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Abstract

Training individuals to make accurate decisions from medical images is a critical component of education in

diagnostic pathology. We describe a joint experimental and computational modeling approach to examine the

similarities and differences in the cognitive processes of novice participants and experienced participants

(pathology residents and pathology faculty) in cancer cell image identification. For this study we collected a bank

of hundreds of digital images that were identified by cell type and classified by difficulty by a panel of expert

hematopathologists. The key manipulations in our study included examining the speed-accuracy tradeoff as well as

the impact of prior expectations on decisions. In addition, our study examined individual differences in decision-

making by comparing task performance to domain general visual ability (as measured using the Novel Object

Memory Test (NOMT) (Richler et al. Cognition 166:42–55, 2017). Using signal detection theory and the diffusion

decision model (DDM), we found many similarities between experts and novices in our task. While experts tended

to have better discriminability, the two groups responded similarly to time pressure (i.e., reduced caution under

speed instructions in the DDM) and to the introduction of a probabilistic cue (i.e., increased response bias in the

DDM). These results have important implications for training in this area as well as using novice participants in

research on medical image perception and decision-making.

Keywords: Medical decision-making, Diagnostic pathology, Signal detection theory, Diffusion decision model,

General object recognition, Cancer image detection

Significance
The ability to classify and interpret medical images is

critical in the diagnosis of many diseases. Despite signifi-

cant improvements in imaging assays as well as meticu-

lous education and training, diagnostic errors still occur.

In order to improve diagnostic decision-making based

on medical images, it is critical to understand the cogni-

tive processes involved in these decisions. This research

borrows well-validated experimental and computational

methods from perceptual decision-making and applies

them to investigate cancer cell image identification.

Using both non-experts as well as pathologists (residents

and faculty), we examine the impact of time pressure

and externally imposed bias on the identification of sin-

gle cell images related to cancer diagnosis. Using com-

putational modeling techniques, we find that these

manipulations have important impacts on diagnostic de-

cisions. Specifically, we find similarities in how novices

and pathologists trade off speed and accuracy instruc-

tions as well as how they respond to externally imposed

bias. In addition, we find that participants with better

domain general visual ability perform better at the task.

In sum, these results shed light on the cognitive mecha-

nisms that play a role in medical image perception and

decision-making. In the future, this knowledge could be
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used to improve training and education, and this method

of investigation could lead to new insights about the

cognitive processes involved in image-based decisions.

Background

Accurate interpretation and classification of medical im-

ages is an important component of the diagnosis and

treatment of numerous diseases. A wide range of med-

ical disciplines (Samei & Krupinski, 2010) ranging from

pathology (our focus here), to radiology, to ophthalmol-

ogy rely on expert analysis of images to detect abnor-

malities. While the exact rate of diagnostic errors is

unknown, consistent evidence suggests that error rates

are > 10% (Goldman et al., 1983; Hoff, 2013; Kirch &

Schafii, 1996; Shojania, Burton, McDonald, & Goldman,

2003; Sonderegger-Iseli, Burger, Muntwyler, & Salomon,

2000). It is thus critical that we understand how people

make perceptual decisions from medical images in order

to improve training and minimize the occurrence of

misdiagnoses. This requires investigation of the cognitive

processes underlying decision-making in this domain

and how those processes evolve with training and ex-

perience. The goal of this paper is to use experimental

methods and computational tools developed in the area

of perceptual decision-making to probe the cognitive

processes involved in pathology image-based decisions

in novices and experts.

Decisions based on medical images have a number of

parallels with perceptual decision-making, where people

make choices based on sensory information. The investiga-

tion of perceptual decision-making has a rich history in

psychology, cognitive science, and neuroscience. In aggre-

gate, this research has shown that perceptual decisions are

typically based on the accumulation of information over

time. Such accumulated perceptual information is thought

to be related to neural activity in multiple cortical and sub-

cortical brain areas (Gold & Shadlen, 2007; Heekeren,

Marrett, & Ungerleider, 2008; Summerfield & de Lange,

2014; Summerfield & Egner, 2009). This accumulation

process is known to be influenced by external factors such

as time pressure and expectations (Egner, Monti, &

Summerfield, 2010; Leite & Ratcliff, 2011; Maddox &

Bohil, 1998; Mulder, Wagenmakers, Ratcliff, Boekel, &

Forstmann, 2012). Computational modeling has shown

that these different external factors influence different la-

tent components of the decision process. In particular,

time pressure affects response caution (quantified by the

amount of information needed to make a decision), while

prior expectations impact internal biases (e.g., bias toward

reporting the presence of an abnormality even before view-

ing an image) (Leite & Ratcliff, 2011; Mulder et al., 2012).

However, perceptual decision-making of medical

images in clinical settings has received less attention.

Numerous studies have probed the perceptual processes

involved in image-based decisions, particularly in the

context of radiology (Bertram, Helle, Kaakinen, &

Svedstrom, 2013; Krupinski, 2010; van der Gijp et al.,

2017). However, these studies have largely focused on

how medical image observers perform visual search

(Bertram et al., 2013; Krupinski, 2010; Krupinski et al.,

2006; Krupinski, Graham, & Weinstein, 2013; van der

Gijp et al., 2017). Eventually, a decision must be made,

and understanding the cognitive processes involved in

these decisions is the main objective of this paper.

