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This exploratory study investigated data-gathering behaviors exhibited by 100 seventh-grade

students as they participated in a scientific inquiry-based curriculum project delivered by a
multi-user virtual environment (MUVE). This research examined the relationship between
students’ self-efficacy on entry into the authentic scientific activity and the longitudinal data-

gathering behaviors they employed while engaged in that process. Three waves of student
behavior data were gathered from a server-side database that recorded all student activity in
the MUVE; these data were analyzed using individual growth modeling. The study found that

self-efficacy correlated with the number of data-gathering behaviors in which students initially
engaged, with high self-efficacy students engaging in more data gathering than students with
low self-efficacy. Also, the impact of student self-efficacy on rate of change in data gathering
behavior differed by gender. However, by the end of their time in the MUVE, initial student

self-efficacy no longer correlated with data gathering behaviors. In addition, students’ level of
self-efficacy did not affect how many different sources from which they chose to gather data.
These results suggest that embedding science inquiry curricula in novel platforms like a

MUVE might act as a catalyst for change in students’ self-efficacy and learning processes.

KEY WORDS: gender; interactivity; longitudinal analysis; middle school; multi-user virtual environment;
River City; scientific inquiry; self-efficacy.

INTRODUCTION

Many members of the business community,
many policymakers, and much of the education
community believe that science education is in crisis:
Large numbers of students in our schools are not
learning the science content or developing the
appreciation of scientific inquiry needed to become
the scientifically literate workers and citizens
demanded by society (Business Higher Education
Forum, 2005; Coble and Allen, 2005). Scholars dis-

agree about the reasons for this crisis, but most
would concur that one cause is the lack of student
engagement in science classes. According to the Na-
tion’s Report Card for 2005, only one-third of all
students take the traditional 3 years of high school
science (Chemistry, Biology and Physics), and nearly
one-third only take a single year (Grigg et al., 2006).
Why is this?

While students’ lack of engagement stems from
multiple factors, this study focuses on one: students’
sense of their own abilities to succeed in science. In
his analysis of science education, Lemke (1990) con-
cludes that, ‘‘Science is presented as being a difficult
subject. When students fail to master it, they are
encouraged to believe it is their own fault: they are
just not smart enough to be scientists’’ (p. 138). In my
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years of pre-college teaching, I found repeatedly that
students who were otherwise confident and capable
believed that they could not learn science, and so they
chose not to engage in the activities and experimen-
tation that are the heart of science. This perpetuated
a vicious cycle: As the students lost confidence, they
stopped trying to participate, which spawned further
failure; as failures mounted, they lost even more
confidence, and eventually opted out of learning
science completely.

A recent longitudinal study by Tai et al.,
reported in Science (2006) indicates one outcome of
this cycle. These researchers discovered a strong
relationship between eighth grade students who
expected to have a career in science and those who
eventually graduated with an undergraduate degree
in science. Therefore, unless we can convince students
early on in their schooling that science is achievable
for them, we run the risk of perpetuating the idea that
science is only for a very few elite students.

How do we break this pattern of failure? Some
believe that reversing students’ erosion of confi-
dence, their loss of self-efficacy, is the place to start
(Jinks and Morgan, 1996). Self-efficacy is the belief
that one can succeed in performing particular
behaviors; this has been shown to be more strongly
related to academic outcomes than many other
individual characteristics like student gender, stu-
dent self-concept, or the perceived usefulness of the
knowledge later in the student’s life (Pajares and
Miller, 1994). Stemming the loss of self-efficacy in
science as students progress through school is a
crucial first step in improving student educational
outcomes in science. To stem this tide of decreasing
confidence in science, we must better understand
how differences in self-efficacy lead students to
participate differentially in learning practices, which
then ultimately result in divergent learning out-
comes.

Therefore, I conducted an exploratory study to
examine the relationship between students’ self-effi-
cacy on entry into authentic scientific activity and the
growth of scientific inquiry behaviors they employed
while engaged in that process over time. I did this
using an innovative science curriculum delivered
through a computer-based learning environment that
records each student’s conversations, movements,
and activities while they are behaving as a practicing
scientist in a ‘‘virtual world’’ called River City. Stu-
dents were free to choose where in the virtual envi-
ronment to explore, with whom to converse, what
artifacts to examine, which data collection tools to

use, and what guidance to seek. In observing the
students’ scientific inquiry behaviors in this virtual
world, I focused on the relationship between stu-
dents’ self-efficacy and how much scientific evidence
they chose to gather, as well as the diversity of the
types of scientific evidence they chose to utilize over
time.

BACKGROUND AND CONTEXT

Scientific Inquiry and its Impact on Student Learning

For the last two decades, scientific inquiry has
been a major curriculum standard in most policy
doctrines (American Association for the Advance-
ment of Science, 1990, 1993; National Research
Council, 1996). The National Science Education
Standards define scientific inquiry as

(Scientific) inquiry is a multifaceted activity that in-

volves making observations; posing questions;

examining books and other sources of information

to see what is already known; planning investiga-

tions; reviewing what is already known in light of

experimental evidence; using tools to gather, ana-

lyze, and interpret data; proposing answers, expla-

nations, and predictions; and communicating the

results. (National Research Council, 1996, p. 23).

