza et al., 2020). The

slower gs increase to increased light intensity limits the CO2

uptake for A, while the slower gs decrease to decreased light

intensity results in unnecessary water loss. The limitation of

A by the slower kinetics of gs has been shown to be signifi-

cant in well-watered C3 species (Farquhar and Sharkey,

1982; Jones, 1998; Lawson and Blatt, 2014; McAusland et al.,

2016; Deans et al., 2019a). Rapid gs kinetics, therefore, have

been hypothesized to maximize A and iWUE, as steady-state

values under the new conditions can be rapidly achieved

(Lawson and Blatt, 2014; Papanatsiou et al., 2019; De Souza

et al., 2020; Kimura et al., 2020). The gs kinetics are, together

with the final steady-state gs the plant reaches, crucial to de-

termine the plant performance (Franks and Farquhar, 2007;

Vico et al., 2011; McAusland et al., 2016; Qu et al., 2016;

Faralli et al., 2019b; Yamori et al., 2020). The importance of

diversity in gs kinetics was highlighted by De Souza et al.

(2020), who showed a three-fold higher variability in carbon

assimilation between cassava genotypes under fluctuating

light than under steady-state conditions, mainly caused by

differences in stomatal limitation. However, to our

knowledge, the diversity of gs kinetics across varieties has

neither been investigated at whole-plant level nor under di-

urnally fluctuating light conditions.
Here our research aimed to explore biodiversity in light-

induced stomatal dynamics across genotypes and evaluate for

the first time the impact on whole-plant level. We studied the

diversity of light-induced gs kinetics in relation to stomatal

anatomy in five banana genotypes (Musa spp.) with distinct

transpiration phenotypes (van Wesemael et al., 2019). We

modeled the impact of diffusional and biochemical kinetics on

A under single step-changes in light intensity and modeled the

impact of differential gs kinetics on A and iWUE under realistic

diurnal fluctuating light conditions. By comparing the gs kinet-

ics in response to step-changes with the gs responses under

fluctuating light conditions, we gain insight into the impor-

tance of stomatal kinetics on diurnal carbon gain and WUE.

Results

A and gs response to step changes
Increasing light intensity from 100 to 1,000mmol m–2 s–1 in-

duced a strong stomatal opening response (Figure 1). The gs
response followed a sigmoidal pattern. A similar sigmoidal

limiting pattern was observed for A in all genotypes, indicat-

ing a strong limitation of A by gs in banana (Figure 1).

Between genotypes, there were significant differences in the

speed of gs increase. Steady-state A and gs under high light

intensity were reached in three out of five genotypes. In

contrast, the genotypes Cachaco and Leite continued to in-

crease gs and A slowly after 90min of 1,000mmol m–2 s–1.

The subsequent decrease in light intensity from 1,000 to

100mmol m–2 s–1 resulted in a rapid gs decrease, which also

followed a sigmoidal pattern (Figure 1). Photosynthesis, on

the other hand, as expected decreased instantly because

light became the limiting factor (Figure 1).

Modeling steady-state and light-induced responses
of gs
The steady-state gs at 100mmol m–2 s–1 (gs,100) and

1,000mmol m–2 s–1 (gs,1,000) did not differ significantly between

genotypes (Figure 2A; Supplemental Table S1). gs,100 ranged

from 0.023 to 0.040mol m–2s–1, while gs,1,000 ranged between

0.14 and 0.16mol m–2s–1 (Figure 2A; Supplemental Table S1).
The speed of gs increase varied strongly between the ba-

nana genotypes and the modeled variables differed signifi-

cantly (Figure 2, B and C; Supplemental Table S1). The

genotype with the slowest gs increase, Cachaco, had an aver-

age time constant Ki of 17min, while the fastest genotype,

Mbwazirume, had a Ki of 6.4min (Figure 2B; Supplemental

Table S1). The speed of the decrease in gs (Kd) was also

genotype-dependent (Figure 2C; Supplemental Table S1). Kd
was about two-fold higher in Cachaco (9.5min) than in

Mbwazirume (4.4min). Across all genotypes, Ki was signifi-

cantly correlated with Kd (R2 = 0.41, P5 0.001; Figure 2D;

Supplemental Figure S1). However, the decrease in gs was

significantly faster than the increase (P50.001). Ki was sig-

nificantly correlated with the time to reach 95%, 90%, and
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50% of steady-state gs under the high light intensity

(R2 = 0.27–0.57, P5 0.001; Supplemental Figure S1). Also

the maximal slope of gs increase and decrease (Slmax,i and

Slmax,d) were significantly correlated with the time constant

K as the magnitude of gs change was similar across geno-

types (R2 = 0.52 and 0.49 for gs increase and decrease, re-

spectively, P5 0.001; Supplemental Figure S1). During light-

induced stomatal opening comparable differences across

genotypes were present in Slmax,i as in Ki. The lowest Slmax,i

values were observed for the genotype Cachaco and the

highest values for Mbwazirume (Supplemental Figure S2 and

Supplemental Table S1). Slmax,d was highest for the genotype

Kluai Tiparot, while Leite showed the lowest Slmax,d

(Supplemental Figure S2 and Supplemental Table S1).