Here, we present a study investigating the cognitive

processes underlying cancer image detection in diagnos-

tic pathology. More specifically, we investigate how vari-

ous external factors influence the ability of novice

undergraduate students and pathologists (residents and

faculty) to distinguish between normal cells (standard

white blood cells such as lymphocytes, monocytes, or

neutrophils) and abnormal cancer cells (“blast” cells, as-

sociated with acute leukemia) in clinical images. Toward

this end, we take a joint experimental and modeling ap-

proach utilizing experimental paradigms and modeling

methods previously developed in the course of basic re-

search on perceptual decision-making (Ratcliff & Smith,

2004; Schouten & Bekker, 1967; Wickelgren, 1977).

To investigate this process experimentally, we passively

collected a large bank of digital images of both blast and

non-blast white blood cells drawn from patients at the

Vanderbilt University Medical Center (all images were ob-

tained as part of routine clinical care). A panel of expert

pathologists classified each of these images, providing a

fully annotated data set consisting of hundreds of images

of varying type and level of difficulty. Using this image

bank, we developed a perceptual decision-making experi-

ment to investigate how time pressure and externally im-

posed bias influence individuals’ behavior.

We chose to examine the speed-accuracy tradeoff

(SAT) (Reed, 1973; Wickelgren, 1977) as well as the im-

pact of external bias because these factors have relevance

in the clinical context. With the current and projected

shortage of medical technologists and pathologists

(Allen, 2002; Bennett, Thompson, Holladay, Bugbee, &

Steward, 2015; Lewin, 2016; Sullivan, 2016) coupled with

a desire to improve throughput and turnaround times

and reduce costs, many laboratories hope to increase

productivity by using automated basic recognition

sorters. In essence, automated systems have the potential

to offset some of the human workload in order to in-

crease productivity, which is largely dependent on the

speed with which slides are screened. For example, the

Food and Drug Administration (FDA) increased the

workload for cytotechnologists from 100 slides per day

to 200 slides per day if they are using the ThinPrep im-

aging system, an automated system used for gynecologic

cytology (Elsheikh et al., 2013). However, it is unclear
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how this increase in workload (even though it comes

with the assistance of an automated system) influences

diagnostic decisions. In particular, research has shown

that decreasing screening times for cytotechnologists

from 5 min per slide to 3.7 min per slide resulted in a

lower detection of abnormal findings (10.4–8.3%) and an

increase in false negatives (3.8–7.0%) (Elsheikh et al.,

2010). In other words, the cytotechnologists were trad-

ing off speed and accuracy, even when they had access

to an automated system. More generally, as machine

learning and artificial intelligence (AI) become more inte-

grated into the diagnostic process, the desire for increased

productivity is likely to result in higher workloads for

medical image observers. While machines will likely be

able to process images faster than humans, human ob-

servers will still need to be part of the diagnostic process

(at least for the foreseeable future). Thus, it is critical to

understand how medical image observers trade off speed

and accuracy in diagnostic decision-making.

In addition, prior expectations and biases are likely to

play a significant role in medical image-based

decision-making. In diagnostic pathology, images may be

passed through automated basic recognition sorters and/

or analyzed by medical technologists and residents before

being analyzed by senior faculty experts. In this diagnostic

chain, images that clearly lack abnormalities are rarely

passed up the chain. Thus, an image that has made it to a

senior faculty expert’s desk may in and of itself be a cue,

setting expectations before an image is even seen.

In addition to testing participants’ ability to discrimin-

ate between and classify images of blast and non-blast

cells, we also investigate how participants’ domain gen-

eral visual ability affects their performance on this task.

Toward this end, we employ a second task, the Novel

Object Memory Test (NOMT), to assess each partici-

pant’s general ability to learn and recognize objects with

which they have no prior experience (Richler, Wilmer, &

Gauthier, 2017). We use this to probe to what extent

general object recognition, which has been studied in

much more detail in lab settings (Gauthier et al., 2014;

Hildebrandt, Wilhelm, Herzmann, & Sommer, 2013;

McGugin et al., 2012a, 2012b), correlates with or affects

participants’ efficacy on the blast cell identification task.

To gain further insight into the cognitive processes

underlying decisions on this task, we utilize computa-

tional modeling linked with results of this experiment.

One of the benefits of quantitative modeling, and the

reason we use it here, is that it provides a way to quan-

tify latent cognitive processes and statistically separate

the different components of the decision process

(caution, bias, and rate of information uptake) that are

not accessible through traditional statistical methods

alone. For this, we utilize a version of the classic diffu-

sion decision model (DDM) (Ratcliff, 1978; Ratcliff &

McKoon, 2008; Ratcliff, Smith, Brown, & McKoon, 2016),

which has been shown to account for detailed patterns of

behavior across a wide range of decision-making para-

digms (Ratcliff, Love, Thompson, & Opfer, 2012; Ratcliff,

Thapar, & McKoon, 2001, 2004, 2010), to model the

choice and response time behavior of participants on this

task and extract these underlying cognitive parameters.

Methods

Participants

We recruited both novice and medical professionals to

complete the experiment. Thirty-seven undergraduate stu-

dents at Vanderbilt University participated in exchange for

course credit. In addition, 19 pathologists from the

Vanderbilt University Medical Center (VUMC) partici-

pated in exchange for a $15 gift card. We recruited pathol-

ogists with different levels of experience ranging from first

year pathology residents to faculty pathologists. We tar-

geted about equal numbers of “experienced” and “inex-

perienced” practitioners, defined by the number of

hematopathology rotations completed. All pathology resi-

dents at VUMC must complete at least four rotations by

the end of their residency. We classified individuals who

completed all four mandatory rotations as “experienced”

and those who had not as “inexperienced.” We had 9 “ex-

perienced” and 10 “inexperienced” participants. Note that

our sample sizes were based on convenience (in the case

of the pathologists) as well as modeling requirements. The

typical sample size for experiments using similar modeling

methods is 20–40 participants (Dutilh et al., 2012;

Holmes, Trueblood, & Heathcote, 2016; White &

Poldrack, 2014). The data are available on the Open

Science Framework at https://osf.io/r3gzs/.

