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The efficacy of data aggregation in sensor networks is a function of the degree of spatial correlation
in the sensed phenomenon. The recent literature has examined a variety of schemes that achieve
greater data aggregation by routing data with regard to the underlying spatial correlation. A
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1. INTRODUCTION

In view of the severe energy constraints of sensor nodes, data aggregation is widely
accepted as an essential paradigm for energy-efficient routing in sensor networks.
For data-gathering applications in which data originates at multiple correlated
sources and is routed to a single sink, aggregation would primarily involve in-
network compression of the data. Such compression, and its interaction with
routing, has been studied in the literature before; prior work has examined dis-
tributed source coding techniques such as Slepian-Wolf coding [Cover and Thomas
1991; Pradhan and Ramchandran 1999], joint source coding and routing tech-
niques [Scaglione and Servetto 2005], and opportunistic compression along the
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shortest path tree [Krishnamachari et al. 2002]. An understanding of various
routing schemes across the range of spatial correlations is crucial and this problem
has been addressed by several recent papers [Pattem et al. 2004; Cristescu et al.
2004; Enachescu et al. 2004]. Cristescu et al. have formalized the correlated data
gathering problem and studied the interaction between the correlation in the data
measured at nodes in a network and the transmission structure that is used to
transport this data to the sink.

In order to understand the space of interactions between routing and compres-
sion, we study simplified models of three qualitatively different schemes. In routing-

driven compression data is routed through shortest paths to the sink, with com-
pression taking place opportunistically wherever these routes happen to overlap
[Intanagonwiwat et al. 2002] [Krishnamachari et al. 2002]. In compression-driven

routing the route is dictated in such a way as to compress the data from all nodes
sequentially - not necessarily along a shortest path to the sink. Our analysis of these
schemes shows that they each perform well when there is low and high spatial cor-
relation respectively. As an ideal performance bound on joint routing-compression
techniques, we consider distributed source coding in which perfect source compres-
sion is done a priori at the sources using complete knowledge of all correlations.

In order to obtain an application-independent abstraction for compression, we use
the joint entropy of sources as a measure of the uncorrelated data they generate.
An empirical approximation for the joint entropy of sources as a function of the
distance between them is developed. A bit-hop metric is used to quantify the total
cost of joint routing with compression. Evaluation of the above schemes using these
metrics leads naturally to a clustering approach for schemes that perform well over
the range of correlations.

We develop a simple scheme based on static, localized clustering that generalizes
these techniques. Analysis shows that the nature of optimal routing will depend
on the number of nodes, level of correlation and also on where the compression
is effected; at the individual nodes or at intermediate aggregation points (cluster
heads). Our main contribution is a surprising result that there exists a near-optimal
cluster size that performs well over a wide range of spatial correlations. A min-max
optimization metric for the near-optimal performance is defined and a rigorous
analysis of the solution is presented for both 1-D (line) and 2-D (grid) network
topologies. We show further that this near-optimal size is in fact asymptotically
optimal in the sense that, for any constant correlation level, the ratio of the energy
costs associated with the near-optimal cluster size to those associated with the
optimal clustering goes to one as the network size increases. Simulation experiments
confirm that the results hold for more general topologies - 2-D random geometric
graphs and realistic wireless communication topology with lossy links, and also for
a continuous, Gaussian data model for the joint entropy with varying quantization.

From a system-engineering perspective, this is a very desirable result because it
eliminates the need for highly sophisticated compression-aware routing algorithms
that adapt to changing correlations in the environment (which may even incur
additional overhead for adaptation), and therefore simplifies the overall system
design.
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2. ASSUMPTIONS AND METHODOLOGY

Our focus is on applications which involve continuous data gathering for large scale
and distributed physical phenomena using a dense wireless sensor network where
joint routing and compression techniques would be useful. An example of this is the
collection of data from a field of weather sensors. If the nodes are densely deployed,
the readings from nearby nodes are likely to be highly correlated and hence contain
redundancies, because of the inherent smoothness or continuity properties of the
physical phenomenon.

To compare and evaluate different routing with compression schemes, we will
need a common metric. Our focus is on energy expenditure, and we have therefore
chosen to use the bit-hop metric. This metric counts the total number of bit
transmissions in the network for one round of gathering data from all sources.
Formally, let T = (V,E, ξT ) represent the directed aggregation tree (a subgraph
of the communication graph) corresponding to a particular routing scheme with
compression, which connects all sources to the sink. Associated with each edge
e = (u, v) is the expected number of bits be to be transported over that edge in the
tree (per cycle). For edges emanating from sources that are leaves on the tree, the
bit count is the amount of data generated by a single source. For edges emanating
from aggregation points, the outgoing edge may have a smaller bit count than
the sum of bits on the incoming edges, due to aggregation. For nodes that are
neither sources or aggregation points but act solely as routers, the outgoing edge
will contain the same number of bits as the incoming edge. The bit-hop metric ξT
is simply:

ξT =
∑

e∈E

be. (1)

There are two possible criticisms of this metric that we should address directly.
The first is that the total transmissions may not capture the “hot-spot” energy
usage of bottleneck nodes, typically near the sink. However, an alternative metric
that better captures hot-spot behavior is not necessarily relevant if the a priori

deployment and energy placement ensure that the bottlenecks are not near the sink
or if the sink changes over time. The second possible criticism is that this does
not incorporate reception costs explicitly. However, the use of bit-hop metric is
justified because it does in-fact implicitly incorporate reception costs. If every bit
transmission incurs the same corresponding reception cost in the network, the sum
of these transmission and reception costs will be proportional to the total number
of bit-hops.

To quantify the bit-hop performance of a particular scheme, therefore, we need
to quantify the amount of information generated by sources and by the aggrega-
tion points after compression. For this purpose we use the entropy H of a source,
which is a measure of the amount of information it originates [Cover and Thomas
1991]. In this paper, we consider only lossless compression of data. In order to
characterize correlation in an application-independent manner, we use the joint en-
tropy of multiple sources to measure the total uncorrelated data they originate.
Theoretically, using entropy-coding techniques this is the maximum possible loss-
less compression of the data from these sources. We now attempt to construct a
parsimonious model to capture the essential nature of joint entropy of sources as
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Fig. 1. Empirical data (from the rainfall data-set) and approximation for joint entropy of linearly
placed sources separated by different distances

a function of distance. The simplicity of this approximation model enables the
analysis presented in Sections 3 and 4.

In general, the extent of correlation in the data from different sources can be
expected to be a function of the distance between them. We used an empirical
data-set pertaining to rainfall1 [Widmann and Bretherton 1999] to examine the
amount of correlation in the readings of two sources placed at different distances
from each other. Since rainfall measurements are a continuous valued random
variable and hence would have infinite entropy, we present results obtained from
quantization. The range of values was normalized for a maximum value of 100 and
all readings ‘binned’ into intervals of size 10. Fig.1 is a plot of the average joint
entropy of multiple sources as a function of inter-source distance.