Analogous to the opening and closing time constant, the

absolute slope of closing was significantly higher than the

opening slope (P5 0.001).

Impact of stomatal opening speed on A
The speed of the increase in gs following a step-change in

light intensity from 100 to 1,000 mmol m–2 s–1 strongly de-

termined CO2 uptake during this period. The speed of

changes in gs in all genotypes accounted for 489% of A

limitation (Supplemental Figure S3A). The time to reach

95% of steady-state A at 1,000 mmol m–2 s–1 (A1,000) was

430min for almost all genotypes and differed significantly

between Cachaco (51.9min) and the genotypes

Mbwazirume (30.3min) and Banksii (29.5min; Figure 3A;

Supplemental Figure S4 and Supplemental Table S2). This

timing of A limitation was significantly correlated with the

time to reach 95%, 90%, and 50% of steady-state gs
(P5 0.001, R2 = 0.42–0.48), while there was no significant

relation with the time to reach 95% or 90% of the maxi-

mum carboxylation rate of Rubisco (Vcmax, Supplemental

Figures S1 and S3). The timing to reach 95% of steady-

state Vcmax was 520min in all genotypes, while the tim-

ing to reach 95% of steady-state gs was much longer and

ranged between 41 and 69min (Supplemental Figure S3

and Table S2). The durations of A limitation were also sig-

nificantly correlated with the modeled time constant for

gs increase (Ki; P5 0.001, R2 = 0.67; Supplemental Figure

S1). The percentage limitation of A was significantly higher

in Cachaco (20.6%) compared to the genotypes

Mbwazirume (10.2%), Leite (10.2%), and Banksii (8.5%;

Figure 3B) and was significantly related to both Ki and the

time to reach 90% and 50% of steady-state gs, confirming

the impact of stomatal limitation on A (Supplemental

Figure S1).

iWUE response to step-changes in light intensity
The step increase in light intensity induced an initial in-

crease in A that was relatively larger than the increase in gs.

Figure 1 Response of gs (orange) and A (black) of five banana genotypes to a step increase in light intensity from 100 to 1,000 mmol m–2s–1 fol-

lowed by a decrease from 1,000 to 100 mmol m–2s–1. Grey and white areas indicate time periods of 100 mmol m–2 s–1 and 1,000mmol m–2s–1, re-

spectively. Dashed lines indicate when 95% of steady-state A was reached. Points and error bars represent mean ± SE (n = 7–8).

1000 | PLANT PHYSIOLOGY 2021: 186; 998–1012 Eyland et al.
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These responsiveness differences increased iWUE, reaching

the maximum iWUE during the light period in all cases

within 7.5min (Supplemental Figure S5). After reaching a

maximal value, iWUE decreased as both gs and A gradually

increased (Supplemental Figure S5). iWUE only stabilized

when both A and gs reached steady-state. The genotype

Cachaco had a significantly higher mean iWUE during the

high light period compared to Mbwazirume (Supplemental

Figure S6). The mean iWUE during the high light period was

significantly correlated with the time constant Ki and Slmax,i

with slower gs responses resulting in higher iWUE (R2 = 0.12

and 0.42, P5 0.05; Supplemental Figure S1). The reduction

in light intensity from 1,000 to 100mmol m–2 s–1 instanta-

neously lowered iWUE as A immediately declined because of

light limitation (Supplemental Figure S5). The mean iWUE

during this low light period was significantly higher in Kluai

Tiparot, than in Leite (Supplemental Figure S6). The mean

iWUE was significantly correlated to the stomatal closing

variables Kd and Slmax,d with faster gs responses resulting in

higher iWUE (R2 = 0.36 and 0.26, P5 0.001; Supplemental

Figure S1).

Stomatal anatomy
Banana has elliptical-shaped guard cells surrounded by four

to six subsidiary cells (Rudall et al., 2017). Abaxial stomatal

density, stomatal length, guard cell size, and subsidiary cell

size were quantified from the leaf part enclosed in the gas

exchange cuvette and significant differences between geno-

types were observed (Supplemental Figure S7). Stomatal

density and stomatal length were not correlated with any of

the modeled light-induced gs kinetics (Figure 4;

Supplemental Figure S1). However, these correlations be-

tween anatomy and gs kinetics were significant if the geno-

type Cachaco with the lowest gs rapidity was not considered

Figure 2 Modeled steady-state and light-induced variables of the gs response to a step increase and decrease in light intensity between 100 and

1,000 mmol m–2 s–1 for five different banana genotypes (n = 7–8). A, Steady-state gs at 100 (gs,100 faded colors) and 1,000mmol m–2 s–1 (gs,1,000
bold colors). B, Time constant of gs increase (Ki) for different genotypes. Different letters indicate significant differences between genotypes (post

hoc Tukey HSD test, P5 0.05; A4 B4C). C, Time constant of gs conductance decrease (Kd) for different genotypes. Different letters indicate sig-

nificant differences between genotypes (post hoc Tukey HSD test, P5 0.05; A4 B4C). D, Significant correlation between Ki and Kd (Pearson’s

correlation, R2 = 0.41, P5 0.001). Ki was significantly higher than Kd. The solid line shows the linear regression, the dashed line shows the 1:1 line.