Materials

To create the stimuli, we collected a bank of 840 digital

images of Wright-stained white blood cells taken from

anonymized patient peripheral blood smears at VUMC.

The images were taken by a CellaVision DM96 automated

digital cell morphology instrument (CellaVision AB, Lund,

Sweden). This instrument, with its accompanying soft-

ware, identifies and images single white blood cells and

classifies them into one of 17 cell types based on morpho-

logic characteristics. The classification of each cell is con-

firmed by a trained medical technologist.

A ratings panel of three hematopathology faculty from

the Department of Pathology at VUMC was used to iden-

tify and rate each image. The raters first identified each

image as a blast or a non-blast cell. Following this identifi-

cation, they were asked to provide a difficulty rating for

each image on a 1–5 scale. If the raters identified the

image as a blast cell, they were asked to rate how similar

the image was to a classic blast cell (with a rating of 1 be-

ing “not similar” and a rating of 5 being “very similar”).
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Raters were told that a classic blast cell image is one that

might be used in a textbook. If raters identified the image

as a non-blast cell, they were asked to rate how morpho-

logically similar the cell is to a blast cell (with a rating of 1

being “not similar” and a rating of 5 being “very similar”).

Out of the original set of 840 images, the three expert

raters agreed on the cell type (i.e., blast or non-blast) for

633 images. From this set, we grouped the images into

four types based on the difficulty ratings. The average

rating for the blast images was 4.40 (standard deviation

(SD) = 0.46), and the average rating for the non-blast im-

ages was 1.68 (SD = 0.55). Blast images that received an

average rating of 4.66 or greater were categorized as easy

blasts (151 images, Fig. 1a). Blasts images that received

an average rating of 4 or less were categorized as hard

blasts (98 images, Fig. 1b). We selected 4.66 and 4 as the

cutoff points for easy and hard images, respectively, be-

cause these values represented the 0.75 and 0.25 quan-

tiles of the ratings for the blast images, respectively.

Images with an average rating between 4 and 4.66 were

not included, as we wanted clear separation between

easy and hard images. Non-blast images that received an

average rating of 1.66 or less were categorized as easy

non-blasts (129 images, Fig. 1c). Non-blast images that

received an average rating of 2 or greater were catego-

rized as hard non-blasts (108 images, Fig. 1d). We se-

lected 1.66 and 2 as the cutoff points for easy and hard

images because these values represented the 0.25 and

0.75 quantiles of the ratings for the non-blast images, re-

spectively. Images with an average rating between 1.66

and 2 were not included, as we wanted clear separation

between easy and hard images. For the experiment, we

selected 75 images from each category for a total of 300

unique images. This bank of images was used for all as-

pects of the experiment including training, practice, and

the main task. Note that we have more than 300 trials in

the experiment, so some images are repeated (this in-

cludes repeating images from the training and practice

in the main task). However, no images were repeated

until all of the images from a category had been shown.

Procedure

In the main task, participants first completed a training

stage to familiarize themselves with blast cells (both nov-

ices and experts completed the training for consistency).

The training focused on teaching participants to identify

blast cells and was patterned on the training in the

NOMT. There were four blocks of training trials. Each

block started with participants studying five images of

blast cells one at a time. After studying these five im-

ages, participants then completed 15 trials where they

were presented three images (one blast image and two

non-blast images) and asked to choose the image they

thought was the blast cell. The four training blocks had

the following structure of blast and non-blast images:

block 1 was easy blast versus easy non-blast, block 2 was

easy blast versus hard non-blast, block 3 was hard blast

versus easy non-blast, and block 4 was hard blast versus

hard non-blast. Note that the image training used a total

Fig. 1 a–d Sample images of blast and non-blast cells that were classified as easy and difficult. Panel a is an easy blast image, panel b is a hard

blast image, panel c is an easy non-blast image, and panel d is a hard non-blast image. e, f Two sets of sample images from the Novel Object

Memory Task (NOMT). Panel e shows the six Ziggerin targets, and panel f shows the six Greeble targets
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of 180 unique images (60 blast images and 120

non-blast images) from the original set of 300.

After completing the four training blocks, participants

completed a practice block of 60 trials to familiarize

themselves with the main task. Each trial started with a

fixation cross displayed for 250 ms. After fixation, partic-

ipants were shown a single image and had to identify it

as a blast or non-blast cell. Participants received

trial-by-trial feedback about their choices in this block;

thus, these trials acted as additional training for the two

categories of images. In this practice block, half of the

trials were blast cells and half were non-blast cells. Thus,

participants had an equal amount of practice with each

category. Across both the training and practice blocks,

participants completed 120 trials (60 training and 60

practice) before starting the main task. These 120 trials

used a total of 150 non-blast images (corresponding to

all of the non-blast images in our original set of 300

images) and 90 blast images.