This definition highlights the importance of
making observations, formulating hypotheses, gath-
ering and analyzing data, and forming conclusions
from that data. A question underlying this work is
whether participating in scientific inquiry improves
student learning?

Several empirical studies have compared
students studying in classrooms that promote scien-
tific inquiry, as defined above, to those in other kinds
of science classrooms. For example, Mason found no
differences in achievement in college chemistry
between students who took an inquiry-based chem-
istry course in high school and those who took a
traditionally taught chemistry course (reported in
Leonard et al., 2001). However, Leonard et al. (2001)
themselves found that students participating in a
yearlong scientific inquiry-based biology course pos-
ted higher gains in biology concepts, and in the
understanding of scientific processes. Furthermore,
Alberts (2000) discovered that participating in scien-
tific inquiry appears to improve retention of student
learning. Before relating the above description and
factors of scientific inquiry to the curricular context
used in this study, I also overview the other core
focus of this study: self-efficacy.
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What is Known About Self-efficacy in Science

and its Impact on Behavior

In seminal work, Bandura (1977) defined ‘‘self-
efficacy’’ as the belief that one can successfully
perform certain behaviors, such as graphing data.
As such, self-efficacy is a belief in one’s abilities to
accomplish a task, not a measure of those abilities.
Pajares (1995, 2000) further argued that self-efficacy
affects behavior by regulating an individual’s choices,
the extent of his or her expended effort, and his or her
emotional responses. In the classroom, students with
higher self-efficacy are more likely to:

• Persevere in difficult situations (Lent et al.,
1984; Pajares, 2000);

• See complexity as a challenge (Pajares, 2000);
• Be engaged (Pajares, 2000);
• See failure as indication that more effort is
needed (Bandura, 1986; Collins, 1984; Pajares,
2000);

• Choose specific strategies to enhance learning
(Zimmerman and Bandura, 1994);

• Attribute success to ability (Pajares, 1995);

Students with lower self-efficacy are less likely to
do the above, and more likely to:

• Equate failure to bad luck and poor ability
(Pajares, 1995, 2000);

• Presume that a problem is more complex than
it is (Pajares, 2000).

Not only does self-efficacy mediate behavior, but
it also affects outcomes. Students with higher
self-efficacy in a particular subject perform better and
are more likely to be interested in a career in that field
(Lopez and Lent, 1992; Pajares, 1997).

While I have described these relationships quite
generally, there is much research suggesting that self-
efficacy is context-dependent (Smith and Fouad,
1999), and scholars debate whether global measure-
ments of self-efficacy are as strongly predictive of
specific outcomes as their context-specific alternatives
(Bandura, 1986; Bong, 1996; Pajares, 1996; Smith
and Fouad, 1999). To measure self-efficacy in the
learning of science in this study, I used a context-
specific instrument to measure students’ self-efficacy
for scientific inquiry, a measure that is specifically
appropriate to the scientific tasks and problems posed
to students in the River City project. In previous
research (Ketelhut, 2004), I designed, piloted, and
refined this measure, a subscale of the Self-efficacy in
Technology and Science Instrument (SETS).

Scientific Inquiry and this Study: the River City World

This research is conducted within a technology-
based curriculum, called River City. River City is a
multi-user virtual environment (MUVE) designed to
engage teams of two to four students in a collabo-
rative scientific inquiry-based learning experience. In
this world, students conduct their scientific investi-
gations in a virtual historical town—populated by
themselves, digitized historical artifacts, and com-
puter agents—in order to detect and decipher a
pattern of illness that is sweeping through the virtual
community. Students manipulate a digital character,
called an avatar, in order to explore the town; and
they conduct virtual experiments to test their scien-
tific hypotheses about the causes of the River City
epidemic.

This research on self-efficacy was embedded in a
larger, ongoing, NSF-funded project that has imple-
mented River City nationwide with nearly 8,000 stu-
dents since 2000. Previous research indicates that
students are engaged by the virtual experimentation,
that their scientific inquiry skills improve, and that
their self-efficacy also increases (Ketelhut and Nelson,
in review; Ketelhut et al., in press).

In the larger study, in order to explore the effects
of different pedagogical strategies on student moti-
vation and learning, we designed several different
River City treatments: one rooted in guided social
constructivism, two rooted in different aspects of
situated learning, and two versions that contain
embedded guidance hints, termed the ‘‘high guid-
ance’’ and ‘‘low guidance’’ treatments (Nelson et al.,
2005). Each implementation of the larger study as-
sessed the impact of a sub-group of these different
treatments, with students in the experiment being
randomly assigned to them.

The guidance system embedded in River City was
designed by Brian Nelson (2005) and offers
constructivist hints to participants at various loca-
tions within the city. These hints promote reflection
and offer scaffolds embedded in the context. Prompts
for these hints, not the hints themselves, appear to
students after they exhibit specific behaviors, such as
entering a building. For example, a student entering
the hospital and clicking on the admissions record for
the hospital and then traveling to the tenement homes
would be offered the opportunity to connect their
gathered information. When activated, hint #2 would
read: ‘‘There are more mosquitoes here now. Are there
more illnesses?’’ The content of the hints are individ-
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ually tailored to the participant, based on the cumu-
lative history of his or her scientific exploration up to
that point. The ‘‘high guidance’’ treatment offers three
hints to a participating student each time it appears,
whereas the ‘‘low guidance’’ treatment only offers one.

