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In vitro sperm storage is a necessary part of many arti	cial insemination or in vitro fertilization regimes for many species, including
the human and the horse. In many situations spermatozoa are chilled to temperatures between 4 and 10∘C for the purpose of
restricting themetabolic rate during storage, in turn, reducing the depletion of ATP and the production of detrimental by-products
such as reactive oxygen species (ROS). Another result of lowering the temperature is that spermatozoa may be “cold shocked” due
to lipid membrane phase separation, resulting in reduced fertility. To overcome this, a method of sperm storage must be developed
that will preclude the need to chill spermatozoa. If a thermally induced restriction-of-metabolic-rate strategy is not employed, ATP
production must be supported while ameliorating the deleterious e�ects of ROS. To achieve this end, an understanding of the
nature of energy production by the spermatozoa of the species of interest is essential. Human spermatozoa depend predominantly
on glycolytic ATP production, producing signi	cantly less ROS than oxidative phosphorylation, with the more e�cient pathway
predominantly employed by stallion spermatozoa. �is review provides an overview of the implications of sperm metabolism for
in vitro sperm storage, with a focus on ambient temperature storage in the stallion.

1. Introduction

Horses are selected for breeding on the basis of pedigree
and athletic performance as opposed to reproductive traits
and therefore, like humans, are not subjected to selection
pressure for fertility. Reproductive 	tness traits are heritable
[1], and the practice of circumventing subfertility through the
use of assisted reproductive technologies (ART), because it
places no importance on reproductive 	tness in the selection
of breeding animals or partners, has resulted in equine and
human populationswith signi	cantly lower per cycle concep-
tion rates than other species [1–3]. As arti	cial insemination
(AI) is a widely utilised tool in modern horse reproduction
[4], with around 90% of Standardbred and Hanoverian foals
being produced via AI of chilled or cryopreserved stallion
spermatozoa [2, 5], this animal model provides an excellent
source of information about the in�uence of cell metabolism
on the storage of male gametes. For its part, the use of AI

brings a number of advantages, such as the prevention and
control of disease through the eradication of direct male to
female contact [6], an increased rate of genetic gain through
the importation of new genetics and the preservation of
spermatozoa for later use in case of death or infertility.

2. Sperm Metabolism

Spermatozoa are highly specialisedmammalian cells, playing
the vital roles of paternal DNA delivery and activation of the
oocyte following fertilisation. �e site of sperm deposition
(in the vagina for the human and the uterus for the horse) is
physically removed from the site of fertilisation (the oviduct).
While a proportion of sperm transport is facilitated by
uterine contractions, the spermatozoa must in themselves
be su�ciently motile to traverse the uterotubal junction
prior to oviduct binding and to locate the egg following
ovulation. In addition, spermatozoa must undergo a process
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called capacitation for the 	nal maturational changes that
are required to allow them to fertilise the oocyte. �is
process involves extreme membrane remodelling and the
hyperactivation of motility and, as such, is a highly energy-
dependent process [7].

�e process of spermatogenesis requires extensive
remodelling of a conventional spherical cell to become one
of the most highly specialised and morphologically distinct
cells in the body. During this transformation, the DNA in the
sperm nucleus reaches the physical limits of compaction to
achieve a quasicrystalline state [8]. �is extreme compaction
requires the removal or resorption of most of the cytoplasm,
at the same time removing the majority of the organelles
(such as the endoplasmic reticulum, ribosomes, and
Golgi apparatus) that are responsible for the regulation
of metabolism in somatic cells. �e result of this drastic
modi	cation is that spermatozoa are le� both translationally
silent and depleted of intracellular enzymes and energy
reserves such as fat droplets, yolk granules, and glycogen.
For this reason, spermatozoa are highly dependent on their
immediate extracellular environment for both the enzymatic
activities that would normally be conducted intracellularly
and the supply of energy substrates [9]. In somatic cells, the
array of enzymes involved in protecting spermatozoa against
oxidative stress would also be housed intracellularly within
the cytoplasm. Spermatozoa, on the other hand, depend
upon epididymal and seminal �uids to provide the richest
and most diverse combination of antioxidants in the body,
including several antioxidants that are unique to the male
reproductive tract [10, 11].