The main task consisted of six blocks with 100 trials in

each block. The main task was the same as the practice

block, where participants were asked to identify single im-

ages. However, participants did not receive trial-by-trial

feedback about their choices. They received feedback

about their performance at the end of each block. The 100

trials in each block were composed of equal numbers of

easy blast images, hard blast images, easy non-blast

images, and hard non-blast images, fully randomized.

There were three manipulations across blocks: accur-

acy, speed, and bias. In the accuracy blocks, participants

were instructed to respond as accurately as possible and

were given 5 s to respond. In the speed block, partici-

pants were instructed to respond quickly and were given

1 s to respond. If they responded after the deadline, they

received the message “Too Slow!” The 5-s and 1-s re-

sponse windows for the accuracy and speed conditions,

respectively, were based on the response time data from

the three expert raters. The 0.975 quantile of the expert

raters’ response times was 4.96 s; thus, we set the accur-

acy response window to 5 s. The 0.5 quantile of the ex-

pert raters’ response times was 1.04 s; thus, we set the

speed response window to 1 s.

In the bias blocks, participants were shown a probabil-

istic cue on half of the trials. The cue was a red dot that

was shown after fixation for 500 ms. The cue identified

the upcoming image as most likely being a blast cell.

The cue was valid 65% of the time, and participants were

instructed about the validity at the start of the block.

The validity of the cue was based on previous literature

using similar cueing manipulations (Dunovan, Tremel, &

Wheeler, 2014; Forstmann, Brown, Dutilh, Neumann, &

Wagenmakers, 2010; Glockner & Hochman, 2011). In

particular, we selected a cue with low validity because

we hypothesized that a low validity cue might have a

larger impact on novice participants than pathologists.

That is, novices might rely more on the cue as compared

to experts, who might simply ignore the cue because of

its low validity. The order of the first three blocks was

randomized but with the constraint that there was one

block for each type of manipulation (i.e., accuracy, speed,

and bias). The order of the last three blocks was identi-

cal to the order of the first three blocks.

After completing the main task, participants completed

a version of the NOMT (Richler et al., 2017). The NOMT

is modeled after the Cambridge Face Memory Test

(Duchaine & Nakayama, 2006) and provides a measure of

domain general visual ability. In our experiment, we used

two categories of novel objects (Ziggerins, shown in

Fig. 1e, and Greebles, shown in Fig. 1f). For each category,

participants started with a learning phase where a target

object was shown in three views followed by three test tri-

als where the target was shown alongside two distractor

objects. Participants received trial-by-trial feedback during

these trials. This learning procedure was repeated for six

target objects (the six targets for each category are shown

in Fig. 1e and f), where each target object was slightly dif-

ferent from the other targets in the same category. Follow-

ing the learning phase, participants completed 54 test

phase trials where they had to select which of three

objects was any one of the six studied targets.

Modeling methods
Signal detection theory (SDT)

We fit an equal-variance form of SDT to the data using

hierarchical Bayesian methods (Lee & Wagenmakers,

2013). SDT has two main parameters of interest: dis-

criminability and criterion. We performed separate hier-

archical fits to the novice participants, inexperienced

pathologists (less than four hematopathology rotations),

and experienced pathologists (four or more hemato-

pathology rotations).

Diffusion decision model

To gain insight into the participants’ decision process

beyond what is possible with signal detection theory and

statistical analysis of behavioral results alone, we use the

canonical diffusion decision model (DDM) of

decision-making. The DDM posits that, over the course of

a decision, evidence stochastically accumulates over time

until a confidence threshold is reached and a decision is

initiated. This model has three core elements that make it

valuable in assessing participants’ behavior on the blast

identification task. (1) How fast people accumulate evi-

dence over time is encoded in an accumulation rate par-

ameter (d). A high/low rate indicates better/worse

performance on the task. (2) The level of confidence a

person requires to make a decision (i.e., level of caution) is

encoded in a threshold parameter (a). (3) Finally, any
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initial preference for responding one way or the other

prior to seeing the stimulus is described by a bias param-

eter (z). These are the three critical characteristics/param-

eters in the model that we will rely on to make inferences.

See Fig. 2 for a schematic description of the DDM.

The full version of the DDM that we use here com-

prises 9 (or 10) free parameters: accumulation rates for

easy and hard blast images (dBE, dBH), accumulation rate

for easy and hard non-blast images (dNBE, dNBH),

trial-to-trial variability in those accumulation rates (sd),

start point (z, which determines the initial bias),

trial-to-trial variability in the start point (sz), evidence

threshold (a), encoding and response time (tND). There

is also a parameter encoding within-trial stochasticity

(s). However as is common, we fix this parameter to a

value s = 0.1 to avoid parameter degeneracy in the model

(one parameter must be fixed). For the cueing instruc-

tion data, we introduce an additional parameter to de-

note the bias on trials where the cue is actually shown

(zcue). This will allow us to determine if the cue has any

discernible effect on initial bias. Given that the speed,

accuracy, and cueing instruction conditions all have the

potential to influence people’s behavior in different ways,

we fit each instruction condition separately and do not

assume up front that any model parameters are the same

across experimental conditions.