For the purposes of this exploratory study, I
chose to investigate the scientific inquiry behaviors of
students in a single treatment group—the ‘‘high
guidance’’ group. By accessing the ‘‘high guidance’’
system, students had an additional source of infor-
mation about the problems facing them as scientists
in River City, and therefore, the record of their
obtained behaviors in the City offers deeper insight
into their decision process.

Scientific Inquiry Behaviors in River City

River City is a problem-based, student-centered
project where students can gather evidence from the
environment in diverse ways, based in part on the
practices in which an epidemiologist might engage
while investigating an outbreak of illness. For
example, students are able to explore the town and
gather tacit clues (e.g., about the topography of the
town); they are also able to interview computerized
residents, sample water and insects, visit the hospital,
and look for clues in various other places they select,
such as in embedded digital historical photographs
and in the City library. In the City, students are
guided to explore these various learning options, but
not directed to choose specific sources of information
or particular activities.

Multi-user virtual environments offer students a
non-linear approach to learning. While various options
may result in different kinds of learning, teams of
students can succeed in solving the problem they are
posed in River City using multiple alternate paths
through a variety of sources that help develop their
understanding. For example, one team of learners
might choose to gather clues about the problem by
interacting with computerized residents who describe
their medical symptoms; another team might access
the admissions record of the virtual hospital to see
who was admitted, with what symptoms, and from
what part of town. Because teamwork is strongly
encouraged, the effect of these teams on individual
student behavior was incorporated into the analysis.

For this research, I used the definition of
scientific inquiry provided by the National Science
Education Standards (National Research Council,
1996, p. 23) to identify the scientific behaviors that I
recorded and analyzed for each participant. I list

them below, and I have mapped each onto the loca-
tion in River City where the behavior could be ob-
served:

(1) ‘‘Making observations.’’ By moving around
the world, students can make visual and
auditory observations about the city and its
inhabitants. A server-side database, through
communication with the software, then re-
cords the student’s interactions and aggre-
gates those into the student’s path for that
exploration.

(2) ‘‘Posing questions.’’ Students can also pose
questions of the 32 computerized residents
of River City and elicit short sets of infor-
mation. Again, the database records what
they ask and how the computerized resident
answers their questions.

(3) ‘‘Examining books and other sources of
information to see what is already known.’’
Students can also access information directly
from books in the River City library as well
as from guidance hints, from embedded
clues in digitized historical images, and from
the hospital admissions records. Every time
a student clicks his or her mouse on a
source of information during a visit to River
City, the time and identity of that source are
recorded in the database.

(4) ‘‘Using tools.’’ Students can also gather sci-
entific data using two virtual microscope
tools: a water sampling tool and a ‘bug-
catching’ tool that are built into the soft-
ware. Each tool is activated explicitly by a
student mouse click that is then recorded in
the database by name and with a timestamp.

Over the course of a 3-week implementation,
students visited the River City environment on six
separate occasions. During the first visit, students
were primarily engaged in exploring River City, and
the tasks that they performed focused on helping
them become familiar with the software interface.
Then, in each of the following three visits, students
completed a new set of scientific mini-tasks designed
to support the overarching goal of discovering the
cause of the epidemic; each visit involved experienc-
ing a different season in the virtual city (winter,
spring, summer). These mini-tasks also helped intro-
duce students to the tools available in River City for
their investigation. During these three visits, partici-
pating students were focused on gathering informa-
tion to help them formulate a scientific hypothesis in
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response to the mystery they were posed. During the
fifth and sixth visits, participating students were able
to change one factor in one of two identical worlds,
thus creating ‘‘control’’ and ‘‘experimental’’ worlds in
which they tested their hypotheses about the source
of the illness that was sweeping the City. In the
analysis reported here, I focus on data from the stu-
dents’ second, third and fourth visits to the City, as
their behavior during these visits was devoted to
scientific inquiry and was less circumscribed than
during the first visit or the last two visits.

River City incorporates a server-side database
that supports a wide variety of coding and analysis
techniques. For example, an investigation of the
interactions that students engage in with River City’s
computerized residents can reveal to which residents
students chose to talk, what they asked the residents,
and whether the gender of the resident affected stu-
dent choice of whom to interact with and what to say.
Identifying, coding and analyzing student micro-
behaviors at this level may cast important light on the
interrelationship between students’ levels of self-efficacy
and their information seeking behaviors over the
course of the learning experience.

Specific Research Questions

Through its built-in database, River City offers
data on how students experienced a novel, authentic
scientific activity and provides an opportunity to
investigate how student self-efficacy is related to sci-
entific inquiry behavior, a hypothesized potential first
link in the chain to improved learning in science. For
this research, therefore, I explored the growth in
scientific inquiry behaviors that individual students
exhibited over their second, third, and fourth visits to
the River City virtual world, by investigating the ways
that they collected scientific evidence in the world.
Then, I examined whether growth in inquiry behaviors
differed by student self-efficacy in scientific inquiry,
measured prior to entry into the virtual world.