The figure shows a steeply rising convex curve that reaches saturation quickly.
This is expected since the inter-source distance is large (in multiples of 50km).
From the empirical curve, a suitable model for the average joint entropy of two
sources (H2) as a function of inter-source distance d is obtained as:

H2(d) = H1 + [1 − 1

(d
c

+ 1)
]H1. (2)

Here c is a constant that characterizes the extent of spatial correlation in the
data. It is chosen such that when d = c, H2 = 3

2H1. In other words, when inter-
source distance d = c, the second source generates half the first node’s amount in
terms of uncorrelated data. In Fig.1, a value of c = 25 matches the H2 curve well.

Finally, this leaves open the question of how to obtain a general expression for
the joint entropy of n sources at arbitrary locations. As we shall show later, this is
needed in order to study the performance of various strategies for combined routing

1This data-set consists of the daily rainfall precipitation for the pacific northwest region over a
period of 46 years. The final measurement points in the data-set formed a regular grid of 50km x
50km regions over the entire region under study. Although this is considerably larger-scale than
the sensor networks of interest to us, we believe the use of such “real” physical measurements to
validate spatial correlation models is important.
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and compression. To this end, we now present a constructive technique to calculate
approximately the total amount of uncorrelated data generated by a set of n nodes.

From Eqn.2, it appears that on average, each new source contributes an amount
of uncorrelated data equal to [1 − 1

( d
c
+1)

]H1, where we take the d as the minimum

distance to an existing set of sources. This suggests a constructive iterative tech-
nique to calculate approximately the total amount of uncorrelated data generated
by a set of n nodes:

(1) initialize a set S1 = {v1} where v1 is any node. We will denote by H(Si) the
joint entropy of nodes in set Si; where H(S1) = H1. Let V be the set of all
nodes.

(2) Iterate the following for i = 2 : n

(a) Update the set by adding a node vi where vi ∈ V \ Si−1 is the closest (in
terms of Euclidean distance) of the nodes not in Si−1 to any node in Si−1,
i.e. set Si = {Si−1, vi}.

(b) Let di be the shortest distance between vi and the set of nodes in Si−1.
Then calculate the joint entropy as H(Si) = H(Si−1) + [1 − 1

(
di
c

+1)
]H1.

(3) The final iteration yields H(Sn) as an approximation of Hn.

In the simple case when all nodes are located on a line equally spaced by a
distance d, this procedure would yield the expression:

Hn(d) = H1 + (n− 1)[1 − 1

(d
c

+ 1)
]H1. (3)

That this closed-form expression provides a good approximation for a linear scenario
is validated by our measurements from the rainfall data set, as seen in Fig.1. The
curve for H3 was obtained by considering all sets of grid points (p1, p2, p3) such that
they lie in a straight line with the distance between two adjacent points plotted on
the x-axis. The curve for H4 was similarly obtained using all sets of 4 points.

2.1 Note on Heuristic Approximation

We note that the final approximation H(Sn) is guaranteed to be greater than the
true joint entropy H(v1, v2, ...., vn). Thus it does represent a rate achievable by
lossless compression. The approximation roughly corresponds to a rate allocation
of H(vi/ηvi

) at every node vi, where ηvi
is the nearest neighbor of vi. A more

precise information-theoretic treatment in terms of the rate allocations at each
node is possible, for instance, as in [Cristescu et al. 2004a;2006b]. We relinquish
some rigor with the objective of gaining practical insight. This approach makes the
problem more tractable and is the basis for analysis in subsequent sections.

Another point of contention is the need for such a heuristic approach instead of
using a continuous data model and using analytical expressions for the joint entropy
for this model. In this regard, we note that (a) our model matches the standard
jointly Gaussian entropy model for low correlation [Appendix A.1.1] and (b) since
the standard expression is in covariance form, it cannot be used for high correlation
values, necessitating a reasonable approximation.
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3. ROUTING SCHEMES

Given this framework, we can now evaluate the performance of different routing
schemes across a range of spatial correlations. We choose three qualitatively dif-
ferent routing schemes; these schemes are simplified models of schemes that have
been proposed in the literature.

(1) Distributed Source Coding (DSC): If the sensor nodes have perfect knowledge
about their correlations, they can encode/compress data so as to avoid trans-
mitting redundant information. In this case, each source can send its data to
the sink along the shortest path possible without the need for intermediate
aggregation. Since we ignore the cost of obtaining this global knowledge, our
model for DSC is very idealized and provides a baseline for evaluating the other
schemes.

(2) Routing Driven Compression (RDC): In this scheme, the sensor nodes do not
have any knowledge about their correlations and send data along the shortest
paths to the sink while allowing for opportunistic aggregation wherever the
paths overlap. Such shortest path tree aggregation techniques are described,
for example, in [Intanagonwiwat et al. 2002] and [Krishnamachari et al. 2002].

(3) Compression Driven Routing (CDR): As in RDC, nodes have no knowledge
of the correlations but the data is aggregated close to the sources and initially
routed so as to allow for maximum possible aggregation at each hop. Eventually,
this leads to the collection of data removed of all redundancy at a central source
from where it is sent to the sink along the shortest possible path. This model
is motivated by the scheme in [Scaglione and Servetto 2005].

3.1 Comparison of the schemes

Consider the arrangement of sensor nodes in a grid, where only the 2n − 1 nodes
in the first column are sources. We assume that there are n1 hops on the shortest
path between the sources and the sink. For each of the three schemes, the paths
taken by data and the intermediate aggregation are shown in Fig.2.

In our analysis, we ignore the costs associated for each compressing node to learn
the relevant correlations. This cost is particularly high in DSC where each node
must learn the correlations with all other source nodes. However the bit-hop cost
still provides a useful metric for evaluating the performance of the various schemes
and allows us to treat DSC as the optimal policy providing a lower-bound on the
bit-hop metric.

Using the approximation formulae for joint entropy and the bit-hop metric for
energy, the expressions for the energy expenditure (E) for each scheme are as follows.

For the idealized DSC scheme, each source is able to send exactly the right
amount of uncorrelated data, and each source can send the data along the shortest
path to the sink, so that:

EDSC = n1H2n−1. (4)

Lemma 3.1. EDSC represents a lower bound on bit-hop costs for any possible

routing scheme with lossless compression.
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Routing and Aggregation in Compression Driven Routing
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Fig. 2. Illustration of routing for the three schemes: DSC, CDR, and RDC. Hi is the joint entropy
of i sources.

Proof. The total joint information of all (2n−1) sources is H2n−1. As discussed

before, no lossless compression scheme can reduce the total information transmitted

below this level. Each bit of this information must travel at least n1 hops to get from

any source to the sink. Thus n1H2n−1, the cost of the idealized DSC scheme, rep-

resents a lower bound on all possible routing schemes with lossless compression.