We use a hierarchical Bayesian algorithm to fit the

DDM to the participants’ data, providing an account of

the choices made and the full distribution of response

times at both the individual and population levels. For

purposes of hierarchical DDM model fitting, we grouped

all 19 pathologists (experienced and inexperienced) into

a single medical population and all 37 novices into a sin-

gle novice population. These two populations were fit in-

dependently. The (in)experienced medical participants

were grouped together due to the practical limitations of

hierarchical modeling; 9 and 10 participants in each

subgroup, respectively, are insufficient to define a hier-

archical population with the DDM. Given the high level

of correlation between model parameters in this model,

we utilize the differential evolution Markov chain Monte

Carlo (DEMCMC) method (Turner & Sederberg, 2012)

to carry out this Bayesian estimation. Since the DDM

does not have an analytically tractable closed-form likeli-

hood function, we utilize a recently developed approxi-

mation, the probability density approximation (PDA)

method (Holmes, 2015; Holmes & Trueblood, 2017;

Turner & Sederberg, 2014), to approximate the likeli-

hood of each parameter set sampled.

Results and discussion

We first examined average accuracy on the 60 practice

trials preceding the main blast identification task to see

how well participants learned to identify the images. For

novice participants, the proportion of trials answered

correctly in the practice block was 0.73 (SD = 0.09). We

removed three participants with accuracy less than two

standard deviations below the average, because these

participants were likely not engaged in the task. For the

pathologists, the proportion of trials answered correctly

in the practice block was 0.90 (SD = 0.08). One of the

experienced pathologists was removed due to a com-

puter error that affected data recording.

For the behavioral analyses, we used Bayesian statistics

implemented using the open source software package

JASP (Team, 2016). For each test, we report the Bayes

factor (BF), which is the ratio quantifying the evidence

in the data favoring one hypothesis relative to another

(when comparing the alternative hypothesis to the null,

we calculate BF10, where the subscript “10” indicates evi-

dence for the alternative “1” to the null “0”). While BFs

are directly interpretable, labels for the strength of BFs

have been proposed. In particular, BFs greater (less) than

1, 3 (1/3), 10 (1/10), 30 (1/30), and 100 (1/100) are con-

sidered Anecdotal, Moderate, Strong, Very Strong, and

Extreme evidence, respectively (Kass & Raftery, 1995).

First, we examined whether or not novice participants

learned to generalize information about blast cells from

training and practice to the main test trials. Because

many of the images used in training and practice were

also used in the main trials, it is possible that novices

simply remembered specific images and their corre-

sponding labels rather than learning general characteris-

tics of blast versus non-blast cells. To examine this

issue, we compared accuracy between the “old” blast im-

ages (the 90 images used in training and practice) and

the “new” blast images (the additional 60 images not

seen in training or practice) during the main trials.

Overall, the accuracy on “old” blast images during the

main trials was 0.76 (SD = 0.14), and the accuracy on

“new” blast images was 0.75 (SD = 0.13). This difference

Fig. 2 Diffusion decision model schematic. Evidence accumulates

over time based on the stimulus present. Here the top/bottom

boundaries indicate the levels of evidence needed to respond

blast/non-blast, respectively
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was not statistically significant (BF10 = 0.49; t(33) = 1.47,

p = 0.152). Thus, we can conclude that participants did

learn general characteristics of blast images during train-

ing and practice and were generalizing this information

to new images during the main trials. Note that all 150

non-blast images were used in training and practice, and

thus this comparison is not possible for these images.

However, we believe that similar learning most likely oc-

curred for the non-blast images rather than participants

remembering individual images.

Next, we examined the hit and false alarm rates for the

three groups of participants across all trials and conditions.

We compared the hit rates for the three groups of partici-

pants using a Bayesian analysis of variance (ANOVA). This

analysis showed that the alternative model was strongly pre-

ferred to the null (BF10 = 6032.67). In particular, the hit rate

for both groups of pathologists was greater than the hit rate

for novices (BF10 = 221.5 for novices as compared to experi-

enced pathologists; BF10 = 262.3 for novices as compared to

inexperienced pathologists), but there was no difference be-

tween the two groups of pathologists (BF10 = 0.44). Next we

compared the false alarm rates for the three groups

using a Bayesian ANOVA and found that the alternative

model was preferred to the null (BF10 = 7.67). Specifically,

experienced pathologists had a lower false alarm rate than

novices (BF10 = 38.63). However, there was no difference

between the false alarm rate for novices and inexperienced

pathologists (BF10 = 0.43). There was also very little differ-

ence between the two groups of pathologists (BF10 = 1.5).

Signal detection theory results

We fit SDT to each of the speed, accuracy, and bias in-

struction conditions separately. We examined the

best-fit values for the two key model parameters: dis-

criminability and criterion. Figure 3 shows group-level

posterior distributions (best-fit parameter distributions)

for these parameters in each of the three instruction

conditions and for the three groups of participants, and

Table 1 lists the corresponding means. As shown in both

Fig. 3 and Table 1, experience leads to increased discrim-

inability, but no change in criterion.

Next we analyzed differences in parameter values

across instruction conditions by conducting Bayesian t

tests on the group-level posterior distributions and re-

ported the corresponding Bayesian p values. For the

two groups of pathologists, there was no significant

difference in discriminability between speed and accur-

acy conditions (p = 0.18 for experienced pathologists

and p = 0.15 for inexperienced pathologists). However,

discriminability was significantly larger under accuracy

instructions as compared to speed for the novice par-

ticipants (p = 0.03). There was no difference in the cri-

terion for accuracy and speed instructions (all p values

were greater than 0.25).