Points and error bars represent mean ± SE (n = 7–8). The bold middle line in boxplots represents the median. The box is confined by the first and

third quartile and the whiskers extend to 1.5 times the interquartile distance. Points falling outside the whiskers are considered outliers and plot-

ted as dots.
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(Figure 4). In this case, stomatal density was significantly cor-

related with the time constant K as well as the maximum

slope of gs response Slmax during both stomatal opening and

closing (P5 0.01; R2 = 0.25–0.46).

Whole-plant transpiration response at dawn
The significant differences in gs speed at leaf level observed be-

tween the two extreme genotypes Cachaco and Mbwazirume

were confirmed at the whole-plant level under a step increase

in light intensity from darkness (Figure 5) and under a gradu-

ally increasing light intensity (Supplemental Figure S8). After

the onset of light in the morning, the transpiration rate in-

creased significantly faster in Mbwazirume compared to

Cachaco (Figure 5, A and B; Supplemental Figure S8A). After a

step increase in light intensity, a significant increase in transpi-

ration rate was observed after c. 15 min in Mbwazirume, while

in Cachaco this was only after 25min (Figure 5, A and B).

Similar faster increases in transpiration rate of Mbwazirume

were observed under a gradually increasing light intensity

(Supplemental Figure S8A). The temporal response of whole-

plant transpiration rate to a step increase in light intensity was

also modeled following the sigmoidal model (Eq. 1) and the

time constants Ki differed significantly between genotypes

(Supplemental Figure S9). Similar to the response at leaf level,

Cachaco, had an average time constant Ki of 20min, while

Mbwazirume, had a Ki of 8.5min (Supplemental Figure S9).

The difference in transpiration responses was also reflected in

the transpiration rate before and after dawn. The whole-plant

transpiration rate did not differ significantly between both gen-

otypes pre-dawn, but after the step change in light intensity,

the transpiration rate was significantly higher in Mbwazirume

for 90min, whereafter both genotypes reached similar steady-

state transpiration rates (Figure 5B). Likewise, the transpiration

rate under gradually increasing light intensity did not differ

pre-dawn, but was significantly higher in Mbwazirume after

the onset of light (Supplemental Figure S8B).

Impact of diurnal light fluctuations on gs, A, and

iWUE
To evaluate the impact of gs kinetics on diurnal A and

iWUE, plants were subjected to fluctuating light intensities

Figure 3 Limitation of A after the increase in light intensity from 100 to 1,000mmol m–2 s–1. A, Time to reach 95% of the steady-state A for five

different banana genotypes. B, Percentage limitation of A after the increase in light intensity. Different letters indicate significant differences be-

tween genotypes (post hoc Tukey HSD test, P5 0.05; n = 7–8; A4 B). The bold middle line in boxplots represents the median. The box is con-

fined by the first and third quartile and the whiskers extend to 1.5 times the interquartile distance. Points falling outside the whiskers are

considered outliers and plotted as dots.

Figure 4 Relation between abaxial stomatal density and the time con-

stant describing the speed of gs increase after the light intensity in-

crease from 100 to 1,000mmol m–2 s–1. There was no significant

correlation (Pearson’s correlation test), caused by the outlying geno-

type Cachaco. Points and error bars represent mean ± SE (n = 7–8).
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and phenotyped over an entire diurnal period. Similar to

the transpiration rate measured at the whole-plant level, the

morning increase in gs at leaf-level under gradually increasing

light intensity was faster in Mbwazirume compared to

Cachaco (Figure 6A). The time constant for the gs increase

(Ki) was significantly higher in Cachaco (P5 0.005;

Figure 6B). However, the faster increase of gs in

Mbwazirume, did not result in increased A (Figure 6C).

Maximum potential A values at specific light intensities

were determined from light response curves and compared

to those measured under the diurnal conditions. Under the

gradual increasing light intensities experienced in the morn-

ing, maximum A values were achieved, indicating there was

no gs limitation under these light-limiting conditions

(Figure 7). A similar A with lower gs during the morning, led

to a significantly higher mean iWUE in Cachaco (P5 0.05,

Figure 6D).
Throughout the day, gs kinetics were in most cases signifi-

cantly faster for the genotype Mbwazirume compared to

Cachaco (Figure 8A), again confirming the previously ob-

served kinetics (Figures 2 and 5). However, under fluctuating

light conditions gs kinetics were dependent on the magni-

tude of light intensity change, gs values prior to the light in-

tensity change, and the time of the day (Figure 8A). During

the afternoon, there was a setback in kinetics: the absolute gs
and the gs responses to light were damped (Figures 7 and 8).

Simultaneously, A decreased greatly in the afternoon, which

could be mainly attributed to a reduction in gs. The limita-

tion of A in the afternoon was 3 times higher in Cachaco

(52.6%) compared to Mbwazirume (17.5%; Figures 7 and

9D). The reduction of gs in the afternoon resulted in a signifi-

cantly lower average diurnal gs (Figure 9A) which translated

into a greater diurnal iWUE in Cachaco compared to

Mbwazirume (Figures 8C and 9C).