In the RDC scheme, the tree is as shown in Fig.2 (middle), with data being
compressed along the spine in the middle. It is possible to derive an expression for
this scenario:

ERDC = (n1 − n)H2n−1 + 2H1

n−1
∑

i=1

(i) +

n−2
∑

j=0

H2j+1. (5)

For the CDR scheme, the data is compressed along the location of the sources,
and then sent together along the middle, as shown in Fig. 2. It can be shown that
for this scenario:

ECDR = n1H2n−1 + 2

n−1
∑

i=1

Hi. (6)

The above expressions, in conjunction with the expression for Hn presented ear-
lier, allow us to quantify the performance of each scheme. Fig.3 plots the energy
expenditure for the DSC, RDC and CDR schemes as a function of the correlation
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Fig. 3. Comparison of energy expenditures for the RDC, CDR and DSC schemes with respect to
the degree of correlation c.

constant c, for different forms of the correlation function. For these calculations, we
assumed a grid with n1 = n = 53 and 2n− 1 = 105 sources. From this figure it is
clear that CDR approaches DSC and outperforms RDC for higher values of c (high
correlation) while RDC performance matches DSC and outperforms CDR for low
c (no correlation). This can be intuitively explained by the tradeoff between com-
pressing close to the sources and transporting information toward the sink. CDR
places a greater emphasis on maximizing the amount of compression close to the
sources, at the expense of longer routes to the sink, while RDC does the reverse.
When there is no correlation in the data (small c), no compression is possible and
hence it is RDC that minimizes the total bit-hop metric. When there is high cor-
relation (large c), significant energy gains can be realized by compressing as close
to the sources as possible and hence CDR performs better under these conditions.

Interestingly, it appears that neither RDC nor CDR perform well for intermediate
correlation values. This suggests that in this range a hybrid scheme may provide
energy-efficient performance closer to the DSC curve. CDR and RDC can be viewed
as two extremes of a clustering scheme, with CDR having all data sources form a
single aggregation cluster before sending data towards the sink while RDC has each
source acting as a separate cluster in itself. A hybrid scheme would be one in which
sources form small clusters and data is aggregated within them at a cluster head,
which then sends data to the sink along a shortest path. This insight leads us to
an examination of suitable clustering techniques.

4. A GENERALIZED CLUSTERING SCHEME

The idea behind using clustering for data routing is to achieve a tradeoff between
aggregating near the sources and making progress towards the sink. In addition
to factors like number of nodes and position of sink, the optimal cluster size will
also depend on the amount of correlation in the data originated by the sources
(quantified by the value of c). Generally, the amount of correlation in the data is
highest for sensor nodes located close to each other and can be expected to decrease

ACM Transactions on Sensor Networks, Vol. V, No. N, June 2008.
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Fig. 4. Illustration of clustering for a two-dimensional field of sensors

as the separation between nodes increases. Once an optimal clustering based on
correlations is obtained, aggregation of data is required only for the sources within
a cluster, after which data can be routed to the sink without the need for further
aggregation. As a consequence, none of the scenarios considered henceforth will
resemble RDC exactly.

4.1 Description of the scheme

We now describe a simple, location-based clustering scheme. Given a sensor field
and a cluster size, nodes close to each other form clusters. The clusters so formed
remain static for the lifetime of the network. Within each cluster, the data from
each of the nodes is routed along a shortest path tree (SPT) to a cluster head
node. This node then sends the aggregated data from its cluster to the sink along
a multi-hop path with no intermediate aggregation. This is illustrated in Fig. 4.
The intermediate nodes on the SPT may or may not perform aggregation. Data
aggregation in the form of compression is computationally intensive. All nodes
in a network might not be capable of performing compression, either because it
is too expensive for them to do so or the delays involved are unacceptable. It is
conceivable that there will be a few high power nodes or micro-servers [Hu et al.
2004] which will perform the compression. Nodes form clusters around these nodes
and route data to them. In this case, data aggregation takes place only at the
cluster head.

4.1.1 Metrics for evaluation of the scheme. Es(c) is defined as the energy cost
(in bit-hops) for correlation c and cluster size s. The optimal cluster size sopt(c)
minimizes the cost for a given c. Let E∗(c) = Esopt

(c) represent the optimal energy
cost for a given correlation c. For simplifying system design, it is desirable to have
a cluster size that performs close to the optimal over the range of c values. We
quantify the notion of ‘being close to optimal’ by defining a near-optimal cluster

size sno as the value of s that minimizes the maximum difference metric, i.e.

sno = argmin
s∈[1,n]

max
c∈[0,∞)

{Es(c) − E∗(c)}. (7)

ACM Transactions on Sensor Networks, Vol. V, No. N, June 2008.
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In the following sections, we analyze the performance of the clustering scheme
for both 1-D and 2-D networks when aggregation is performed

—at intermediate nodes on the SPT, and

—only at the cluster-heads.

4.2 1-D Analysis

We begin with an analysis of the energy costs of clustering for a setup involving a
linear array of sources to better understand the tradeoffs. Consider n source nodes
linearly placed with unit spacing (i.e. d = 1) on one side of a 2-D grid of nodes, with

the sink on the other side, and assuming the correlation model, Hn = H1(1+ (n−1)
1+c ).

We consider n
s

clusters each consisting of s nodes. Since all sources have the same
shortest hop distance to the sink, the position of the cluster head within a cluster
has no effect on the results. Within each cluster, the data can either be compressed
sequentially on the path to the cluster head or only when it reaches the cluster head.
The cluster head then sends the compressed data along a shortest path involving
D hops to the sink. The total bit-hop cost for such a routing scheme is therefore

Es(c) =
n

s
(Eintras,c + Eextras,c ), (8)

where Eintras,c and Eextras,c are the bit-hop cost within each cluster and the bit-hop
cost for each cluster to send the aggregate information to the sink respectively.

4.2.1 Sequential compression along SPT to cluster head. At each hop within the
cluster, a node receives Hi bits, aggregates them with its own data and transmits
Hi+1 bits. This is done sequentially until the data reaches the cluster head. We
have,

Eintras,c =

s−1
∑

i=1

Hi =

s−1
∑

i=1

(

1 +
i− 1

1 + c

)

H1

=
(

s− 1 +
(s− 2)(s− 1)

2(1 + c)

)

H1.

Since the cluster heads get aggregated data from s sources and send it to the sink
using a shortest path of D hops,

Eextras,c = Hs ·D =
(

1 +
s− 1

1 + c

)

H1 ·D

⇒ Es(c) = nH1

(s− 1

s
+

(s− 2)(s− 1)

2s(1 + c)
+
D

s
+

(s− 1)D

s(1 + c)

)

. (9)

The optimum value of the cluster size sopt can be determined by setting the
derivative of the above expression equal to zero. It can be shown that

sopt = 1, if c ≤ 1

2(D − 1)

=
√

2c(D − 1), if
1

2(D − 1)
< c <

n2

2(D − 1)

= n, if c ≥ n2

2(D − 1)
.
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Fig. 5. Comparison of the performance of different cluster-sizes for linear array of sources(n =
D = 105) with compression performed sequentially along the path to cluster heads. The optimal
cluster size is a function of correlation parameter c. Also, cluster size s = 15 performs close to
optimal over the range of c

Note that sopt depends on the distance from the sources to the sink2 and the degree
of correlation c.

Fig.5 shows (based on the analysis) how different cluster sizes perform across a
range of correlation levels, based on the analysis presented above for a set of 105
linearly placed nodes. As expected the small cluster sizes and large cluster sizes
perform well at low and high correlations respectively. However, it appears that
an intermediate cluster size near 15 would perform well across the whole range of
correlation values. The curve with s = 105 corresponds to CDR and the DSC curve
is also plotted for reference.