As with somatic cells, the predominant metabolic path-
ways that spermatozoa use to produce ATP are glycolysis
and oxidative phosphorylation (OXPHOS) [12].�e enzymes
necessary for glycolysis are primarily associated with the
	brous sheath located in the principal piece of the tail. In
contrast, OXPHOS occurs in themitochondrial gyres located
in the midpiece. OXPHOS is a signi	cantly more e�cient
method of ATP production than glycolysis. Despite this,
spermatozoa frommost heavily researched species, including
the human and laboratory rodents, depend predominantly on
glycolysis for ATP production [12].

�e role of glycolysis in driving the production of ATP
formotility has beenwell researched due to its relative impor-
tance in human and laboratory species. Large polarmolecules
such as glucose cannot di�use across membranes, and their
transport is facilitated by membrane bound proteins called
glucose transporters (GLUTs) [13]. GLUTs are categorised
according to their relative ability to transport hexoses (such as
glucose, mannitol, and fructose), amino sugars, or vitamins
[14]. Since the discovery of the glucose transporter GLUT1,
many additional GLUTs have been characterised [15, 16].
In spermatozoa of the stallion, GLUTs are localised to the
tail and acrosome, suggesting that glycolytic processes are
involved in generating energy for the membrane modi	ca-
tions required for capacitation and the acrosome reaction
[16]. In glycolytic spermatozoa, the distribution of GLUTs
changes along with the capacitation status of the cell (i.e.,
between noncapacitated and capacitated states) to provide
energy at the sites requiring membrane modi	cations or

hyperactivation of motility [16]. In contrast, the distribution
of GLUTs on stallion spermatozoa does not change with the
capacitation status of the cell [16], indicating that, in species
who rely on OXPHOS, glycolysis is not required to support
ATP production for motility, capacitation, or the acrosome
reaction.

Despite the well-characterised presence of GLUTs on
equine sperm, it has become abundantly evident that stallion
spermatozoa di�er from that of other well-studied mam-
malian species, in that their energy demands are met not by
glycolytic pathways but by using OXPHOS [17–19], and in
the presence of mitochondrial inhibitors, they su�er a rapid
loss of velocity and a dramatic decline in ATP content [17].
�is dependence results in a nonconventional relationship
between ROS production and fertility in the stallion [17–
19], with the source of ROS being the mitochondrial electron
transport chain, in which about 1–3% of O2 reduced in the
mitochondria during OXPHOS forms superoxide [20].

�ere is a long-standing paradigm that it is the nonviable
or poor quality spermatozoa that generate the most ROS
[21]. An alternative explanation is that rapidly metabolising
spermatozoa from highly fertile stallions exhibit higher
levels of OXPHOS activity, following in vitro storage prior
to AI present with elevated levels of ROS generation and
lipid peroxidation. �us, while human clinical data steadily
report negative correlations betweenmale fertility and sperm
oxidative stress [22, 23], a recent study has revealed a
paradoxical inverse relationship between fertility and the
percentage of live cells without oxidative damage in the
stallion [17]. In addition, more fertile ejaculates (those which
resulted in a pregnancy following insemination) had lower
vitality and a higher percentage of cells displaying ROS-
induced damage following in vitro storage compared to
ejaculates which did not result in a pregnancy [17]. From
these results, it was hypothesised that during in vitro storage
spermatozoa from the more fertile stallions (assumed to be
more metabolically active) were becoming exhausted more
rapidly, such that, by the time that the assays were performed
in the laboratory, these cells had su�ered an accelerated
demise due to the accumulation of metabolic by-products,
such as ROS and cytotoxic lipid aldehydes in a “live fast-die
young” paradigm. Another interesting observation was that
the greater e�ciency of OXPHOS mediated ATP production
by equine spermatozoa supported a higher velocity, with
stallion spermatozoa being around 60% faster than human
spermatozoa. Ultimately, high ROS production by stallion
spermatozoa appears to be a physiologically normal scenario
brought about by superoxide leakage from the mitochondrial
electron transport chain duringOXPHOS [18], with a positive
relationship between mitochondrial ROS production and
sperm velocity, leading to increased rates of lipid peroxida-
tion [17] and, following prolonged storage, a loss of motility
and vitality [24]. �is phenomenon introduces a number of
implications for the in vitro storage of stallion spermatozoa,
since the prolonged generation of ROS in the absence
of extracellular free radical and lipid aldehyde scavengers
will lead to irreversible oxidative damage, impairing DNA
integrity and sperm functionality.
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3. In Vitro Storage of Spermatozoa