In addition to looking at student scientific
behaviors overall, I also examined growth in the
diversity of sources from which individual students
chose to gather data, and whether this growth too
was related to self-efficacy in scientific inquiry. My
specific research questions were therefore:

(1) What growth in scientific inquiry behaviors
overall do students exhibit in River City? Do
students with lower self-efficacy gather less
scientific evidence and demonstrate lower

growth rates of accessing scientific evidence
than students with higher self-efficacy?

(2) What growth in the diversity of sources for
gathering data do students exhibit in River
City? Do students with lower self-efficacy
gather scientific evidence from fewer sources
and demonstrate lower growth rates in
diversity of sources than students with high-
er self-efficacy?

RESEARCH DESIGN

Site

I gathered data on a subset of students in 16
seventh-grade classes taught by four different teachers
in one middle school in a public school system in New
York State. These students represent the entire seventh
grade in this district, and their teachers volunteered to
implement the River City project in the context of
their science classes. The student population in the
district was approximately 80% white, with 3% eligi-
ble for free or reduced lunch (New York State, 2003).

Sample

I used data collected from the sample of 96
students who were randomly assigned individually to
the ‘‘high guidance’’ treatment of the River City
evaluation. As described previously, these students
were chosen because they had access to an additional
source of information in the guidance hints. This
particular student sample was, like their school,
somewhat homogenous: 6% were eligible for free or
reduced lunch, 3% were categorized as special edu-
cation (for emotional reasons), 11% spoke English as
a second language. 52% of the students were male.
The students showed considerable heterogeneity,
however, in their entering scores. On a scale of one to
five, student self-efficacy in scientific inquiry ranged
from 1.8 to 4.8, with an average value of 3.5 and a
standard deviation of 0.56. In addition, their pretest
scores on scientific content ranged from 7 to 27 with
an average of 16.3 (maximum possible score was 28)
and a standard deviation of 5.

Procedures

(1) Prior to implementation, students were ran-
domly assigned within class to one of five
treatments.
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(2) Teachers then created teams of 2–4 students
within treatment and within class.

(3) During the first two class periods of the Riv-
er City implementation, students responded
to two pre-surveys: one in which they self-
reported on their affective characteristics
(including the twelve-item SETS survey),
and the second designed to assess their
knowledge of disease and scientific inquiry,
crafted specifically to evaluate the content to
be taught in the River City intervention.

(4) Students then spent approximately the next
10 days participating in the River City pro-
ject, making a total of six visits with the
remaining 4 days devoted to team design
work and interpretation and whole class tea-
cher-facilitated discussions. While in the
City, their interactions and communications
with the computer ‘‘residents’’ of the city
were recorded in the server-side database. As
indicated earlier, the data I analyze is drawn
from students’ second, third, and fourth vis-
its to River City, during which time their
movements and choices of scientific behavior
are primarily guided by their own interest.
Based on classroom observations, the degree
of team collaboration that took place during
visits 2–4 differed widely by team; however,
my analysis indicated that, for these three
visits, team collaboration did not exert a sig-
nificant effect on student behavior.

Measures

Outcomes

The two outcomes for my analyses were derived
from measurements and coding of the scientific in-
quiry behaviors that students presented during each
visit to River City; the behaviors measured repeatedly
over the student’s second, third, and fourth visits.
Since the goal of these behaviors is to access new
information, repeat visits to the same source were
only counted once, except for two of the variables,
indicated below, where multiple visits to the same
source could result in new information. In addition, I
created thresholds of student involvement in the
world; students who logged into a particular River
City world for less than 15 min or engaged in less
than 5 scientific inquiry behaviors during a single visit
were counted as absent for that visit.

First, my outcome measures were derived from
measurements on the following indicators:

(1) The number of different places visited by
each student during each visit per class peri-
od. This variable captures the NSES’ crite-
rion of making observations (National
Research Council, 1996, p. 23).

(2) The number of different water sampling sta-
tions accessed by each student during each
visit per class period. This variable measures
the NSES’ criterion of using tools (National
Research Council, 1996, p. 23).

(3) The number of different ‘‘bug-catching’’ sta-
tions accessed by each student during each
visit per class period. This variable measures
the NSES’ criterion of using tools (National
Research Council, 1996, p. 23).

(4) The number of times that each student ac-
cessed the hospital admissions records dur-
ing each visit per class period. This variable
measures the NSES’ criterion of gathering
evidence from book materials (National Re-
search Council, 1996, p. 23).

(5) The number of different digitized pictures
with clues that each student clicked on dur-
ing each visit per class period. This variable
measures the NSES’ criterion of gathering
evidence from book materials (National Re-
search Council, 1996, p. 23).

(6) The number of times each student accessed
a library book during each visit per class
period. This variable measures the NSES’
criterion of gathering evidence from book
materials (National Research Council, 1996,
p. 23).

(7) The number of times each student interacted
with different guidance messages in the indi-
vidualized guidance system during each visit
per class period. This variable measures the
NSES’ criterion of accessing information
from other sources (National Research
Council, 1996, p. 23).

(8) The number of different computerized
agents of which each student asked ‘what’s
new’ during each visit per class period. This
variable measures the NSES’ criterion of
posing questions (National Research Coun-
cil, 1996, p. 23).