Theorem 4.1. For Es(c) given by Equation.9, the near-optimal cluster size sno
defined by Equation.7 exists, and is given by

sno = Θ(min(
√
D,n)).

Proof is in Appendix A.2.2

This is illustrated in Fig.6, in which the costs are plotted with respect to the
cluster sizes for a few different values of the spatial correlation. The figure shows
clearly that although the optimal cluster size does increase with correlation level,
the near-optimal static cluster size performs very well across a range of correlation
values. In this figure, D = n = 105 and the near-optimal cluster size obtained from
Theorem.4.1, sno = 14 is indicated by the vertical line in the plot. Intersections of
the dotted lines and the nearest c curve with this vertical line show the difference
in energy cost between the near-optimal and optimal solutions.

2It is, however, assumed that D ≥ n, so there is an implicit dependence on n.
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of correlations. The sources are in a linear array and data is sequentially compressed along the
path to cluster heads.

4.2.2 Compression at cluster head only. In this case, each source within a cluster
sends data to the cluster head using a shortest path. There is no aggregation before
reaching the cluster head. We have,

Eintras,c =
s−1
∑

i=1

i ·H1 =
s(s− 1)

2
H1

Eextras,c =
(

1 +
s− 1

1 + c

)

H1 ·D

⇒ Es(c) = nH1

(s− 1

2
+
D

s
+

(s− 1)D

(s)(1 + c)

)

. (10)

It can be shown that

sopt = 1, if c ≤ 1

2D − 1

= n, if c >
n2

2D − n2
, 2D > n2

=

√

2Dc

c+ 1
, else .

Fig.7 shows that for a linear array of sources (with n = D = 105), the perfor-
mance for cluster sizes s = 5, 7 are close to optimal over the range of c. The DSC
curve is plotted for reference.

Theorem 4.2. For Es(c) given by Equation.10, the near-optimal cluster size

sno defined by Equation.7 exists, and is given by

sno = Θ(min(
√
D,n))

.

Proof is in Appendix A.2.4
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Fig. 8. Illustration of the near-optimal cluster size with compression only at cluster head with

nodes in a linear array. The performance of cluster sizes near s = 7(≈
√

105
2

) is close to optimal

over the range of c values

The existence of a near-optimal cluster size is illustrated in Fig. 8. The perfor-
mance of cluster sizes near s = 7 is close to optimal over the range of c values.

4.3 2-D analysis

Consider a 2-D network in which N = n2 nodes are placed on a n×n unit grid and
are divided into clusters of size s× s. We assume that each node can communicate
directly only with its 8 immediate neighbors. The routing pattern within a cluster
and from the cluster-heads to the sink is similar and is illustrated in Fig.9. Note
that using the iterative approximation described in section 3, the joint entropy of
k adjacent3 nodes on a grid is the same as the joint entropy of k sensors lying on

3nodes forming a contiguous set
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a straight line. Fig.9(a) illustrates this along the diagonal.
The results for the linear array of sources do not extend directly to a two-

dimensional arrangement where every node is both a source and a router. In the
1-D case, the optimal aggregation tree is different from the shortest path tree (ex-
cept for the case with zero correlation). This is because moving towards the sources
allows greater compression than moving towards the sink. In the 2-D case however,
there are opportunities for compression in all directions. Hence, it is always possi-
ble to achieve compression while making progress towards the sink.

4.3.1 Opportunistic compression along SPT to cluster head. According to the
approximation we have been using for the joint entropy, the contribution of a node
v is H(v/ηv), where ηv is the nearest neighbor of v. If we assume that H(v/ηv) is
the fixed rate allocation for every node v, it follows4 that a network-wide SPT is
the optimal routing structure. In other words, the optimal cluster size s = n for all
values of correlation parameter c. There is no incentive for data to deviate from a
shortest path to the sink. The result is established more precisely in the following
lemma.

Lemma 4.3. For a 2-D grid with opportunistic compression along an SPT to

cluster head, the optimal cluster size is s = n for any value of correlation parameter

c ∈ [0,∞].

Proof is in Appendix A.2.

It should be noted that the optimality of a network-wide SPT obtained above
is contingent on two of our assumptions:

—a grid topology.

—routing within clusters is along an SPT.

Results for general graph topologies are presented in [von Rickenbach and Wat-
tenhofer 2004] and [Cristescu et al. 2004]. These are discussed in the related work
section.

4.3.2 Compression at cluster head only. When compression is possible only at
cluster heads, there is a definite tradeoff in progress towards the sink and compres-
sion at intermediate points. Since there is no compression before reaching and after
leaving the cluster-heads, shortest-path routing is optimal within clusters and from
cluster-heads to sink (Fig.9(b), (c)). Let Es(c) be the total cost for a network with
cluster size s× s and correlation parameter c. Eintras and Eextras are defined as the
combined intra-cluster costs and the overall cost for routing from cluster heads to
the sink respectively. From Fig.9, a node at (i, j) will take max{i, j} hops to reach
the cluster head at (0, 0). Since there are (n

s
)2 clusters, we have

Eintras,c =
(n

s

)2 s−1
∑

i=0

s−1
∑

j=0

max{i, j}H1 =
(n

s

)2( s−1
∑

i=0

i
∑

j=0

i+

s−1
∑

i=0

s−1
∑

j=i+1

j
)

H1

4see [Cristescu et al. 2004] for a formal proof
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Fig. 9. Routing in a 2-D grid arrangement. (a) Calculation of joint entropy. Using the iterative
approximation joint entropy of k nodes forming a contiguous set is the same as the joint entropy of
k sensors lying on a straight line. This is illustrated along the diagonal. (b) Intra-cluster, shortest
path from source to cluster head routing with compression only at cluster head. (c) Inter-cluster,
shortest path routing from cluster heads to sink. There is no compression enroute to sink

=
(n

s

)2( s−1
∑

i=0

i(i+ 1) +

s−1
∑

i=0

(

(i+ 1) + (i+ 2) + ...+ (s− 1)
)

)

H1

=
(n

s

)2( s−1
∑

i=0

i(i+ 1) +

s−1
∑

i=0

( (s− 1)s

2
− i(i+ 1)

2

))

H1

=
n2

6s
(s− 1)(4s+ 1)H1. (11)

Now, the shortest route between adjacent cluster-heads is s hops. Hence,

Eextras,c =

n
s
−1

∑

i=0

n
s
−1

∑

j=0

max{s · i, s · j}Hs2 = s

n
s
−1

∑

i=0

n
s
−1

∑

j=0

max{i, j}
(

1 +
s2 − 1

1 + c

)

H1

=
n

6

(n

s
− 1

)(4n

s
+ 1

)(

1 +
s2 − 1

1 + c

)

H1. (12)

[using the expression for
∑ ∑

max{i, j} from Eqn.11]
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Fig. 10. Comparison of the performance of various cluster sizes for a network with 106 nodes on a
1000x1000 grid when compression is possible only at cluster heads. The performance for s = 5, 10
is observed to be close to optimal over the range of c values.

