
THE IMPACT OF SYNCHRONOUS 
COMMUNICATION ON THE PROBLEM 

OF ELECTING A LEADER 
IN A RING 

Greg N. Frederickson 

Department of Computer Sciences 
Purdue University 

West Lafayette, IN 47907 

(ABSTRACT) 

We consider the problem of electing a leader in a 

synchronous ring of n processors. We obtain both positive 

and negative results. 

On the one hand, we show that if processor ID's are chosen 

from some countable sot, then there is an algorithm which 

uses only O(n) messages in the worst case. 

On the other hand, we obtain two lower bound results: If the 

algorithm is restricted to use only comparisons of ID's, then 

we obtain an ~(n log n) lower bound for the number of 

messages required in the worst case. Alternatively, there is a 

(very fast-growing) function f with the following property. If 

the number of rounds is required to be bounded by some t in 

the worst case, and ID's are chosen from any set having at 

least f(n,t) elements, then any algolithm requires [~(n log n) 

messages in the worst case. 

1. I n t roduc t i on  

Communication in a network can be performed in either a 

synchronous or asynchronous mode. How does the choice of 

communication mode affect the computational resources 

required to solve a problem? We examine this question by 

The work of the first author was supported by the National Science 
Foundation under grant MCS-8201083. The work of the second author 
was supported by the NSF under Grant No. MCS79-24370, and Advanced 
Research Projects Agency of the Department of Defense Contract 
# N00014-75-C-0661. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

© 1984  A C M  0-89791-133-4/84/004/0493 $00 .75  

Nancy A. Lynch 

Laboratory for Computer Science 
Massachusetts Institute of Technology 

Cambridge, MA 02139 

considering the problem el electing a leader in a ring-shaped 

network. In this problem there are n processors, which are 

identical except that each has its own unique identifier. At 

various points in time, one or more of the processors "wake 

up", and initiate their participation in an election to decide on 

a leader. The relevant resources for such a distributed 

computation are the total number of messages used and the 

amount of time expended from the time that the first processor 

wakes up. 

The problem of electing a leader efficiently has been studied 

by a number of researchers [B,CR,DKR,GHS,HS,IR,L,P]. The 

best previous deterministic algorithms have used O(n log n) 

messages for either bidirectional rings [HS,GHS,B] or 

unidirectional rings [DKR,P]. These algorithms work for bOth 

the synchronous and asynchronous models, and use 

comparisons of ID's only. In addition, Burns has established a 

lower bound of ~.](n log n) on the number of messages 

required if communication is asynchronous [B]. However, the 

proof in [B] does not extend to the case of synchronous 

communication. It is, therefore, quite natural to ask whether 

the ~(n Io9 n) lower bound can be achieved in the 

synchronous case as well as the asynchronous, or whether 

there are algorithms that somehow make use of the synchrony 

to limit the number of messages transmitted. 

We obtain both positive and negative answers to our 

question of whether synchrony helps. On the one hand, we 

show that if processor ID'S are chosen from somecountable 

set (such as the integers), then tbere is an algorithm which 

uses only O(n) messages in the worst case. The processors 

may initiate the algorithm at different rounds, and do not know 

the value of n. Our algorithm is thus an improvement on a 

probabilistic algorithm of [IR] that uses O(n) messages on 

average and assumes that the processors do know the value 

n. Unlike the earlier algorithms, our algorithm does not only 

/ 493 



use comparisons on ID's - it uses the numerical value of the 

ID's to count rounds. However, the number of synchronous 

rounds used by our algorithm can be very large in the worst 

case. An algorithm similar to ours has been developed 

independently by Vitanyi and appears in [V]. 

On the other hand, we show that both the departure from the 

comparison model, and the possibility of using a large number 

of rounds, are necessary in order to obtain a linear 

communication algorithm. More specifically, if the algorithm is 

restricted to use only comparisons of ID's, then we obtain an 

~t(n log n) lower bound for the number of messages required 

in the worst case. Alternatively, if the number of rounds is 

required to be bounded by some t in the worst case, then there 

is a (very fast-growing) function f(n,t) which has the following 

very interesting property. If ID's are chosen from any set T 

having at least f(n,t) elements, then any t-bounded algorithm 

requires ~(n log n) messages in the worst case. (In partlcular, 

if t is a function of n, say t(n), then any t(n)-bounded algorithm 

for a set T with at least f(n,t(n)) elements exhibits the given 

lower bound on messages.) We achieve this result by giving a 

transformation from any algorithm in what we call free form, 

over such a set T, to a comparison-based algorithm. (The 

ideas for this transformation are derived from earlier work of 

Snir [$1].) Both of our lower bound results hold even in the 

case that the number of processors in the ring is known to 

each processor, and all the processors are known to start at 

the same round. 