In the horse, the most common reason for sperm storage
prior to AI is the asynchronous nature of ovulation in the
mare. �is makes it di�cult to predict the precise time
of ovulation [25] and means that stored spermatozoa must
retain their functionality and longevity for extended periods
to allow for the possibility of a delayed ovulation. �e long-
term storage of spermatozoa is useful so that AI may be
performed when ovulation is deemed imminent (based on
follicle size determined via transrectal ultrasonography). If
AI is to be performed within 12 h of semen collection,
spermatozoa are generally le� at room temperature (“fresh”).
If sperm longevity must be maintained for longer periods,
spermatozoa are either chilled (up to 72 h) or cryopreserved
(inde	nite) to restrict the metabolic rate of the spermatozoa.
�is temperature-induced metabolic restriction reduces the
rates of both ROS production and acidi	cation of the storage
medium through the accumulation of lactic acid and CO2
from glycolysis and OXPHOS, respectively. However, the
spermatozoa ofmany stallions, and indeedmen, do not toler-
ate the stressors associated with chilling or cryopreservation
[26–29]. �erefore, there is a need to develop a medium
which will extend the longevity of spermatozoa without the
need to chill or be cryopreserved.

4. Sperm Cryopreservation

Cryopreservation is presently the only viable method of in
vitro storage of spermatozoa for periods exceeding 72 h.How-
ever, the process of cryopreservation and thawing reduces the
acrosomal integrity, viability, and motility of spermatozoa in
all species examined including the horse [30–32] while for
human spermatozoa there is evidence that cryopreservation
results in the formation of DNA lesions on genes that are
essential for fertilisation and normal embryonic development
[33]. Many of the deleterious e�ects induced by cryopreser-
vation may be attributed to osmotic stress. During cooling
below 0∘C, extracellular ice crystals begin to form. �is
phase change causes a large increase in the osmolarity of
any remaining liquid to which the spermatozoa are exposed,
placing cells under extreme osmotic stress [34, 35]. Addition-
ally, the cryoprotectants make the cryodiluent hyperosmotic,
which causes dehydration of the cells through osmosis [36].
While this dehydration is essential for postthaw viability to
be maintained, the extreme hyperosmolarity induces cellular
stress as water rushes across the sperm membrane via water
channels in an attempt to balance the osmolarity [37]. �e
result of these osmotic stressors includes membrane damage
[38], DNAdamage [39, 40], and the production of ROSwhich
causes premature capacitation-like changes [41].

5. Chilling

�e Standardbred, Sport Horse, and Polo Pony industries
are almost entirely dependent on AI for breeding purposes.
Sperm chilling is the most widely utilised technique for the
transport and storage of stallion spermatozoa. “Chilling” is
most commonly achieved using commercial passive cooling

deviceswhich slowly cool extended semen to a temperature of
between 4 and 10∘C, an adequately low enough temperature
to restrict metabolism su�ciently to maintain acceptable
sperm functionality for up to 72 h. However, stallion sper-
matozoa are signi	cantly more susceptible to cold shock
than those of other species, probably due to a lower ratio
of cholesterol to phospholipid in the sperm membranes
[42] and, as a result, the insemination of chilled semen is
associated with success rates as low as 44% per cycle [3].
As with cryopreservation, there are signi	cant unexplained
di�erences between stallions in the suitability of their semen
for low temperature storage [43], a phenomenon which
reduces the commercial viability of such animals due to
sperm damage following chilling [44]. Additionally, animal
derived compounds, such as milk and egg yolk, are routinely
incorporated into media for chilled and frozen semen due to
their membrane-stabilising e�ects [45].�is presents a major
biosecurity concern for customs authorities and, as such, is a
chief limiting factor for the genetic improvement of herds in
geographically isolated countries such as Australia.