Es(c) = Eintras,c + Eextras,c

=
[n2

6s
(s− 1)(4s+ 1) +

n

6

(n

s
− 1

)(4n

s
+ 1

)(

1 +
s2 − 1

1 + c

)]

H1. (13)

Fig.10 shows the performance of the scheme for various cluster sizes for a 1000×
1000 network. While the optimal cluster size depends on the value of c, we again
find that there are certain intermediate cluster sizes (s =5, 10, 25) that perform
near optimally over a wide range of spatial correlations.

It can be shown (derivation in Appendix A.3.2) that

sopt(c) =
( 8c

4c+ 1
n
)

1

3

+ o(n
1

3 ).

Theorem 4.4. For Es(c) given by Equation.13, the near-optimal cluster size

sno = Θ(n
1

3 )(≈ 0.6847n
1

3 ).

Proof is in Appendix A.3.4.

The number of nodes in the near-optimal cluster is Nno = Θ(n
2

3 ) = Θ(N
1

3 ).
Fig.11 illustrates the existence of the near-optimal cluster size for a network of

106 nodes on a 1000 × 1000 grid. Clearly, the transmission cost with cluster side
values near s = 7(= ⌈.6487n

1

3 ⌉) is quite close to the optimal for a large range of
correlation coefficient c values.

5. SIMULATION RESULTS

The analysis in Section 4 is based on simple and restricted communication, topology
and joint entropy models. To verify the robustness of the conclusions from analysis,
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Fig. 11. Illustration of the existence of a near-optimal cluster size for a 2D network. The network
size is n × n = 1000 × 1000 and compression is possible only at cluster heads. The performance

of cluster side values near s = .6487n
1

3 is quite close to optimal for all values of c ranging from
0.0001 to 10000

we present results from extensive simulation experiments with more general models.
As before, the network is deployed in a N ×N area which is partitioned into grids
of size s× s, for s ∈ [1, N ]. All nodes which are located within the same grid form
a cluster.

5.1 Communication and Topology models

We consider more general communication and topology models, while using the
same entropy model as in the analysis. Nodes are deployed uniformly at random
within the network area. Each node is assumed to transmit 1 bit of data. The joint
entropy of nodes within the cluster are calculated using the iterative, approximation
technique described in Section 2.

5.1.1 Random geometric graphs. In this model, all nodes that are within the
communication radius can communicate with each other over ideal, lossless links.
Since each link has a unit cost, the routing cost is calculated as:

intra-cluster cost =
∑

all nodes in cluster
(node depth in cluster SPT)

extra-cluster cost =
∑

all clusters in network
(cluster-head depth in network SPT)· (cluster joint entropy)

total cost = intra-cluster cost + extra-cluster cost.

The simulation parameters are as follows:

—network sizes 24mx24m, 84mx84m, 240mx240m

—density of deployment = 1 node/m2

—communication radius = 3m

Figures 12 (a), (b), (c) show performance of clustering for the network sizes

considered. As predicted by the analysis, for a network of N nodes, N
1

3 is a good
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Fig. 12. Random geometric graph topology. Performance of clustering with density = 1 node/m2,
communication radius = 3m for network of size (a) 24x24 (b) 84x84 (c) 200x200. Near-optimal
cluster sizes are (a) 3,4 (b) 4,7 (c) 8,10.

estimate of the near-optimal cluster size.

5.1.2 Realistic Wireless Communication model. We consider the model for lossy,
low power wireless links proposed in [Zuniga and Krishnamachari 2004a]. Link
costs are the average number of transmissions required for a successful transfer and
these are used as weights for obtaining the shortest-path tree. The routing cost is
calculated as:

intra-cluster cost =
∑

all nodes in cluster
(node cost in cluster SPT)

extra-cluster =
∑

all clusters in network
(cluster head cost in network SPT) · (cluster joint entropy)

The authors have made code available online for a topology generator based on
the model [Zuniga and Krishnamachari 2004b]. The parameters used in the simu-
lations are as follows:

—network size = 48mx48m , density of deployment = .25 nodes/m2

—random node placement

—NCSFK modulation, Manchester encoding

—PREAMBLE LENGTH = 2, FRAME LENGTH = 50,

—NOISE FLOOR = -105.0; Power levels: -3dB, -7dB and -10dB.

Figures 13 (a), (b) (c) show performance of clustering for the different power
values. For lower power, there is an increase in the routing cost since links become
more lossy. However, since proximity relationships between nodes do not change
drastically, the relative routing costs for different cluster sizes remain similar.

5.2 Joint entropy models

We now consider more general models for the joint entropy of sources while using
the realistic lossy link model from Section 5.1.2. The routing cost is calculated
using the same equations and simulations are performed with power level of -3dB,
all other parameters remaining the same.
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Fig. 13. Realistic wireless communication topology. Performance of clustering in 48mx48m net-
work with density = .25 nodes/m2 for power level (a) -3dB (b) -7dB (c) -10dB. Cluster sizes 6, 8
are near-optimal.
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Fig. 14. (a) Example forms of joint entropy functions for 2 sources. The entropy of each source is
normalized to 1 unit. The convex and linear curves are clipped when the joint entropy equals the
sum of individual entropies. The curves shown are for correlation parameter c = 2. Performance
of clustering in 72m× 72m network with density = .25 nodes/m2 for (b) linear model (c) convex
model of joint topology. Cluster size 6 is near-optimal.

5.2.1 Linear and convex functions of distance. In the empirically obtained model,
the joint entropy is a concave function of the distance between sources. We also
look at a linear function, for which

H2(d) = H1 +min(1,
d

c
) ·H1

and a convex function, for which

H2(d) = H1 +min(1,
d2

c2
) ·H1

.
Fig 14 (a) illustrates the three forms of joint entropy functions for 2 sources. The

entropy of each source is normalized to 1 unit. The convex and linear curves are
clipped when the joint entropy equals the sum of individual entropies. Figures 14
(b) and (c) show performance of clustering.

5.2.2 Continuous, Gaussian data model. In order to verify that the results from
analysis and all earlier simulations is not an artifact of the simple approximation
models for joint entropy, we now consider a continuous, jointly Gaussian data model
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and use its entropy as the metric for uncorrelated data in the routing cost calcu-
lations. The data is assumed to have a zero-mean jointly Gaussian distribution
X ∼ NN (0,K), with unit variances σii = 1:

f(X) =
1

√

(2π)|K| 12
e−

1

2
(X)TK−1(X).

, where K is the covariance matrix of X , with elements depending on the distance

between the corresponding nodes and the degree of correlation, Kij = e−
dij

c , where
dij is the distance between nodes i and j and c is the correlation parameter. For
this distribution and with quantization step size δ, entropy of a single source is
[Cover and Thomas 1991]:

H1 =
1

2
log2(2πe) − log2(δ)

and joint entropy of n sources is:

Hn =
1

2
log2((2πe)

n|K|) − nlog2(δ).