Discussion

Stomatal behavior greatly limits A in banana
Step changes in light intensity have been shown to induce

an uncoupling of A and gs in many species (Barradas and

Jones, 1996; Lawson and Blatt, 2014; McAusland et al., 2016;

Faralli et al., 2019a). However, all banana genotypes maintain

a tight coupling between A and gs following a step increase

in light intensity (Figure 1). This indicates a strong stomatal

control of A, which is demonstrated by diffusional limita-

tions accounting for 489% of A limitation (Supplemental

Figure S3A). This high stomatal limitation of A is explained

by the slow gs response (Figures 1 and 2) relative to the

faster biochemical activation. The time required for bio-

chemical activation was much lower and not correlated

with the time for steady-state A and gs (Supplemental

Figure S3). Similar to Deans et al. (2019a) and De Souza

et al. (2020), the speed of changes in gs was the predomi-

nant limitation of A. This behavior shows that banana

strongly controls stomatal aperture, resulting in water con-

servation at the expense of potential carbon gain, which

supports the early work of Aubert and Catsky (1970). This

prioritizing of water conservation in banana can be

Figure 5 Gravimetric transpiration rate analysis of genotypes Cachaco and Mbwazirume at dawn after a step increase in light intensity from 0 to

120 mmol m–2 s–1. A, A breakpoint was identified in whole-plant transpiration after the step increase in light intensity. The timing of the break-

point in transpiration after dawn differed significantly between the genotype Cachaco and Mbwazirume (n = 24, P5 0.01, linear mixed-effects

model with plant-specific and date-specific random effect). B, Transpiration rate after dawn increased faster in Mbwazirume compared to

Cachaco. Before dawn transpiration rates did not differ significantly. Similarly transpiration rates do not differ significantly after 90min (24 data-

points per time range for both Cachaco and Mbwazirume, * for P5 0.05, ** for P5 0.01, linear mixed-effects model with plant-specific and date-

specific random effect). Gray areas indicate the time before dawn. The bold middle line in boxplots represents the median The box is confined by

the first and third quartile and the whiskers extend to 1.5 times the interquartile distance.
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explained by its intrinsic need to maintain a high leaf water

potential (Turner and Thomas, 1998).

Diversity in light-induced stomatal responses
Stomatal responses to changes in light intensity have been

shown to vary at an inter- and intra-specific level (Vico

et al., 2011; Drake et al., 2012; McAusland et al., 2016; Qu

et al., 2016; De Souza et al., 2020; Durand et al., 2020). A

higher steady-state gs has been linked with faster light-

induced gs responses (Drake et al., 2012; Kaiser et al., 2016;

McAusland et al., 2016; Wachendorf and Küppers, 2017;

Sakoda et al., 2020). Although the differences observed in

steady-state gs values between banana genotypes were not

significant, their gs kinetics differed strongly (Figure 2). These

results suggest that other factors such as stomatal anatomy,

hydraulic conductance and membrane transporters are in-

volved in determining the rapidity of changes in gs.
The banana B genome is often related to drought toler-

ance because of its center of origin and its natural occur-

rence in drier habitats under full sunlight (Perrier et al.,

2011; Janssens et al., 2016; Eyland et al., 2021). Within the in-

vestigated banana genotypes, we observed significant differ-

ences in the speed of increase and decrease in gs (Figure 2, B

and C). However, differences across genotypes were not

explained by their genomic constitution (see “Materials and

Methods” section), which is in agreement with the wide di-

versity of transpiration phenotypes observed irrespective of

genomic constitution (van Wesemael et al., 2019).
Consistent with previous works in other species (Vico

et al., 2011; McAusland et al., 2016; Faralli et al., 2019a), the

speed of gs increase and decrease was significantly correlated

(Figure 2D). Decreases in gs were faster than opening in all

banana genotypes (Figure 2D), which is not the case for all

crops (McAusland et al., 2016; Qu et al., 2016). The faster gs
closure again indicates that banana prioritizes water conser-

vation over maximization of carbon uptake.
The two most extreme genotypes Cachaco and

Mbwazirume, with the slowest and fastest gs responses, re-

spectively, also showed at the whole-plant level differences

in the light-induced speed of transpiration rate increase

(Figure 5; Supplemental Figures S8 and S9). This finding sug-

gests that despite possible differences in gs control of water

loss at different locations of the leaf (Matthews et al., 2017)

and across leaves of different ages (Urban et al., 2008)

genotype-specific responses are still maintained. Leaf-level

measurements of light-induced gs kinetics are thus in line

with whole-plant responses. To our knowledge, this is the

first report confirming stomatal kinetics at the whole-plant

Figure 6 Morning response of gs and A of the genotypes Cachaco and Mbwazirume. A, Time course of the gs response to a gradual increase in

light intensity at dawn (black line). Data are the mean ± SE (n = 4). B, The time constant of gs increase (Ki) during the first 90min after dawn was

significantly higher in Cachaco. C, The difference in gs rapidity at dawn did not result in different A between both genotypes. Data represent the

mean ± SE (n = 4). D, The mean iWUE during the first 90min after dawn was significantly higher in Cachaco compared to Mbwazirume. The gray

area indicates the time before dawn. (Student’s t test, *P5 0.05, ** P5 0.01).
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level. The genotype-specific difference in whole-plant tran-

spiration responses at dawn was validated at the leaf level

with gs increasing faster in Mbwazirume under gradually in-

creasing light intensity (Figure 6A). This faster gs increase in

Mbwazirume did not result in higher A, indicating that at

dawn, under gradually increasing low light intensities, gs was

not limiting A and was higher than necessary for maximal A

(Figures 6 and 7). These results demonstrate that the impact

of gs kinetics on A and iWUE depends on the time of the

day and the light conditions. The uncoupling of gs and A

under increasing light conditions at dawn was not beneficial

for carbon uptake. Gosa et al. (2019) called this period after

dawn in tomato the golden hour because in dry climates it

is the time of the day with the highest gs. Later in the day,

VPDs become too high, restricting gs (Gosa et al., 2019).