2. The Algorithm 

In this section, we present an algorithm for electing a leader 

in a synchronous ring, that uses O(n) messages, but may 

require a very large number of rounds. The elected processor 

(and no other processor) eventually enters one of a set of 

distinguished "elected" states. The total number of messages 

ever used (including any messages which might be sent after 

the winner is elected) is O(n). The algorithm presented is for a 

unidirectional ring, with communication assumed to be 

counterclockwise. Of course, a variant will work on a 

bidirectional ring. We assume that the unique ID of each 

processor is an integer. This assumption is reasonable if 

communication is implemented by transmitting packets of bits. 

In the description of the algorithm, we shall refer to the 

processor with ID i as "processor i". 

At the beginning of the algorithm, each processor which 

chooses to participate in the election (henceforth called a 

"participating processor") spawns a message process, which 

moves around the ring, carrying the ID of the originating 

processor. The message process is charged one messqge for 

each edge which it traverses. 

Our algorithm uses several ideas. The first is that message 

processes that originate at different processors are 

transmitted at different rates: the message process carrying 

processor ID i travels at the rate of one message transmission 

every 2 i rounds. (More specifically, each processor delays for 

:~i . 1 rounds before transmilting message process i.) Any 

slower message process that is overtaken by a faster message 

process is killed. Also, a message process carrying ID i 

arriving at processor j is killed if j < i and processor j has also 

spawned a message process. A message process which 

returns to its originator causes that originator to become 

elected. 

Suppose that all participating processors were to wake up at 

the same round. The strategy above would then guarantee 

that the total number of messages is O(n). For, assume i is the 

smallest ID of any participating processor. Message process i 

traverses all edges, for a total cost of n. Consider any other 

message process, j. During message process i's circuit, either 

message process i overtakes message process j, or else 

message process j reaches processor i; in either case, 

message process j is killed by the time i's circuit is completed. 

Because of the different rates of travel, message process j 

could travel at most distance n/(2 i-i) during the time i travels 

distance'n. Thus, the message process carrying the smallest 

ID, i, must use more messages than all others combined. 

Since message process i uses n messages, the total number of 

messages expended would be less than 2n. 

However, this variable rate of transmission scheme is by 

itself not enough to realize O(n) messages, in the case that not 

all participating processors wake up at the same time; The 

processors with smaller ID's could wake up correspondingly 

later, and spawn message processes that would chase and 

ultimately overtake the slower message processes, but not 

before £(n) messages had been expended by each of #(n) 

message processes. 

The second idea is to have a preliminary phase, before the 

variable rate phase begins. In this phase, all message 

processes travel at the same rate, one message transmission 

per round. When a processor decides it wants to participate, it 

spawns its message process and sends it off to its neighbor. 

The message process is transmitted around the ring, until it 

494 



encounters the next participating processor. At this point, the 

message process continues into the second phase, moving at 

its variable rate, and acting as previously described. If a 

processor awakens after a message process has already 

passed by, then that processor will not participate in the  

election. 

We now show that the total number of messages used in all 

phases of the computation is less than 4n. 
Lemma 1 : After no more than n rounds from the 

time the first processor awakens, the message 
process of the eventual winner enters its second 
phase. 

Proof: If i and j are two processors in the ring, let 
dO,j) denote the counterclockwise distance from i 
to j. Let i be the first processor to awaken, and let j 
be the eventual winner. Then a message process 
must arrive at j by the end of round dO,j). 
Therefore, message process j must traverse its first 
edge by round d(i,j) + 1. Then message process j 
enters its second phase by the time it reaches i (or 
some closer participating processor), at most d(j,i) 
rounds later, i.e. by the end of round n. I 

We now divide the messages into three categories, and 

bound each category separately. The categories are (~1) the 

first phase messages, (2) the second phase messages sent 

before the eventual winner enters its second phase, and (3) 

the second phase messages sent after the eventual winner 

enters its second phase. Let i denote the eventual winner. 