Since |K| becomes singular for large c values, we clip Hn by using

max
{1

2
log2(2πe),

1

2
log2((2πe)

n|K|)
}

− nlog2(δ)

.
Figures 15 (a), (b) and (c) show performance of clustering for quantization step

δ = 1, 0.5 and .05. The cluster sizes s = 6, 8 are near-optimal. In Figures 15 (d),
(e) and (f) , the same curves are presented but the transmission cost is normalized
to make the highest value equal to 1. For lower values of δ, the quantization
cost dominates and the gains from removing inter-source correlations in data are
diminished. Accordingly, the relative gains from optimizing cluster size are also
reduced.

5.3 Summary of simulation results

Overall, the results presented in this section show that the basic conclusions from
the analysis hold even when the limiting assumptions of the analysis regarding
node placement, communication link quality, exact form of the correlation model,
quantization, are relaxed. In all cases, we observe the existence of small cluster-sizes
that provide near-optimal performance over a wide range of correlation settings.

6. RELATED WORK

Estrin et al. first discussed the ideas of data-centric routing and in-network ag-
gregation for scalable and efficient designs for sensor networks [Estrin et al. 1999].
LEACH [Heinzelman et al. 2000] was an early proposal for a randomized clustering
protocol that demonstrated some of the gains of in-network compression and its
relation to routing. Other early work developed models and presented analysis of
simple aggregation (duplicate suppression, min, max) [Krishnamachari et al. 2002]
and greedy aggregation based on directed diffusion [Intanagonwiwat et al. 2002,
2003], and explored the use of data aggregation operators to optimize the perfor-
mance of sensor database-type queries [Madden et al. 2002] and the possibility of
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Fig. 15. Performance of clustering in 48m × 48m network with density = .25 nodes/m2 with a
continuous, jointly Gaussian data model and quatization step (a) δ = 1 (b) δ = 0.5 (c) δ = 0.05.
Cluster size 6, 8 are near-optimal. (d) (e) (f) show normalized curves corresponding to (a) (b)
and (c) respectively. For lower values of δ, quantization costs dominate, reducing the gains from
optimizing for removal of correlations.

adapting the aggregation routing structures to data content and availability in the
network [Bonfils and Bonnet 2003]. Krishnamachari et al. studied the effects of
network topology and the nature of optimal routing for simple aggregation. The
scheme described as routing-driven compression (RDC) in our analysis is inspired
by this work.

In this paper, we consider compression of correlated sources as the principal form
of data aggregation employed in the network. This is the approach taken by several
works with an information-theoretic perspective. Distributed source coding (which
we refer to as DSC) such as Slepian-Wolf coding [Cover and Thomas 1991] and
DISCUS [Pradhan and Ramchandran 1999] suggest mechanisms to compress the
content at the original sources in a distributed manner without explicit routing-
based aggregation. However the implementation of DSC in a practical setting
is still an open problem and likely to incur significant additional costs since it
requires the complete knowledge of all source correlations a priori at each source.
Work by Scaglione and Servetto was the first to explicitly consider the problem
of joint routing and compression [Scaglione and Servetto 2002, 2005]. Using the
joint entropy of sources as the data metric, the network broadcast problem in
multi-hop networks is claimed to be feasible by adapting routing for compression
within localized partitions (or clusters), regardless of network size. This result is
disputed by work which showed that for the same problem the per sensor capacity
asymptotically goes to zero [Duarte-Melo and Liu 2003, Marco et al. 2003]. Along
with approaching the problem in different ways, a fundamental contrast is that while
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Marco et al. account for wireless interference, Scaglione and Servetto ignore it. Our
work assumes that data rates are well below the network capacity and the essential
conclusions are shown to hold for large but finite sized networks. We explore the
idea of a compression-driven routing (CDR) scheme, described by Scaglione and
Servetto to be useful for high-correlation scenarios.

Our analysis of the representative routing schemes is based on using an em-
pirically motivated model for the joint entropy as a function of inter-source dis-
tances [Pattem et al. 2004] and shows that there exist efficient correlation indepen-
dent routing structures. Cristescu et al. formalized the correlated data gathering
problem and the need for jointly optimizing the coding rate at nodes and routing
structure [Cristescu et al. 2004]. The authors provide analysis of two strategies: (a)
the Slepian-Wolf or DSC model, for which the optimal coding is complex (needs
global knowledge of correlations) and optimal routing is simple (always along a
shortest path tree) and (b) a joint entropy coding model with explicit communi-
cation for which coding is simple and optimizing routing structure is difficult. For
the Slepian-Wolf model, a closed form solution is derived while for the explicit
communication case it is shown that the optimization problem is NP-complete and
approximation algorithms are presented. Our approach is to simplify the optimiza-
tion for the explicit communication case by using the empirical model for joint
entropy. The optimal routing structure is then analyzed under this approxima-
tion. The analysis demonstrates that the optimal routing structure also depends
on where the actual data compression is performed; at each individual node or
at “micro-servers” acting as intermediate data collection points. Von Rickenbach
et al. differentiate “self-coding” and “foreign-coding” [von Rickenbach and Wat-
tenhofer 2004]. In self-coding, a node uses data from other nodes to compress its
own data, while in foreign-coding a node can also compress data from other nodes.
With foreign-coding, it is shown that energy-optimal data gathering involves build-
ing a directed minimum spanning tree (DMST). Self-coding corresponds to the
explicit communication model described by Cristescu et al., for which the optimal
solution is NP-complete. Good solutions are expected to be tradeoffs between a
shortest path tree (SPT) and a traveling salesman path (TSP). Both these works
assume that the data is compressed only once, after which it is decompressed at
the sink. Recently proposed techniques [Ciancio and Ortega 2005; Ciancio et al.
2006] allow compression at several hops, potentially leading to greater reductions in
transported data. Non-homogeneous networks [Hu et al. 2004] might allow routing
with compression while extending the network lifetime. With some highly capable
nodes acting as intermediate cluster-heads, sensor nodes do not need to expend
their energy on compression. Adapting and optimizing Slepian-Wolf coding for a
clustered network has been studied recently [Wang et al. 2007].

In closely related work, [Enachescu et al. 2004] presents a randomized algorithm
which is a constant factor approximation (in expectation) to the optimum aggre-
gation tree simultaneously for all correlation parameters. A notion of correlation
is introduced in which the information gathered by a sensor is proportional to the
area it covers and the aggregate information generated by a set of sensors is the
total area they cover. The performance of aggregation under an arbitrary, general
model is considered by Goel and Estrin [Goel and Estrin 2003]. Zhu et al. have
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shown that under many network scenarios, a shortest path tree has performance
that is comparable to an optimal correlation aware routing structure [Zhu et al.
2005]. While Goel and Estrin take a more general view of aggregation functions
rather than as compression of spatially correlated sources and Zhu et al. use a dif-
ferent model of compression, our finding that there exists a near-optimal clustering
scheme that performs well for a wide range of correlations is in keeping with the
results presented in these works.