For the bias condition, we fit trials where the cue was

present and absent separately. Bayesian t tests on the

posterior distributions showed no difference in

discriminability when the cue was present as compared

to absent (all p values were greater than 0.4). A Bayesian

Fig. 3 Signal detection theory fit results. Group-level posterior distributions for discriminability (top panels) and criterion (bottom panels) parameters for

the three instruction conditions (speed and accuracy in the left panels and bias in the right panels) for the three groups of participants
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t test on the posterior distributions showed that the cri-

terion was marginally lower when the cue was present

as compared to absent for novices (p = .096). There was

no difference in the criterion when the cue was present

as compared to absent for the two pathologist groups

(both p values were greater than 0.195).

In sum, the SDT analysis shows that expertise influ-

ences discriminability and not criterion. However, we

did not find any differences in the two key parameters

across the instruction conditions (except for lower dis-

criminability under speed instructions for novices). The

lack of differences among instruction conditions is not

surprising. SDT provides only a limited analysis of

underlying cognitive processes, in part because it does

not take into account response times. Below, we analyze

the data using the DDM, which takes into account both

choice and response time data.

Comparison of SDT parameters with visual ability (NOMT)

For all participants, the average proportion of correct re-

sponses on the NOMT was 0.73 (SD = 0.10). We com-

pared participants’ performance on the NOMT with the

discriminability and criterion parameters from the SDT

modeling. We calculated Bayesian Pearson correlations

between NOMT accuracy and SDT parameters separately

for accuracy, speed, and bias blocks since the model was

fit separately to these conditions. The correlations are pro-

vided in Table 2. Overall, we found positive correlations

between discriminability and NOMT accuracy. The corre-

lations were the strongest for the speed and bias condi-

tions (i.e., the BFs for these conditions indicated Moderate

evidence for the correlations). There was no evidence for

correlations between NOMT accuracy and criterion. In

sum, specific ability on the task (measured by discrimin-

ability) is positively related to domain general visual ability

(measured by the NOMT).

Diffusion decision modeling results

Similar to SDT, we fit the DDM to each of the speed, ac-

curacy, and bias instruction conditions separately. It is

in principle possible to fit the totality of the data at once,

as is often done. Typically this is accomplished by fixing

certain parameters (accumulation rates, for example) to

be the same across instruction conditions while others

(threshold, for example) are condition dependent. This

however restricts up front the properties of the model

that can vary between conditions. By fitting the three

conditions separately, we allow maximal model flexibil-

ity, so that the data can determine what is the same or

different across conditions.

In addition, we also fit the novice participants and pa-

thologists separately. Note that for pathologists we only

fit the hard trials in the accuracy condition. We did this

because the pathologists made almost no errors on the

easy trials in the accuracy condition, and the DDM has

difficulty fitting data when choice proportions are near

ceiling (i.e., perfect performance), since errors are re-

quired to inform some parameters. For the speed and

bias conditions, the pathologists made a sufficient num-

ber of errors on the easy trials that we were able to in-

clude them in the fitting of these conditions.

To determine if the model was able to capture the data

(which is necessary for it to be useful), we (1) extracted

the mean parameters for fits to each of the conditions,

(2) calculated the predicted choice proportion and mean

response time for each condition, and (3) compared

those predictions to choice proportions and mean re-

sponse times from data. Results (Fig. 4) show that the

model provides a good accounting of most aspects of

the observed data. In each of these figure panels, the

Table 1 Means of the group-level posterior distributions for discriminability (top) and criterion (bottom) parameters from SDT for

three groups of participants in the accuracy, speed, and bias conditions

Parameter Condition Novice Medical (< 4 rotations) Medical (4+ rotations)

Discriminability Accuracy 1.45 2.22 2.73

Speed 1.22 1.86 2.50

Bias (cue present) 1.39 2.47 2.65

Bias (cue absent) 1.38 2.53 2.70

Criterion Accuracy -0.07 -0.41 -0.16

Speed -0.05 -0.28 -0.11

Bias (cue present) -0.19 -0.31 -0.18

Bias (cue absent) -0.06 -0.51 -0.08

Table 2 Bayesian Pearson correlations between NOMT

performance and discriminability and criterion parameters from

SDT for the accuracy, speed, and bias conditions

Condition Discriminability Criterion

Accuracy 0.23 (BF10 = 0.64) 0.10 (BF10 = 0.22)

Speed 0.31 (BF10 = 1.85) 0.16 (BF10 = 0.33)

Bias (cue present) 0.35 (BF10 = 3.70) −0.07 (BF10 = 0.19)

Bias (cue absent) 0.34 (BF10 = 3.10) 0.04 (BF10 = 0.18)
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diagonal line represents the line of perfect agreement

(prediction = observation), with results lying close to

this line in most cases. Note that there is more spread

in the fits for the bias condition because this condition

has half as many observations as the speed and accur-

acy conditions (due to the presence of cue/no cue tri-

als). Thus, increased noise in the data would be

expected. Also, the model has some trouble accounting

for the long response times, which is a common issue

with DDM and other similar models since it is a model

of speeded decision-making. Overall, the model fits the

observed data well; thus, we will further analyze the

model results.

We next look at the best-fit values for the three key

model parameters linked to behavioral characteristics of

interest here (accumulation rate, threshold, bias).