6. Ambient Temperature Storage

�e development of a medium that allows spermatozoa to be
stored at ambient temperatures for at least one week would
permit the importation of new genetics into geographically
isolated areas, while avoiding the loss of fertility that occurs
following semen chilling and cryopreservation. Moreover, as
ambient temperature storage does not require the addition of
animal-derived products, such as egg yolk and skim milk for
membrane stabilisation, the biosecurity risks associated with
importing spermatozoa will be considerably reduced.

�ere are several implications that arise when higher
temperatures are utilised for the in vitro storage of stallion
spermatozoa. �e 	rst of these is the growth of bacteria
in the nutrient rich semen extender during storage. Many
microbes are present on the penis of the stallion; these include
normal commensal bacteria along with microbes from soil,
water, and faeces which may contaminate the penis when the
stallion gallops, rolls, or lies down in the paddock. �rough
the process of semen collection using an arti	cial vagina,
these bacteria will inevitably contaminate the ejaculate [46].
Several of these strains have been shown to be deleterious
to sperm motility and vitality, even during chilled storage
at 4∘C [47] and following cryopreservation [48]. However,
several antibiotic formulations have been investigated for
their e�ects on curtailing bacterial growth in extended
stallion semen [47, 49], and based on these studies, further
work in our laboratory has revealed that a storage medium
containing 0.25mg/mL gentamicin, 50 �g/mL streptomycin,
and 50 IU/mL penicillin is able to suppress the growth of
bacteria for up to one week at room temperature (Gibb et al.
unpublished data).

If sperm metabolism is not restricted by temperature
reduction, OXPHOS will produce signi	cant quantities of
ROS [20], which will compromise sperm function [11, 24]
(Figure 1). �e majority of attempts to assuage the damaging
e�ects of ROS on stallion spermatozoa through antioxidant
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Figure 1: Implications of oxidative phosphorylation (OXPHOS) on sperm storage in vitro. Mitochondrial superoxide (O2
∙−) leakage causes

lipid peroxidation and reactive electrophilic aldehyde production.�ese aldehydes adduct to functional proteins resulting inmotility loss and
mitochondrial damage, which may trigger apoptosis and oxidative DNA damage. If this damage does not result in cell death, then germ line
mutations may cause embryonic failure and abortion or, should the mutations not be lethal, result in poor health in the resulting o�spring.

supplementation either have produced marginal improve-
ments [50–54] or have had detrimental e�ects [55, 56].�is is
in contrast to the positive e�ects seen in human spermatozoa
[57, 58] and may be due in part to their alternative mode
of ATP production. More recently, the antioxidant proper-
ties of carnitine have come into the spotlight [59–63]. L-
Carnitine supplementation of stallion spermatozoa during in
vitro storage signi	cantly reduces both mitochondrial free
radical production and lipid peroxidation [63], suggesting
that the bene	cial e�ects observed by others may well be
attributed to L-carnitine’s antioxidant properties. However,
supplementation with L-carnitine alone does not completely
abolish ROS-induced damage, indicating that it is insu�cient
for the complete scavenging of ROS [63]. Clearly, further
re	nement of the antioxidants that might be used to facilitate
the long-term storage of stallion spermatozoa is required.
Given that mitochondrial metabolism is the source of the
majority of ROS, a mitochondrial antioxidant that will also
act as a regulator of mitochondrial bioenergetic functions
may present the best option to reduce the downstream
e�ects of ROS on sperm function and DNA integrity. While
L-carnitine meets these requirements, it is possible that
at 50mM we have reached its bene	cial limits and that
supplementation with additional antioxidants capable of per-
forming alternative roles inmitochondrial energy production
homeostasis may be necessary. Possible candidates for this
role are coenzymeQ10, an integral component of the electron
transport chain and an antioxidant capable of counteracting
the ROS-induced peroxidation of mitochondrial phospho-
lipids [64], and melatonin, a free radical scavenger which
reduces nitric oxide generation within mitochondria while
performing bioenergetic functions by regulating respiratory

complex activities, Ca2+ in�ux, and mitochondrial perme-
ability transition pore opening [65].