Breeding for an even higher gs during this golden hour was

suggested to improve plant productivity. However, care

must be taken to breed for an improved morning CO2 up-

take, rather than for a high gs with associated uncoupling of

A and gs. Although the absolute water loss resulting from

excessive morning gs might be relatively low because of low

evaporative demands at dawn (Chaves et al., 2016), it may

lead to a crucial decrease in overall plant water status.
Despite the confirmed genotypic differences in stomatal

kinetics, the impact of gs kinetics on A and iWUE before

noon hardly differed between the genotypes Cachaco and

Mbwazirume under field-mimicking light conditions

(Figures 7 and 8). This could be explained by lower ampli-

tudes of light switches compared to a single step change

in light intensity and/or gs values not being at steady-state

prior to changing light intensity. The genotype-specific

speed of the gs response observed under a single step

change in light intensity did not explain the diurnal iWUE,

indicating that gs kinetics only partially affect diurnal WUE

and carbon gain (Figure 9, B and C). The absolute gs and

the gs responses to light decreased strongly in the after-

noon, and this effect was more pronounced in the geno-

type Cachaco (Figures 7 and 8A). The 3 times higher

Figure 7 Mean diurnal time course of measured A (Ameasured and maximal A (Amax, black line) under fluctuating light conditions for Mbwazirume

and Cachaco. The Amax at each light intensity was determined by a modeled light response curve. The nonrectangular hyperbola-based model of

Prioul and Chartier (1997) was optimized as described by Lobo et al. (2013). Grey areas indicate times of darkness, red areas indicate the difference

between maximal A and measured A. Data are the mean ± SE (n = 4).
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afternoon limitation of A in the genotype Cachaco com-

pared to Mbwazirume, resulted in a significantly higher di-

urnal iWUE (Figure 9, C and D). The genotype Cachaco

with the slowest gs kinetics thus achieved the highest

iWUE, showing that not only gs speed but also the gs diur-

nal pattern determines the overall WUE and carbon gain.

Although the mechanism behind the afternoon gs reduc-

tion remains largely unknown, it is commonly hypothe-

sized to be related to circadian regulation of ABA

sensitivity and associated endogenous signals regulating

the clock, such as feedback loops from photosynthate ac-

cumulation (Mencuccini et al., 2000; Haydon et al., 2013;

Delorge et al., 2014; Resco de Dios and Gessler, 2018). We

show that under fluctuating light conditions this intrinsic

diurnal pattern of absolute gs decrease and gs light respon-

sivity reduction is decisive for diurnal iWUE (Figure 9C).

Impact of stomatal anatomy on responses
Stomatal density, as well as the size, have been reported to

affect gs kinetics (Hetherington and Woodward, 2003; Drake

Figure 8 Diurnal time course of gas exchange parameters of the genotypes Mbwazirume and Cachaco under fluctuating light conditions. A, gs, (B)

A, and (C) iWUE. The light intensity fluctuated throughout the day (black line). The significance of the time constant of gs increase or decrease

(K) and the maximal slope of gs increase or decrease (Slmax) is shown (Student’s t test, *P5 0.05 and **P5 0.01 for faster gs rapidity in

Mbwazirume compared to Cachaco). Throughout the day, gs kinetics were faster for the genotype Mbwazirume compared to Cachaco, but differ-

ences were dependent on the target light intensity, the magnitude of change, the gs prior to the intensity change, and the time of the day. Gray

areas indicate times of darkness. Green areas indicate the analyzed time frame of the gs rapidity response. Blue areas indicate time points with sig-

nificant differences in A or iWUE between both genotypes (Student’s t test, P5 0.05). Data are the mean ± SE (n = 4).
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et al., 2012; Raven, 2014; Sakoda et al., 2020). However,

McAusland et al. (2016) and Faralli et al. (2019a) reported

no or only a weak inter- and intra-specific correlation

between stomatal anatomy and light-induced gs kinetics.

We confirmed that stomatal density and size were not

correlated with the gs kinetics (Figure 4; Supplemental

Figure S1). Remarkably, the genotype with the slowest in-

crease in gs, Cachaco had the second highest density and

the smallest stomata. Without this genotype a significant

correlation between density and the speed of gs increase

and decrease was observed (Figure 4). This exception sug-

gests that the surface-to-volumes ratios are not always di-

rectly related to stomatal speed as this assumes uniform ion

transport activity per surface area (Lawson and Blatt, 2014).