My two outcome variables were composites
formed from the preceding indicators, as follows:
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(1) The total number of scientific inquiry behav-
iors engaged in by each student during each
visit per class period, formed by adding all
eight of the above indicators;

(2) The diversity of choices made by each stu-
dent in gathering evidence during each visit
per class period. This variable was formed
by counting the number of above categories
of scientific inquiry behavior from which the
student gathered data. The measure ranged
from 0 to 8. During my growth modeling, I
used the square root of diversity as my out-
come, in order to ensure that the individual
trajectories were linear in time.

Question Predictors

I was interested in seeing if time and initial self-
efficacy predicted for the outcomes listed above.
Time was represented by each student’s second,
third, and fourth visit to River City. Therefore, in
my analysis, the ‘‘initial visit’’ referred to students’
second visit to River City. I measured self-efficacy in
doing inquiry science for each student prior to
working in River City using the scientific inquiry
subscale of the SETS instrument (Ketelhut, 2004). It
contains 12 items; each rated on a scale from 1 (low)
to 5 (high). Overall scores are computed by aver-
aging the student’s responses across the 12 items of
the subscale, with high scores representing high self-
efficacy. The measure has an estimated internal
consistency reliability of 0.86 in a population of
middle school students.

Control Predictors

In addition to these two question predictors, I
controlled for students’ prior knowledge, their
gender and who their teacher was. The prior sci-
ence knowledge of each student was measured on
the pre-intervention assessment. This instrument
consists of 28 multiple-choice questions on biology
and scientific inquiry. Scores are computed by
adding up the number of correct responses, and
they range from 0 to 28 with higher scores repre-
senting more content knowledge. The measure has
an estimated reliability of 0.86 (Ketelhut et al., in
press). I controlled for this variable in my regres-
sion analyses because Lawless and Kulikowish
(1996) found that students’ exploration patterns in
hypermedia depended on their prior science
knowledge.

Gender of each student was also controlled.
Prior research on River City indicated that the rela-
tionship between use of the guidance system and
content gain scores differed by gender (Nelson, 2005),
and so, I controlled for this in each of my analyses.
Lastly, I controlled for the fixed effect of the teacher
of each student.

Data Analyses

Recall that my first research question is: What
growth in scientific inquiry behaviors overall do
students exhibit in River City? Do students with lower
self-efficacy gather less scientific evidence and dem-
onstrate lower growth rates of accessing scientific
evidence than students with higher self-efficacy? To
address this question, I conducted an individual
growth modeling analysis of students’ total scientific
inquiry behaviors across the second, third, and fourth
visits to River City, using SAS PROC MIXED, full
maximum likelihood estimation (Singer and Willett,
2003). In my analyses, I hypothesized that individual
student growth in total scientific inquiry behaviors
was linear in visit (time). I included student self-effi-
cacy score and my controls as predictors. Initially, I
conducted a four-level analysis to account for the
presence of time, student, the student-team, and the
teacher, with the last being accounted for by the fixed
effects of teacher. After accounting for time, student
and teacher, I discovered that I could ignore the
student-team, as its effect was not significant.

Since self-efficacy suggests that students with
high self-efficacy will persevere longer and expend
more effort (see previous review), I expected to find
that students with higher self-efficacy engaged in
more scientific inquiry behaviors than students with
lower self-efficacy initially. Additionally, I expected
to find that students with higher self-efficacy in-
creased the number of scientific inquiry behaviors in
which they engaged, across time, more rapidly than
students with lower self-efficacy.

To address research question 2, I also used
individual growth modeling to examine student
changes over visits two, three, and four to River City.
However, in this case, my outcome was replaced by
the square root of my second outcome, an outcome
that measured how varied were students’ choices of
where to gather scientific evidence. My analyses were
similar to those conducted for research question 1
with the outcome replaced. I expected to find, simi-
larly to research question 1, that students with higher
self-efficacy chose to gather data from more varied
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sources than students with lower self-efficacy initially,
and that their per visit rate of change would increase
more rapidly than those with lower self-efficacy. This
hypothesis stems from self-efficacy theory, which
suggests that high self-efficacy students find com-
plexity a challenge whereas low self-efficacy students
see it as an obstacle.

FINDINGS

Table I presents fitted multi-level models to ad-
dress both of my research questions. As noted in the
preceding section, I fit these models using multi-level
modeling that accounted for the nesting of time
within student, student within team, and team within
teacher. Teachers were represented by fixed effects.
However, I found the effects of team to be negligible
or non-existent in all models fitted, so I removed this
level from my analyses.1 Therefore, columns 2

through 4 outline the specifics of fitted multi-level
models 1, 1a and 1b that address research question 1,
while column 5 presents fitted multi-level model 2
that addresses research question 2. In the first eight
rows, I list the estimated fixed effects on the outcome
of each question and control predictor as well as any
interactions present in that model. The next three
rows list the teacher fixed effects. This is followed by a
listing of the random effects in the next four rows.
Lastly in the final four rows, I list goodness of fit
statistics, including )2LL, its difference between
models, and an estimated pseudo-R2 statistic. In what
follows, I use entries in the table to address my
research questions.