While most existing work assumes that nodes that are closest to each other
have the most correlated data, Dang et al. have recently proposed compression
over a logical mapping of nodes based on their data content, independent of loca-
tions [Dang et al. 2007]. All the work described above, including this paper, does
not consider the practical details of how compression is achieved and the accom-
panying cost for the operations required. Ciancio and Ortega have developed a
distributed scheme for removing spatial correlations using wavelet transforms via
lifting steps [Ciancio and Ortega 2005]. Follow-up work has studied optimization
of the choice of wavelet decomposition levels at nodes in conjunction with the rout-
ing [Ciancio et al. 2006]. Results show how practical compression schemes have to
adapt to the routing and that network topology is a deciding factor in the choice
of routing scheme. An improved transform, better suited for 2D topologies, has
also been developed [Shen and Ortega 2008a, 2008b]. Further work is needed on
developing practical compression schemes for sensor networks and evaluating them
on testbed implementations [Lee et al. 2007].

7. CONCLUSION

We study the correlated data gathering problem in sensor networks using an empir-
ically obtained approximation for the joint entropy of sources. We present analysis
of the optimal routing structure under this approximation. This analysis leads nat-
urally to a clustering approach for schemes that perform well(in terms of energy-
efficiency) over the range of correlations. The optimal clustering depends on the
level of correlation and also on where the actual data compression is performed;
at each individual node or at intermediate data collection points or cluster heads.
Remarkably, however, there exists a static, near-optimal cluster size which performs
well over the range of correlations. The notion of near-optimality is formulated as
a min-max optimization problem and rigorous analysis of the solution is presented
for both 1-D and 2-D network topologies. For a linear arrangement of N sources,
the near-optimal cluster size is Θ(

√
D) irrespective of where compression occurs,

where D(≥ N,O(N2)) is the shortest hop distance of each source to the sink. For
a 2-D grid deployment, with N sources and unit density, a network-wide shortest
path tree is optimal if every node compresses its data using side information from
its neighbors. If compression is possible only at cluster-heads, a Θ(N

1

6 ) cluster
size is shown to be near-optimal. The robustness of the conclusions from analysis
is established using extensive simulations with more general communication and
entropy models.

The practical implication of these results for sensor network data gathering is that
a simple, static cluster-based system design can perform as well as sophisticated
adaptive schemes for joint routing and compression.
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APPENDIX

A.1 Continuous Gaussian Model

A.1.1 Assuming non-singular covariance matrix. Assume a zero-mean jointly
Gaussian bi-variate distribution X ∼ N2(0,K), with unit variances σii = 1:

f(X) =
1

√

(2π)|K| 12
e−

1

2
(X)TK−1(X).

, where K is the covariance matrix of X , with Kij =
√

c
c+dij

, where dij is the

distance between nodes i and j, c is the correlation parameter. Entropy of each
source is given by:

H1 =
1

2
log2(2πe)

The joint entropy is given by:

H2 =
1

2
log2((2πe)

2|K|) =
1

2
log2

(

(2πe)2
(

1 − c

c+ d

)

)

=
1

2
log2(2πe)

2 +
1

2
log2

(

1 − c

c+ d

)

≈ log2(2πe) +
1

2
log2e ·

(

− c

c+ d

)

for small c

= 2H1 −
log2e

2

( c

c+ d

)

= H1 +H1

(

1 − α
d
c

+ 1

)

for α = log2(e)
log2(2πe)

A.1.2 With singular covariance matrix. For anN -dimensional Gaussian process
with a singular covariance matrix K having rank ψ(K) < N , the joint density
of the samples can be expressed as the product of the densities of an auxiliary
set of independent Gaussian random variables with variance equal to the non-
zero eigenvalues of (also called principal components) whose number is equal to
ψ(K), and a set of N - ψ(K) Dirac delta functions [Scaglione and Servetto 2005].
Consequently, if we denote by |K|+ the product of the non-zero eigenvalues and by
ψ(K) the rank of K, the joint entropy of a Gaussian multivariate density can be,
in general, written as:

HN =
1

2
log2((2πe)

ψ(K)|K|+)

With Kij =
√

c
c+dij

, K becomes singular for c→ ∞, with rank 1 and the single

eigenvalue = 1, to give:

HN =
1

2
log2(2πe) = H1

While it is clear that the joint entropy will converge to that of a single source
for high correlation, this does not give us a tractable expression for HN in the high
correlation region.
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A.2 1D Analysis

A.2.1 . The following lemma is required for proving Theorem 4.1.

Lemma A.1. To solve the optimization problem in Eqn.7 for Es(c) given by

Eqn.9 it suffices to find s = sno such that

Esno
(0) − E∗(0) = Esno

(∞) − E∗(∞). (14)

Proof. We first show that for any arbitrary s, this difference is maximum at
one of the two extremes (i.e. at c = 0 and c→ ∞). Let

Eds (c) = Es(c) − E∗(c) = Es(c) − Esopt
(c)

= nH1

(s− sopt)
(

s · sopt − 2c(D − 1)
)

2s · sopt(1 + c)

∂Eds (c)

∂c
= −nH1

(s− 1)
(

s+ 2(D − 1)
)

2s(1 + c)2
, if c ≤ 1

2(D − 1)

= −nH1

(

s−
√

2c(D − 1)
)

(

s+
√

2(D−1)
c

)

2s(1 + c)2
, if

1

2(D − 1)
< c <

n2

2(D − 1)

= −nH1

(s− n)
(

s · n+ 2(D − 1)
)

2s · n(1 + c)2
, if c ≥ n2

2(D − 1)
.

Eds (c) and its derivative vanish for the same values of c and since Eds (c) is non-
negative, the minimum is achieved at these values of c.

The derivative is continuous for all s ∈ [1, n], and

—for a particular value of s ∈ (1, n), it is zero only for one value of c.

—for s = 1, it is zero only for c ∈ [0, 1
2(D−1) ].

—for s = n, it is zero only for c ∈ [ n2

2(D−1) ,∞).

From the non-negativity of Eds (c) and the above properties of its derivative, we
can conclude that:

—for s ∈ (1, n), Eds (c) is convex

—for s = 1, it is monotonously increasing

—for s = n, it is monotonously decreasing.

This implies that Eds (c) is maximum either for c = 0 or c = ∞ and Eqn.(7)
reduces to

min
s∈[1,n]

max(Es(0) − E∗(0), Es(∞) − E∗(∞)). (15)

From Eqn. (9), we can derive the following expressions for energy costs of clustering
schemes for the two extreme correlation values:

Es(0) = nH1(
s− 1

2
+D)

E∗(0) = nH1D
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Es(∞) = nH1(1 +
D − 1

s
)

E∗(∞) = nH1(1 +
D − 1

n
). (16)

Substituting Eqn. (16) in Eqn. (15) and disregarding common factors, we obtain:

min
s∈[1,n]

max(
s− 1

2
,
D − 1

s
− D − 1

n
). (17)

Let f1(s) = s−1
2 , f2(s) = D−1

s
− D−1

n
. We have

max
s=1

(f1, f2) = f2(1)

max
s=n

(f1, f2) = f1(n).

For s ∈ (1, n), f1, f2 are continuous, f1 is increasing and f2 is decreasing. Therefore,
max(f1, f2) achieves its minimum for s = sno such that

f1(sno) = f2(sno)

i.e. Esno
(0) − E∗(0) = Esno

(∞) − E∗(∞).