Conclusion

Our findings show that there is diversity in gs rapidity to

light within closely related banana genotypes and that

slow stomatal responses and not biochemical activation

greatly limit A. The priority of banana for water saving is

shown by strong stomatal control of A and faster de-

crease in gs than increase. The observed diversity in gs ra-

pidity was not related to stomatal anatomy and

therefore suggests that variation is rather driven by func-

tional components. We show here for the first time that

the gs rapidity observed at the leaf level can also be

found at the whole-plant level. However, under fluctuat-

ing light conditions, gs rapidity is only one of the many

physiological factors determining overall plant WUE and

carbon gain.

Materials and methods

Experiment 1: Leaf gas exchange response to a step-
change in light intensity
Plant material and growth conditions

Banana plants (Musa spp.) were obtained through the

International Musa Transit Center (ITC, Bioversity

International), hosted at KU Leuven, Belgium. Plants of five

genotypes from different subgroups were selected: Banksii

(subgroup Banksii, AA genome, ITC0623), Cachaco (Bluggoe,

ABB genome, ITC0643), Kluai Tiparot (Kluai Tiparot, ABB

genome, ITC0652), Leite (Rio, AAA genome, ITC0277), and

Mbwazirume (Mutika-Lujugira, AAA genome, ITC1356).

Plants were grown in 800mL containers filled with peat-

based compost (Levingtons F2S, UK) under 350mmol m–2

s–1 photosynthetic photon flux density (PPFD) in a 12-h: 12-

h light: dark cycle with temperature and relative humidity at

26± 1�C and 70± 10%, respectively. Plants were well-

watered and starting from Week 3 a Hoagland nutrient solu-

tion was added. Measurements were performed when plants

were fully acclimated and 7weeks old.

Leaf gas exchange measurements

A and gs to water were measured every 30 s on the middle

of the second youngest fully developed leaf using an LI-

6400XT infrared gas analysis and dew-point generator model

Figure 9 Average diurnal gas exchange parameters of the genotypes Mbwazirume and Cachaco under fluctuating light conditions illustrated in

Figure 8. A, gs, (B) A, and (C) iWUE. D, The percentage limitation of A during the afternoon (46 h after light onset). (Student’s t test, * P5 0.05,

n = 4).
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LI-610 (LI-COR, Lincoln, NE, USA). Light was applied by an

integrated LED light source. The leaf cuvette maintained a

CO2 concentration of 400mmol mol–1, a leaf temperature of

25�C, and a VPD of 1 kPa. All measurements were per-

formed before 14:00 h to avoid circadian influences.

Stomatal response to a step change in light intensity

The light intensity was kept at 100mmol m–2 s–1 until A

and gs were stable for 10min. Once steady-state was

reached, light intensity was increased to 1,000mmol m–2 s–1

for 90min. Then, light intensity was lowered back to

100mmol m–2 s–1 for 30min.
The increase in gs after the increase in light intensity and

the decrease in gs after the decrease in light intensity fol-

lowed a sigmoidal pattern and was modeled using the non-

linear sigmoidal model described in Vialet-Chabrand et al.

(2017):

gs ¼ ðgs;1000�gs;100Þ e�e
ðk�t
K

þ1Þþ gs;1000 (Eq. 1)

With gs the gs at time t, K the time constant for rapidity

of gs response (min), k the lag time of the sigmoidal curve

(min), gs,100 and gs,1,000 (mol m–2 s–1) the steady-state gs at

100 and 1,000mmol m–2 s–1, respectively. Parameter values

were estimated for each individual plant using nonlinear

model optimization in R version 3.4.3. Ki indicates the gs in-

crease time constant, Kd the gs decrease time constant. The

maximum slope of gs during opening and closing was calcu-

lated and defined as Slmax. iWUE was calculated as

iWUE = A/gs. Outlying values (0.5% quantile; iWUE5 0 or

4400mmol mol–1) caused by low gs were discarded for

plotting.

Stomatal and biochemical limitation analysis

A was considered to be limited until 95% of steady-state A

at 1,000mmol m–2 s–1 was reached (McAusland et al., 2016).

The percentage of limitation of A was calculated by compar-

ing the measured A with the maximal steady-state A under

1,000mmol m–2 s–1 according to McAusland et al. (2016):

Limitation of A ð%Þ ¼
Ð t

0

P

ðAmax�AmeasuredÞ
Ð 90

0

P

Ameasured

(Eq. 2)

With Amax the value reached at 95% of steady-state A under

1,000mmol m–2 s–1, Ameasured the measured A and t the

time where 95% of steady-state A is reached.
The delay in obtaining maximum potential A under

1,000mmol m–2 s–1 is determined by the stomatal opening

speed as well as the rate of biochemical activation. The acti-

vation rate of Rubisco is the main biochemical limiting com-

ponent during step changes in light exceeding several

minutes (Mott and Woodrow, 2000; Way and Pearcy, 2012).