Research Question 1: The Growth in Total Scientific

Inquiry Behaviors

Table I presents three models developed to ad-
dress research question 1. Model 1 and 1a, columns
2 and 3 of Table I, are interesting precursors to the
final model. The first, Model 1, shows the effect of
time on data gathering without regard to self-

Table I. Parameter Estimates (Standard Errors) and Approximate p-Values for Fixed and Random Effects from a Series of Fitted

Multi-level Models in Which the Two Outcomes are Predicted by Gender and Self-efficacy Over Time (n = 96)

Outcome

Total number of behaviors Diversity of data-gathering

sources (square root)

Model 1

Base model

Model 1a

Self-efficacy

Model 1b

Full model

Model 2

Base model

Fixed effects

Intercept 11.50*** (1.35) 5.78 (3.75) )1.46 (5.73) 1.60*** (0.06)

Visits 1.82** (0.58) 1.83** (0.58) 8.58* (3.60) 0.16*** (0.03)

Self-efficacy on entry 1.74� (1.07) 3.59* (1.58)

Self-efficacy across visits )1.64� 0.98

Male on entry 1.21 (1.76)

Male across visits )1.90� (1.12)

Teacher A )1.06 (1.64) )1.62 (1.65) )1.65 (1.66) )0.15* (0.07)

Teacher B 2.81� (1.72) 2.51 (1.72) 2.85 (1.75) )0.04 (0.08)

Teacher C 3.18* (1.65) 2.44 (1.69) 2.57 (1.71) )0.01 (0.07)

Random effects

Level-2 intercept 39.95*** (10.62) 38.44*** (10.46) 36.27*** (10.07) 0.06** (0.02)

Level-2 covariance )14.88* (6.2) )14.76* (6.15) )12.52* (5.85) )0.02� (0.01)

Level-2 slope 12.55** (5.04) 12.87** (5.06) 10.67* (4.83) 0.03** (0.01)

Level-1 residual 22.82*** (4.08) 22.62*** (4.04) 22.78*** (4.06) 0.06*** (0.01)

Goodness of fit statistics

)2LL 1568.2 1565.6 1559.9 142.4

Change in )2LL from previous model (Ddf) 2.6� (1) 5.7 (3)

Change in )2LL from base (Ddf) 2.6� (1) 8.3� (4)

Pseudo R2 statistic 0.099 0.114 0.131 0.127

*p £ 0.05, **p £ 0.01, ***p £ 0.001, �p £ 0.10, �p = 0.10.

1This finding is possibly a result of the visits analyzed since team

collaboration increases throughout the project culminating in the

last week of the project, which was not a part of this analysis.
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efficacy or gender, while the second shows the effect
of time and self-efficacy without regard to gender. In
the third column of Table I, Model 1b shows the
final model that presents the full answer to research
question 1.2

Controlling for teacher effects in Model 1, the
unconditional growth model, I estimate that, initially
on entry into River City, students conduct on average
approximately 13 data-gathering behaviors, and they
increase their total data-gathering behaviors by 1.82
behaviors per visit. Both effects are statistically sig-
nificant (p < 0.001, p<0.01, respectively). Model 1a
addresses the second part of research question 1
concerning the effect of self-efficacy in scientific in-
quiry on the individual growth trajectories. In the
fitted model, the main effect of self-efficacy indicates
that students gather 1.74 more pieces of scientific
data initially for every one point difference in self-
efficacy, on average (p = 0.10). While this effect does
not meet standard levels of statistical significance, it is
interesting and suggestive in the context of this
exploratory study. The rate of change in data gath-
ering from visit to visit is the same for all students,
regardless of their self-efficacy levels. Students in-
crease their scientific data-gathering by 1.8 pieces of
data per visit (p<0.01). For example, a student
entering in with high self-efficacy, at the 90th per-
centile (4.2, on the scale of 1–5), initially engaged in
fourteen scientific data-gathering behaviors, while a
student entering with low self-efficacy, at the 10th

percentile (2.9, on the scale of 1–5) initially engaged
in two fewer behaviors. The rate of change in
behavior of both students continued identically
through the three visits.

As outlined in my research design section, I was
interested in exploring whether students’ content
pretest score also impacted their scientific data-
gathering behaviors. I found that this control pre-
dictor and self-efficacy were strongly correlated
(r = 0.52), and therefore, when both predictors were
included in the same model, neither was statistically
significant as a consequence of collinearity. There-
fore, I removed the content pretest score control
predictor from the fitted models.

Model 1a demonstrates the impact of self-
efficacy on scientific data gathering, but did gender
affect this relationship as well? Model 1b of Table I
includes student gender, self-efficacy and interactions
of self-efficacy with visit. In this fitted model, self-
efficacy impacts the initial level but only has a bor-
derline effect on the rate of change of students’ data-
gathering behaviors (p<0.05 and p<0.10, respec-
tively). The story is reversed for gender, with no effect
initially, but a borderline effect on the rate of change
of students’ data-gathering behavior (p>0.10 and
p<0.10, respectively).

As stated earlier, while the effect of self-efficacy
and gender on rate of change is a borderline effect,
this model will be analyzed cautiously due to the
exploratory nature of this study. Since it is difficult to
interpret the effects of this model directly, I will dis-
cuss them in the context of two extreme examples:
that of high and low self-efficacy. In Figure 1, I dis-
play example fitted trajectories in scientific behavior
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Fig. 1 Fitted total number of data-gathering behaviors as a function of visit, by self-efficacy (n = 96).