Sperm motility is lost as a consequence of lipid perox-
idation not only due to ROS attack [66], but also due to
the concomitant depletion of ATP [67] which compromises
myriad ATP-dependent functions, disrupting homeostasis
and hastening cell death [68]. If spermatozoa are to be stored
at ambient temperatures, it is vital to support mitochondrial
energy production while reducing avoidable ATP depletion
which results when pressure is placed on ATP-dependent
pathways such as the regulation of ionic �ux [69]. By utilising
nonionic, organic osmolytes, such as betaines, carbohydrates,
and amino acids, in place of sodium chloride, pressure on
the ATP-dependent Na+/K+ pumps is alleviated, deducing
the rate of ATP depletion [69]. Recent research has revealed
that supplementing media with pyruvate, the primary energy
source utilise for OXPHOS, and L-carnitine, the biologically
active free form of carnitine which plays an essential role in
mitochondrial ATP synthesis while being a powerful antiox-
idant [70] and an organic, nonionic osmolyte [71], results in
themaintenance ofmotility and viability at room temperature
akin to that of chilled semen for up to 72 h [63]. Furthermore,
stallion spermatozoa contain a number of proteins involved
in beta-oxidation of mitochondrial fatty acids and inhibition
of this metabolic pathway leads to reduced motility, indi-
cating its signi	cance in fertility [72]. As L-carnitine plays
an essential role in beta-oxidation, in addition to its role as
an antioxidant and osmolyte, it boosts mitochondrial ATP
production through the transportation of acetyl groups from
pyruvate into the mitochondrial matrix and through the
bu�ering of free CoA. �e acetylation of carnitine (acetyl-L-
carnitine; ALCAR) by spermatozoa occurs across the outer
mitochondrial membrane to facilitate the provision of acetyl
groups for �-oxidation and entry into the citric acid cycle
for ATP production.�e in vivo importance of L-carnitine in
spermquality is well recognized [73–78]. Androgen regulated
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epithelial cells actively secrete L-carnitine into the epididymal
lumen [79, 80] resulting in concentrations of up to 2000-fold
higher than that of blood, with spermatozoa containing the
highest intracellular concentrations of L-carnitine in the body
[76], suggesting that this molecule is of extreme importance
in fertility. In addition, oral supplementation of L-carnitine
results in increased uptake of pyruvate by spermatozoa [81],
demonstrating an important interactive role between these
compounds in the support of sperm metabolism.

7. Conclusion

As the major implication for ambient temperature storage of
equine spermatozoa is the production of ROS as a conse-
quence of OXPHOS, future research should concentrate on
reducing the deleterious e�ects of this pathway either through
the redirection of metabolism towards the less deleterious
glycolysis or through elucidating the mechanisms behind
the reversible mitochondrial uncoupling which induces a
quiescent state during the in vivo storage of spermatozoa
in the epididymis. Work in our laboratory has revealed that
mouse epididymal �uid can reversibly uncouple spermmito-
chondria [82], a phenomenon which we have also observed
in the horse. Once this factor has been identi	ed, there is the
potential to exploit it to induce sperm quiescence during in
vitro storage akin to that in the epididymis. In addition, we
have found that supplementation of sperm storage medium
with rosiglitazone, a member of the thiazolidinedione fam-
ily of compounds, signi	cantly enhances sperm longevity
during storage at ambient temperature. We hypothesize that
rosiglitazone is redirecting stallion sperm metabolism from
OXPHOS to glycolysis by increasing the e�ciency of glucose
uptake through GLUT1 [83] and the preferential utilisation
of both aerobic [84] and anaerobic glycolysis [85]. While
currently the only feasible method for the inde	nite storage
of spermatozoa is cryopreservation, methods for the storage
of spermatozoa at room temperature for at least one week,
a su�cient period of time to account for the logistical
constraints surrounding insemination and IVF protocols,
are in the 	nal stages of optimization. �is development
will make the need to chill spermatozoa obsolete and in
many cases will also negate the need to cryopreserve for
gamete importation purposes, resulting in improved per-
cycle fertility and embryo development rates.
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[69] I. A. Silver andM. Erecińska, “Energetic demands of theNa+/K+

ATPase inmammalian astrocytes,”Glia, vol. 21, no. 1, pp. 35–45,
1997.
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