To quantify the relative contributions of biochemical and

stomatal limitations a differential method was applied

(Jones, 1985; Wilson et al., 2000; Grassi and Magnani, 2005;

Deans et al., 2019b). As explained by Deans et al. (2019b),

the forgone A because of biochemical and stomatal limita-

tion was calculated as:

dAbiochem¼
oA

oVcmax

dVcmax (Eq. 3)

and

dAstom¼
oA

ogsc
dgsc (Eq. 4)

where Vcmax is the maximum velocity of Rubisco for carbox-

ylation and gsc the gs to CO2. Vcmax at every time point was

calculated by solving the Rubisco-limited A as described by

Farquhar et al. (1980) for Vcmax:

Vcmax¼
ðAþRdÞðCiþKmÞ

ðCi�C
�Þ (Eq. 5)

where Ci is the CO2 concentration in the intercellular airspa-

ces of the leaf. Rd represents the mitochondrial respiration

for which average dark respiration rates were used. C* is the

photorespiratory compensation point and Km is the effective

the Rubisco Michaelis–Menten constant for CO2 under 21%

O2. Values for C* and Km were taken as the average for C3

species at 25�C as described by Hermida-Carrera et al.

(2016), 41.2 and 529.4mmol mol–1, respectively. Mesophyll

conductance to CO2 was assumed to be infinite. gsc at every

time point was calculated as:

gsc¼
gs

1:6
(Eq. 6)

The relative stomatal limitation (rstom) was then calcu-

lated as:

rstom¼
Ð t

0
dAstomdt

Ð t

0
dAbiochemdt

Ð t

0
dAstomdt

(Eq. 7)

where t represents the time where 95% of steady-state A un-

der 1,000mmol m–2 s–1 was reached. Timings representing

the gs and A increase were calculated at 95%, 90%, and 50%

of steady-state values under 1,000mmol m–2 s–1. Timings for

Vcmax were calculated at 95% and 90% of steady-state

values.

Stomatal anatomy measurements

Stomatal impressions of the abaxial surface of the leaf were

made when stomata were completely closed using impres-

sion material. Impression was made by applying dental poly-

mer according to the protocol of Weyers and Johansen

(1985), followed by covering the polymer with nail varnish

and placement on a microscope slide. Impressions were only

taken from the abaxial side, because stomatal densities are

generally 75% higher compared to the adaxial side in ba-

nana, therefore majorly determining gas exchange as shown
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by Brun (1961). Stomatal anatomy was quantified using an

EVOS digital inverted microscope. Stomatal density was de-

termined in three microscopic fields of views of 1.12mm2

captured with a 10� objective lens (54–117 stomata per

field of view). Guard cell length (mm), guard cell size (mm2),

and lateral subsidiary cell size (mm2) were determined in

three microscopic field of views of 0.07mm2 captured with

a 40� magnification, respectively (four to seven stomata

per field of view). Measurements were performed in ImageJ

software (http://rsb.info.nih.gov/ij).

Experiment 2: Whole-plant transpiration response
at dawn
Plant material and growth conditions greenhouse

experiment

For the genotypes Cachaco and Mbwazirume, 12 plants

were grown for 7weeks in a greenhouse prior to the experi-

ment. Plants were grown in 10 L containers filled with peat-

based compost. At the start of the experiments, the six

most homogenous plants per genotype were selected based

on leaf area. Weight of each plant was followed by a multi-

lysimeter setup of high precision balances, registering the

weight every 60 s (1 g accuracy, Phenospex, Heerlen,

Netherlands). The soil was covered by plastic to avoid evap-

oration and ensure only waterloss through transpiration.

The transpiration rate was calculated by differentiating the

raw weight data over time. The soil water content was de-

termined by subtracting the plastic pot weight, the dry soil

weight, and the plant weight from the total weight measure-

ment. Dry soil weight was calculated as a function of the

soil volume (bulk density = 0.2267 g cm–3). Leaf area was cal-

culated by weekly top view imaging and model over time by

a power-law function (Paine et al., 2012):

leaf area ¼k þ a�daysb (Eq. 8)

The daily plant weight was estimated from the projected

leaf area using genotype-specific correlations (n4 50;

R25 0.94). Plants were watered with a nutrient solution

during the night and kept at well-watered conditions.

Radiation was collected every 5min via a sensor (Skye

instruments, Llandrindod Wells, UK) inside the greenhouse.

Supplemental lighting of 14W m–2 at plant level was pro-

vided when solar radiation was 5250W m–2 during the

daytime. Temperature and relative humidity data were col-

lected using six data loggers (Trotec, Heinsberg, Germany )

registering data every 5min. The onset of light was defined

as the moment when intensity increased 42W m–2.

Plant material and growth conditions controlled

environment experiment

For the genotypes Cachaco and Mbwazirume, three plants

were grown in a growth chamber with relative humidity of

70% and temperature of 24�C. Plants were grown hydropon-

ically in containers with 350mL medium (see van Wesemael

et al. (2019) for specific nutrient composition) and placed

under adjustable LED panels (LuminiGrow 600R1; Lumini

technology Co. Ltd., Zhejiang, China) providing 120mmol

m–2 s–1 in a 12/12-h light/dark cycle. Plants were 5weeks

old at the start of the experiment and weighted prior to

the experiment to normalize for plant mass. Biomass was

again measured after 8 d, at the end of the experiment.

Water loss of each plant was followed by a multi-

lysimeter setup of high precision balances (0.01 g accuracy;

Kern, Balingen, Germany). Balances were connected to a

computer registering the weight every 10 s.