2Throughout this article, I have collapsed the effect of teacher into

an average value.
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over time, by gender and self-efficacy (set at 10% and
90%, for purposes of this example) for both boys and
girls as predicted for by this model. Figure 1A illus-
trates the fitted trajectory for boys with high self-
efficacy as well as low self-efficacy. Figure 1B parallels
that figure, but for girls. Similar graphs could be
drawn for any level of self-efficacy.

As can be seen in this figure, initially, there is a
significant difference between the students with high
and low self-efficacy (p<0.05). Boys with high self-
efficacy gather 16 pieces of data while boys with low
self-efficacy collect only 11 pieces of data. A similar
relationship is seen for the girls. The high self-efficacy
girls accumulate nearly 15 pieces of evidence initially,
while the low self-efficacy girls only 10. While there
are small differences initially between boys and girls
with similar self-efficacy, the effect of gender initially,
as indicated earlier, is not statistically significant.

The growth trajectories for boys and girls show
that the relative levels between students do not
remain static. Boys with high self-efficacy show neg-
ligible rates of change, while those with low self-
efficacy show positive rates of change (p<0.05). The
picture is somewhat different for girls. Girls with high
self-efficacy, unlike the high self-efficacy boys, show a
slightly positive rate of change (p = 0.09). Girls with
low self-efficacy show the strongest positive rates of
change (p<0.001) of the four groups of students.

The result of these different growth rates can be
seen in a comparison of visit two and visit four.
During visit two, the only significant differences are
between students with high self-efficacy and low;
gender has only a small and insignificant impact on
data-gathering initially. However, by visit four, this
has reversed. Scientific data gathering during visit
four is not affected by students’ self-efficacy at all!
The differences between differing levels of self-efficacy
have converged to eliminate this as a predictor of
data-gathering behavior. However, unlike in visit
two, now gender has a borderline impact on scientific
data-gathering. Girls, on average, gather 18 pieces of
evidence while boys only collect 15 pieces (p = 0.09).
Unlike the story that Model 1a told, once I control
for gender, we see that students with low self-efficacy
appear to engage in the world in such a manner as to
diminish the initial effects of self-efficacy completely.

Research Question 2: The Growth in the Diversity

of Sources for Gathering Data

The unconditional growth model, model 2 in the
fifth column of Table I, addresses the first part of this

research question. Controlling for teacher fixed
effects, students on average gather data from 2.5 out
of the eight possible categories initially. Then, in
subsequent visits, students enjoy a positive rate of
change, increasing the number of sources accessed
over time (p<0.001). In no model, subsequent in the
taxonomy of fitted models, was self-efficacy a statis-
tically significant predictor. Therefore, I conclude
that self-efficacy does not appear to affect the diver-
sity of choices that students make as to where they
gather their data, nor their growth in diversity across
time.

CONCLUSION

In this study, I set out to explore students’
trajectories of scientific investigation while partici-
pating in an inquiry-based science project, and to
examine the role played by their self-efficacy in sci-
entific inquiry in those patterns. I have several
interesting findings.

Overall Growth

One of the concerns leveled at educational
technology projects is that any findings of learning
gains may be related to the technological novelty of
the new intervention rather than something intrinsic
to the pedagogy. While there is no doubt that novelty
is appealing to children, if this were the only reason
that students were engaged in River City, I would
expect that students would exhibit diminishing
returns over time. This is not what I found; instead,
students increase their total scientific data-gathering
behaviors by nearly two behaviors on average, on
each visit to River City. While this appears to argue
against the novelty-alone effect, recall that I have
only examined student behavior in 3 visits. A new
version of the River City intervention that is being
designed currently will have students visiting the City
10 times for data-gathering only. I recommend that
my study be repeated using this new version of the
intervention to see if this effect is maintained over
longer periods.

Self-efficacy

My results concerning the impact of student self-
efficacy on learning is more complex. As discussed,
self-efficacy researchers have found that students with
high self-efficacy are more likely to expend additional
effort, to see complexity as a challenge, and to diver-
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sify their learning choices over students with lower
self-efficacy (Pajares, 1995, 2000). Thus, I hypothe-
sized that students with higher self-efficacy would tend
to gather more scientific data from more sources than
students with lower self-efficacy and that their scien-
tific behaviors would increase faster over time. In this
study, my conjecture turns out to be only partly true.

When looking at the initial effects of self-efficacy
for randomly chosen students, I discovered that
students with lower self-efficacy, as a group, do col-
lect less scientific data than students with higher self-
efficacy on entry into River City, in support of the
literature. However, after three visits to the complex
world of River City, students exhibit no differences in
their scientific data-collection, based on self-efficacy.
Thus, it seems as though the complexity of River City
does not reinforce any differences that students bring
with them, and perhaps even works to undo them.
Furthermore, self-efficacy has no effect on the diver-
sity of sources from which students collect their sci-
entific data! This would seem to contradict the
literature which suggests that low self-efficacy stu-
dents should shy away from exploring the intricacies
of the new world.