Figure 5 shows group-level posterior distributions (best--

fit parameter distributions) for these parameters under

the speed and accuracy conditions. Analysis of the drift

rate estimates shows a consistent pattern across condi-

tions. For the novice participants, evidence accumulation

rates are lower for more difficult images, regardless of

instruction condition and difficulty. Note that we do not

show the drift rates for the easy trials for the patholo-

gists. These were not estimated for the accuracy condi-

tion, and the drift rate posteriors for the speed and bias

a b c

d e f

g h i

j k l

Fig. 4 DDM quality of model fit. Comparison of model predictions (vertical axes) and observed results (horizontal axes) for response proportions

(a–c for novices and g–i for pathologists) and mean response times (RT) (d–f for novices and j–l for pathologists) under the three instruction

conditions. The solid diagonal line indicates perfect agreement where predictions and observations exactly coincide

Trueblood et al. Cognitive Research: Principles and Implications  (2018) 3:28 Page 9 of 14



conditions were too broad (due to the small number of

errors) to draw a strong conclusion. Interestingly, there

is a significant difference between participants’ ability to

perceive the characteristics of blast and non-blast im-

ages, respectively, as evidenced by the fact that dNB ≠ dB.

For novices, it appears that the characteristics of hard

non-blast images are the most difficult to discern, while

the characteristics of easy non-blast are the simplest. In

both novice participants (Fig. 5 top panels) as well as pa-

thologists (Fig. 5 bottom panels), hard non-blast images

were more difficult to discern than hard blast images.

Results additionally show that there is no detectable

bias in the speed or accuracy conditions. That is, partici-

pants had no implicit preference for identifying cells as

either blast or non-blast (i.e., posterior of the start-point

bias includes 0). Comparison of the threshold parame-

ters between the speed and accuracy conditions suggests

that the speed instruction predominantly influences the

threshold parameter. Thus, under speed instructions, it

appears that both novice participants and pathologists

become less cautious.

Figure 6 shows posterior distributions (best-fit param-

eter distributions) for the bias condition. The introduction

of a cue indicating a higher likelihood that the subsequent

image is a blast does appear to introduce a small bias in

both novices and pathologists. Specifically, the start-point

parameter shifts toward the threshold in the presence of a

cue, suggesting that participants have a prior bias to re-

spond “blast” before seeing an image. In addition, the drift

rates in the bias condition show a similar pattern to those

in the speed and accuracy conditions.

Comparison of DDM parameters with visual ability (NOMT)

Next, we compared participants’ performance on the

NOMT with measures of speed, accuracy, and bias de-

rived from this modeling. To do so, we used Bayesian

linear regression to predict NOMT performance using

the best-fit parameters from the DDM for each individ-

ual (we included both novices and pathologists). We car-

ried out the linear regression analyses separately for

accuracy, speed, and bias blocks since the model was fit

separately to these conditions. For the accuracy

condition, there were 5 predictors (tND, dBH, dNBH, a,

bias (a – z/2)) since dBE and dNBE were not estimated

for the pathologists. For the speed condition, there were 7

predictors (tND, dBE, dBH, dNBE, dNBH, a, bias (a – z/2)).

For the bias condition, there were 8 predictors since there

were two different biases in the model (one for cued trials

and one for uncued trials). We examined all possible

combinations of predictors (25 = 32 models were fit for

the accuracy condition, 27 = 128 models were fit for the

speed condition, and 28 = 256 models were fit for the bias

condition).

For the accuracy condition, no model was strongly

preferred to the null model (for all models, BF10 < 1.5).

For the speed condition, the preferred model was the

one with only dNBE (BFModel = 10.41 and BF10 = 115.91,

R2 = 0.242). In particular, participants with larger dNBE

parameter values had better performance on the NOMT.

For the bias condition, the preferred model was one with

both non-blast drift rates (dNBE, dNBH) and the

start-point bias parameter when the cue was absent

(BFModel = 23.82, BF10 = 158.26, R2 = 0.336). Similar to

the speed condition, participants with larger non-blast

drift rates had better performance on the NOMT. In

addition, better NOMT performance was associated with

a smaller bias parameter value when the cue was absent.

Overall, these results show that the primary cognitive

DDM parameter that correlates with NOMT perform-

ance is the evidence accumulation rates on non-blast

images. As compared to SDT, the DDM provides a more

nuanced correlation between task-specific ability and the

Fig. 5 DDM fit results for speed and accuracy conditions. Posterior distributions for the threshold, bias, and evidence accumulation rate

parameters (hyper mean parameters) for the speed and accuracy conditions (novices top panels and pathologists bottom panels). Threshold and

start-point bias estimates are in the left panels with the accuracy (black) and speed (gray) conditions fit separately. Evidence accumulation rates

are shown in the middle and right panels. Note that in the model, drift rates for blast and non-blast images are positive and negative, respectively.

Here we have presented dBH, dBE, –dNBH, –dNBE for ease of comparison
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NOMT, showing that the relationship is predominately

driven by ability on non-blast images. These results sug-

gest that the NOMT might have limited ability to identify

individuals who make minimal detection errors (as this re-

lationship seems to be confined to only non-blast images).

As a final note, we acknowledge that the difference in

compensation between the pathologists and novices is a

possible confound in our study. The pathologists were com-

pensated with gift cards, whereas the novices were compen-

sated through course credit. While it is possible that our

results were influenced by the difference in compensation,

we feel that this effect was at most minor. In particular, the

pathologists did not receive performance-based compensa-

tion. All pathologists received a gift card worth the same

amount regardless of performance.