Experiment 3: Impact of diurnal light fluctuations
on gs, A, and iWUE
Plant material and growth conditions

Four plants of the genotypes Cachaco and Mbwazirume

were grown in a greenhouse. Plants were grown in 4 L con-

tainers filled with peat-based compost and maintained un-

der well-watered conditions. After 8weeks plants were

moved to a growth chamber with relative humidity

70± 15% and temperature 28± 2�C.

Leaf gas exchange measurements

A and gs were measured every minute on the middle of the

second youngest fully developed leaf using an LI-6800 infra-

red gas analyzer (LI-COR, Lincoln, NE, USA). The leaf cuvette

maintained a CO2 concentration of 400mmol mol–1, a leaf

temperature of 28�C and a VPD of 1 kPa. The light intensity

was programmed to fluctuate throughout the day. Plants

were placed under adjustable LED panels (LuminiGrow

600R1; Lumini technology Co. Ltd.,Zhejiang, China) that

mimicked light fluctuations inside the LI-6800 leaf cuvette.

The gs response was described using the nonlinear sigmoidal

model of Vialet-Chabrand et al. (2013) where light or dark

steps were sufficiently long for model optimization (Eq. 1).

A light response curve with A in function of PPFD was mod-

eled for each individual based on A values recorded during

the first 6 h of the day that was not limited by gs. The non-

rectangular hyperbola-based model of Prioul and Chartier

(1977) was optimized as described C Lobo et al. (2013):

A¼ PPFD�U0þAmax�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U0�PPFDþAmax2�4h�U0�PPFD�Amax

p

2h
�Rn

(Eq. 9)

With A the photosynthetic rate (mmol m–2 s–1), PPFD

(mmol m–2 s–1), U0 the quantum yield at PPFD of 0mmol

m–2 s–1 (mmol mmol–1), Amax the absolute maximum photo-

synthetic rate (mmol m–2 s–1), h the dimensionless convexity

factor and Rn the dark respiration (mmol m–2 s–1).
The percentage of limitation of A by gs during the after-

noon (46 h after light onset) was calculated by estimating

the maximal potential A without gs limitation and compar-

ing it with the measured A (Eq. 2).
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Statistical analysis and data processing
All data processing and statistical analysis were carried out

in R version 3.4.3. Genotypic differences were tested by ap-

plying one-way analysis of variance with a post hoc Tukey

HSD test. Segmented regression was performed on the

whole-plant transpiration between –90 and 90min relative

to the onset of light. Data with no significant segmented re-

gression (P-value Davies Test 50.05, segmented R package,

7.5% of the data) and negative slopes (2.5% of the data)

were removed. Transpiration rate was calculated as the

mean water loss every 30min. To use the sigmoidal model

(1) on whole-plant transpiration data, 1min weight meas-

urements were smoothed according to the Savitzky and

Golay (1964) method with a filtering window of 21 and a

fourth-order polynomial. Each day of whole-plant transpira-

tion responses was regarded as a new replicate by incorpo-

rating a plant-specific factor and a date-specific factor as a

random effect in a linear mixed model.

Supplemental data

The following materials are available in the online version of

this article.
Supplemental Figure S1. Correlation matrix of gas

exchange and stomatal anatomy variables.
Supplemental Figure S2. Maximum slope of gs response

(Slmax) to an increase in light intensity from 100mmol m–2 s–1

to 1,000mmol m–2 s–1 and to a decrease in light intensity

from 1,000mmol mmol m–2 s–1 to 100mmol m–2 s–1

Supplemental Figure S3. Stomatal limitation of A and

timings until steady-state values of gs, A, and maximum ve-

locity of Rubisco for carboxylation (Vcmax) were reached af-

ter an increase in light intensity from 100mmol m–2 s–1 to

1,000mmol m–2 s–1.
Supplemental Figure S4. Increase in A after increasing

the light intensity from 100mmol m–2 s–1 to 1,000mmol m–2

s–1. A was considered limited until 95% of steady-state A

was reached.
Supplemental Figure S5. Response of iWUE and the in-

tracellular CO2 to a step increase and decrease in light in-

tensity from 100 to 1,000mmol m–2 s–1 and back.
Supplemental Figure S6. Mean iWUE after the increase

in light intensity from 100 to 1,000mmol m–2 s–1 and the

decrease to 100mmol m–2 s–1 afterward.
Supplemental Figure S7. Stomatal density, stomatal

length, guard cell size, subsidiary cell size, and proportion of

subsidiary cells of the five banana genotypes.
Supplemental Figure S8. Gravimetric transpiration rate

analysis of genotypes Cachaco and Mbwazirume under grad-

ual increasing light intensity.
Supplemental Figure S9. Modeled time constant (Ki) for

the whole-plant transpiration rate increase of genotypes

Cachaco and Mbwazirume after a step increase in light in-

tensity from 0 to 120mmol m–2 s–1.
Supplemental Table S1. Modeled steady-state and light-

induced variables of the gs response to a step increase and

decrease in light intensity from 100 to 1,000mmol m–2 s–1

for five different banana genotypes.
Supplemental Table S2. Time to reach 95%, 90%, and

50% of steady-state A, gs, and Vcmax after a step increase in

light intensity from 100 to 1,000mmol m–2 s–1 for five differ-

ent banana genotypes.

Acknowledgment

The authors would like to thank Edwige André for the plant
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