Why might this be so? One tenet of the theory of
self-efficacy is that students develop a sense of self-
efficacy based on their past experiences (Bandura,
1977). While I measured students’ self-efficacy in
scientific inquiry and then observed their behaviors of
scientific inquiry, it is possible that students
responded to the pre-experiment survey based on
their experiences of scientific inquiry in the classroom
where they either had, or did not have, success.
However, I observed students’ behavior in a MUVE.
Is it possible that scientific inquiry self-efficacy
expressed in the context of the classroom is quite
different from scientific inquiry self-efficacy exhibited
using a MUVE in a classroom? Perhaps students
have a high self-efficacy for using a computer game-
like technology that transfers to this environment
overcoming their low self-efficacy in doing school-
work? Or, is it possible that the motivation of using a
MUVE in the classroom is so strong that it over-
comes traditional effects of self-efficacy? If so, then
this offers a possible way to help give all students
success in science in school. While appealing, this
phenomenon will need testing to see if it is replicable
in the new longer River City curriculum and if so,
what is the relationship among students’ self-efficacy
in scientific inquiry, schoolwork, and technology.

One other intriguing possibility is that the
immersion as a scientist in River City helps students

modify their self-efficacy, which then results in
patterns of growth that blur the differences initially
resulting from differences in self-efficacy. Further
testing to see if there is a relationship between
exposure to data gathering and changes in students’
self-efficacy is needed, as well as a way to test
students’ self-efficacy over time to see if changes in
data-gathering are related to changes in self-efficacy.

Gender and Self-efficacy

The effect of gender, while interesting, presents
only a borderline effect in this study. However, given
the exploratory nature of this research, I report it as a
relationship that needs further exploring. The effect
of gender on initial levels of scientific data gathering
was insignificant. Both boys and girls with high self-
efficacy collected more data than both boys and girls
with low self-efficacy, as discussed in the section
above. However, differences in gender occurred when
examining trends in scientific data gathering over
time. Then, on average, girls ended up gathering
more data than boys with little difference between
high and low self-efficacy students, and only small
differences between girls and boys. When considering
gender, we see that girls with low self-efficacy have
the greatest rates of change in scientific data gather-
ing while boys with high self-efficacy have nearly flat
growth trajectories.

This is a particularly intriguing pattern, as it is
generally believed that girls are less motivated and
less engaged by gaming technologies (Krotoski,
2004). With that in mind, we designed River City to
have features that might appeal to girls, in particular.
For example, there are more female residents of River
City than male, and the mayor and university presi-
dent are both women. Thus, I wonder whether this
phenomenon that I have detected is particular to
River City, due to these design features. Do girls with
low self-efficacy participate in different scientific
behaviors from other students? More investigation is
needed to see if this effect is maintained with a larger
sample of students and whether different subpopu-
lations of students have different patterns of
involvement.

LIMITATIONS

There are several areas that affected the out-
comes of my study. First and foremost, because mine
is an exploratory study, I cannot draw causal
conclusions. Indeed, several of my findings are based
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on significance levels of p = 0.09, higher than is
traditionally used. Therefore, these conclusions
should be treated cautiously until they are repro-
duced with other students.

Second, teachers are encouraged to implement
River City as fits their teaching style and their stu-
dents’ needs. Therefore, no two teachers implement
the intervention exactly the same way. Some teachers
allow students to explore a particular world for more
than one class period; others relinquish control to
their students. This can, in an extreme example, result
in students exploring the worlds out of order. To
control for this threat to validity, as stated above, I
controlled for the fixed effect of teacher, using dum-
my variables, and used students from 12 different
classes of four different teachers. In addition, in my
study, one teacher failed to have his students visit the
second world. Therefore, all of his students were
recorded as absent from that world, and possess only
two waves of data in my analyses.

Third, it is possible that students’ prior experi-
ence with computer games may have interacted with
their ability to explore and gather data in River City.
Since my analyses looked at an intervention that is
placed within typical classrooms of students who
possess variability in experiences and knowledge
across a wide range of topics, I chose not to control
for this potential effect. However, as discussed above,
I recommend that future studies investigate whether
these experiences, or self-efficacy in this arena, impact
these outcomes.

Fourth, my analysis may have lacked statistical
power. I possessed only three waves of data on the
students in this study. In addition, 25% of the stu-
dents only had two waves of data, due to missing
their visit 2. As a result, these results should be
treated cautiously until they are verified with a larger
sample and more waves of data.

FINAL THOUGHTS

I started out in this study to understand more
fully how differences in self-efficacy can affect stu-
dents’ participation in scientific inquiry. With ad-
vances in technology, I was able to follow students’
moment-by-moment choices of behavior while gath-
ering data. As is typical of exploratory research, I am
left with more questions than answers—questions
that in today’s climate require investigating. While
there is some indication that self-efficacy does effect
data-gathering and that participating in a MUVE
might undo that difference, this study has not looked

at whether data-gathering is related to learning
outcomes or to changes in self-efficacy that can en-
dure beyond its borders. Does low self-efficacy keep
students from experiencing the wonders of science? If
so, then we need to invest our time in figuring out
how to raise the self-efficacy of students. There are
hints in my analysis that embedding science inquiry
curricula in novel platforms like a MUVE might act
as this catalyst for change. Further research using
these techniques will allow us to start to better
understand the interaction between scientific inquiry
and self-efficacy, and thus eventually science learning
outcomes.
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