Conclusions

In this study, we applied a joint experimental and mod-

eling approach to investigate the cognitive processes in-

volved in cancer cell image detection in diagnostic

pathology. To probe the differences between the under-

lying cognitive processes of novices and experts, we used

SDT and DDM analyses to assess the influence of two

common cognitive manipulations that are relevant in

the clinical context: speed-accuracy tradeoff and prior

expectations. Many medical image observers are facing

increasing workloads due to the current and projected

shortages of medical technologists and pathologists

(Allen, 2002; Bennett et al., 2015; Lewin, 2016; Sullivan,

2016) along with desires to improve turnaround times

and reduce costs. The aim to increase productivity can

result in decreased screening times and ultimately a tra-

deoff between speed and accuracy. The increased

reliance on automated and AI systems has the (counter-

intuitive) potential to compound the problem. Even

though these systems can offset some of the human

workload, humans still play an integral role in diagnosis

(at least for the near future). In the human-machine

diagnostic team, it is often assumed that humans are

doing less work per case and thus can increase the over-

all number of cases reviewed within a given day (e.g., the

FDA increased the workload for cytotechnologists from

100 slides per day to 200 slides per day if they are using

the ThinPrep imaging system). However, such an in-

crease in workload (even though it comes with the as-

sistance of a machine) can potentially exacerbate the

tradeoff between speed and accuracy.

Additionally, we assessed the influence of prior expecta-

tions on performance. In diagnostic pathology, images are

often analyzed by medical technologists, residents, and/or

automated basic recognition sorters before being seen by

senior pathologists. Images that clearly lack abnormalities

are rarely passed on to a senior expert. Thus, the mere

presence of an image on an expert’s desk is a cue, poten-

tially setting expectations before the image is viewed. To

examine the influence of prior expectations, we assessed

how participants responded to the presence of a probabil-

istic cue. We also examined individual differences in

decision-making by measuring domain general visual abil-

ity using the Novel Object Memory Test (NOMT).

To assess the influence of these manipulations, we

used two common modeling frameworks intended to ex-

tract cognitive parameters associated with task perform-

ance, signal detection theory (SDT) and the diffusion

decision model (DDM). Each of these models was fit to

participant data to assess how the parameters change in

Fig. 6 DDM fit results for bias conditions. Posterior distributions for the threshold, bias, and evidence accumulation rate parameters (hyper mean

parameters) for the bias condition (novices top panels and pathologists bottom panels). Threshold and start-point bias estimates are in the left

panels presenting estimates for the cued (red) and uncued (black) conditions separately. Evidence accumulation rates are shown in the right

panel. Note that in the model, drift rates for blast and non-blast images are positive and negative, respectively. Here we have presented dBH, dBE,

–dNBH, –dNBE for ease of comparison
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response to different instruction conditions (i.e., speed,

accuracy, and bias conditions) as well as how parameter

values relate to experience.

SDT shows a strong dependence of discriminability on

expertise with increased expertise being associated with

a higher degree of discriminability. There was no differ-

ence in the criterion parameter for different levels of ex-

perience. The SDT analysis also showed very little

influence of instructions on parameters (though speed

instructions appear to impact discriminability for nov-

ices). This finding is not surprising given the restricted

nature of SDT, which only has two cognitive parameters

to account for a wide array of potential effects and thus

can lead to multiple effects being conflated. In particular,

it has no mechanism for quantifying the effect of

changes in cognitive strategies associated with response

caution (which often occur under time pressure) or re-

sponse biases. In addition, we found that NOMT per-

formance was positively correlated with discriminability

and not criterion.

DDM results paint a more detailed picture of the in-

fluence of the key manipulations (speed, accuracy, and

bias) on cognitive processes. Results show that speed in-

structions lead to a significant reduction in caution in

both novices and experts. We note that this finding is at

odds with other literature suggesting that experts can

become more accurate under speed instructions

(Beilock, Bertenthal, Hoerger, & Carr, 2008; Beilock,

Bertenthal, McCoy, & Carr, 2004). In addition, estimates

of the start-point bias parameter indicate that the pres-

ence of a probabilistic cue biases participants to respond

“blast” before viewing the image in both novices and pa-

thologists. Finally, drift rate estimates show distinct dif-

ferences between accumulation rates associated with

blast and non-blast images. For difficult conditions, blast

cells appear to be more discernable (higher associated

drift rate) than non-blast cells for both novices and ex-

perts. In contrast, on easy conditions, non-blasts appear

to be more discernable than blast cells for novices. We

also examined the relationship between DDM parame-

ters and NOMT accuracy. This analysis revealed that the

primary DDM parameter that correlates with NOMT

performance is the evidence accumulation rates on

non-blast images. As compared to SDT, these results

paint a more nuanced picture of the relationship be-

tween task-specific ability and the NOMT, suggesting

that the NOMT might be limited in assessing individual

differences in this task.

In aggregate, these results suggest the following con-

clusions. First, novices and experts have similar behav-

ioral characteristics. While experts are clearly superior at

the task (i.e., greater discriminability), both novices and

experts respond to time pressure and external cues in

similar ways, and they both exhibit asymmetric

responses to blast and non-blast stimuli. This suggests

that while experiments with trained expert participants

will always be the gold standard for research in this field,

there is merit in working with novice participants, who

are easier to recruit and allow for a wider array of studies.

In addition, these results have important implications for

training in this area. Clearly, expertise alone is not suffi-

cient in altering the cognitive strategies and biases that are

used when participants face time pressure and external

cues. Second, our results show that individual differences

in diagnostic decision-making are due in part to differ-

ences in visual ability (as measured by the NOMT), but

these results are limited since the relationship is mainly

driven by ability on non-blast images (as assessed by the

DDM). Understanding individual differences is the first

step in developing and improving individualized training.

Future research could further explore the manipulations

introduced here as well as the impact of individual differ-

ences in medical image decision-making.
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