A.2.2

Proof of Theorem 4.1. Solving for f1(sno) = f2(sno), we get

sno − 1

2
=
D − 1

sno
− D − 1

n
⇒ s2no + (

2(D − 1)

n
− 1)sno − 2(D − 1) = 0

⇒ sno =

√

2(D − 1) + (
D − 1

n
− 1

2
)2 − (

D − 1

n
− 1

2
)

= Θ(min(
√
D,n)).

A.2.3 . The following lemma is required for proving Theorem 4.2.

Lemma A.2. The near-optimal cluster size s = sno for Es(c) given by Eqn.10

satisfies the condition

Esno
(0) − E∗(0) = Esno

(∞) − E∗(∞).

Proof. The proof is similar to proof of Lemma A.1 with

f1(s) =
Es(0) − E∗(0)

nH1
=
s− 1

2
, and

f2(s) =
Es(∞) − E∗(∞)

nH1
=

s

2
+
D

s
−
√

2D if 2D ≤ n2

=
s− n

2
+
D

s
− D

n
else.

A.2.4

Proof of Theorem 4.2. Using Lemma A.2 and solving

Esno
(0) − E∗(0) = Esno

(∞) − E∗(∞)
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for Es(c) given by Eqn.10, we get

sno =
2D

2
√

2D − 1
(≈

√

D

2
) if 2D < n2

=
2Dn

2D + n(n− 1)
else.

It can be verified that

sno = Θ(
√
D) if D = o(n2)

= n if D = Ω(n2).

A.3 2D Analysis

A.3.1

Proof of Lemma 4.3. Consider a cluster of size sxs. The routing within the
cluster is as shown in Fig. 9a and routing from cluster head to sink is as shown in
Fig. 9b. The routing costs are obtained as follows:

Eintras,c =
(n

s

)2 s−1
∑

i=1

(

2(s− i)Hi +Hi2
)

=
(n

s

)2 s−1
∑

i=1

(

(2(s− i)
(

1 +
i− 1

1 + c

)

H1 +
(

1 +
i2 − 1

1 + c

)

H1

)

=
(n

s

)2

(s− 1)
(

s+ 1 +
(s− 2)(4s+ 3)

6(1 + c)

)

H1

Eextras,c =

n
s
−1

∑

i=0

n
s
−1

∑

j=0

max{s · i, s · j}Hs2

= s(

n
s
−1

∑

i=0

i
∑

j=0

i+

n
s
−1

∑

i=0

n
s
−1

∑

j=i+1

j)
(

1 +
s2 − 1

1 + c

)

H1

=
n

6
(
n

s
− 1)

(4n

s
+ 1

)(

1 +
s2 − 1

1 + c

)

H1.

The total cost is

Es(c) = Eintras,c + Eextras,c

The routing cost for a network-wide SPT i.e. with s = n is

En(c) = Eintran,c + 0 = (n− 1)
(

n+ 1 +
(n− 2)(4n+ 3)

6(1 + c)

)

H1.

now for any s < n and any value of c consider the difference

Es(c) − En(c)

=
n

6(1 + c)

(

(

ns− n

s
− s2 + 1

)

+
c

s2
(

4n2 − 3ns− s2 − 6n+
6s2

n

)

)

. (18)
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It can be verified that the two terms

ns− n

s
− s2 + 1 and 4n2 − 3ns− s2 − 6n+

6s2

n

are positive for any value of s < n. Hence the difference in Eqn. 18 is always
positive. This implies that for all values of c ∈ [0,∞], Es(c) is minimum for
s = n.

A.3.2 Derivation of optimal cluster size. Setting the partial derivative of Es(c)
w.r.t s to zero,

∂Es(c)

∂s
=

n

6(c+ 1)

(

− 2s+ (4c+ 1)n+ (c− 2)
n

s2
− 8c

n2

s3

)

H1 = 0

⇒ −2s3 + ns2 + n = 0, if c = 0

⇒ −2s4 + (4c+ 1)ns3 + (c− 2)ns− 8cn2 = 0, if c 6= 0. (19)

Differentiating again w.r.t s

∂E2
s(c)

∂2s
= −

(2n

s2
+ 2

)

H1, if c = 0 (20)

=
n

3(c+ 1)s4
(12cn2 − s4 − (c− 2)ns)H1, if c 6= 0. (21)

If c = 0, the second derivative in Eqn.20 is always negative and hence the mini-
mum is achieved at the two extremities s = 1 and s = n. Therefore,

sopt(0) = {1, n}. (22)

—If c > 0, for s = o(n
1

2 ), s4 = o(n2) and (c − 2)ns = o(n2). Solving Eqn.19 with
this constraint,

(4c+ 1)ns3 − 8cn2 + o(n2) = 0

⇒ sopt(c) =
( 8c

4c+ 1
n
)

1

3

+ o(n
1

3 ). (23)

It can be verified that a minimum is achieved since the second derivative in
Eqn.21 is positive for this value of s.

—If c > 0, for s = Ω(n
1

2 ), it can be verified that Eqn.19 has no solution for s ≤ n.

A.3.3

Lemma A.3. The near-optimal cluster size s = sno for Es(c) given by Eqn.13

satisfies the condition

Esno
(0) − E∗(0) = Esno

(∞) − E∗(∞).

The proof is similar to proof of Lemma A.1 with

f1(s) =
Es(0) − E∗(0)

n
6H1

− n

s
(s− 1)(4s+ 1)

= −s2 − 3ns+ 3n+ 1, and

f2(s) =
Es(∞) − E∗(∞)

n
6H1

− n

s
(s− 1)(4s+ 1)
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= −4n2

s2
− 3n

s
− 6 · 2 1

3n
4

3 + 3n+ 2 · 2 2

3n
2

3 .

A.3.4

Proof of Theorem 4.4. From Eqns. 22 and 23, sopt(0) = 1, n and sopt(∞) →
(2n)

1

3 .
Using Lemma A.3, the near-optimal cluster size s = sno satisfies:

Es(0) − E∗(0) = Es(∞) − E∗(∞)

⇒
[n2

6s
(s− 1)(4s+ 1) +

n

6

(n

s
− 1

)(4n

s
+ 1

)

s2
]

−
[n

6
(n− 1)(4n+ 1)

]

=
[n2

6s
(s− 1)(4s+ 1) +

n

6

(n

s
− 1

)(4n

s
+ 1

)]

−
[ n2

6(2n)
1

3

(

(2n)
1

3 − 1
)(

4(2n)
1

3 + 1
)

+
n

6

( n

(2n)
1

3

− 1
)( 4n

(2n)
1

3

+ 1
)]

. (24)

Rearranging Eqn.24 and factoring out n
6s2 , we get the condition:

s4 + 3ns3 − (6 · 2 1

3n
4

3 + 3n+ 2)s2 − 3ns+ 4n2 + o(n2) = 0. (25)

Since s4 = o(ns3), ns = o(n2), by factoring out n, Eqn.25 reduces to

3s3 − 6 · 2 1

3n
1

3 s2 + 4n+ o(s3) + o(n) = 0. (26)

It can be verified that Eqn.26 has only one non negative solution,

sno = 0.6487n
1

3 + o(n
1

3 ).
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