For (1), it is easy to see that the total number of first phase 

messages is exactly n. Next, consider (2). Lemma 1 implies 

that at most n rounds need to be considered. Moreover, 
message process i sends no second phase messages dunng 

the rounds under consideration. Thesmallest possible ID for 

the processors which are not eventuak',~t,k'me, rs-is 1, and the 

maximum number of second phase messages for message 

process j in these rounds is n/(2i). Thus, the total number of 

messages sent for all the message processes in these rounds 

is less than n. 

Finally, consider (3). The argu.~;6:i,,.~imila~r to the one used 

for the case in which all processors awaken at the same 

round. That is, message process i makes a circuit, for a total 

cost of n. Consider any other message process j. Dudng 

message process i's circuit, either message process i 

overtakes message process j, or else message process j 

reaches processor i; in either case, message process j is killed 

by the time i's circuit is completed. Because of the different 

rates of travel, message process j could send at most n/(2 H) 

phase two messages during the time i travels distance n. Thus, 

as before, the total number of messages expended is less than 

2n. The total number of messages for all categories is less 

than 4n. 

Although the number of messages is quite small, the time 

required may be rather large. It is easy to see that the number 

of rounds expended is O(n 21), where i is the ID of the eventual 

winner. Thus, we obtain: 

Lemma 2: There is an algorithm which elects a 
leader in a synchronous ring of n processors using 
fewer than 4n messages, and O(n 2 i) time, where I 
is the ID of the eventual winner. 

The bound of 4n messages for the algorithm above is 

reasonably tight. Consider the following example, where f(n) 

= log n - log log n. Let processor I be one link from processor 

0, end let processor k, k = 2,...,f(n), be 

k +" L(2 k'l - 2)n/(2 k ' l -  1)J 

links from processor 0. Let processors 1 and 2 awaken at 

round 1, and each processor k, k = 3,...,f(n), awaken the 

round before it would be visited by a first phase message. 

Similarly, let processor 0 awaken the round before it would be 

visited. Then processor k, k = 1,...,f(n), will start its second 

phase at round 2 + L(2 k - 2)n/(2 k - 1)J, and will traverse at 

least n/(2 k - 1)- 2 links before any message process overtakes 

it. There will be n first phase messages, at least 

~k= 1,...,f(n) (n/(2k" 1)- 2) 

second phase messages for processors k = 1,...,f(n), and n 

- 1 second phase messages for processor 0. For large n, this 

gives slightly more than 3.6n messages in all. 

It is possible to reduce the number of messages at the 

expense of the number of rounds by using powers of c, for any 

constant c > 1, rather than powers of 2. As before, there will 

be exactly n messages in category (1). In category (2), there 

will be fewer than ~j= 1,._,oon/C J = n/(c-1) messages, while in 

(3), there will be fewer than Zj=o,...,eon/ci = nc/(c-1) category 

messages. Thus, we obtain an algorithm which elects a leader 

in a synchronous dng of n processors using fewer than 

2cn/(c-1) messages, and using at most O(n c I) rounds, where i 

is the iD of the eventual winner. Moreover, the leader elected 

by the algorithm is guaranteed to be one of the participating 

processors. 

If we are willing to allow any processor to become elected, 

rather than just the participating processors, then it is Possible 

to retain the 2cn/(c-1) message bound, while reducing the 

time to O(n ci), where i is the minimum ID of all processors in 

the ring. The basic idea is to allow each processor to awaken 

and begin its algorithm (spawning its message process) u 

495 



soon as it receives any message from its neighbor, if it has not 

already awakened on its own. We thus obtain: 

Theorem 3: Let c > 1. There is an algorithm 
which elects a leader in a synchronous ring of n 
processors using fewer than 2cn/(c-1) messages, 
and O(n c j) time, where i is the smallest ID of any of 
the processors in the ring. 

We can also elect a leader from among the set of 

participating processors, while maintaining the O(n) message 

behavior and the dependence of the time on the smallest ID in 

the ring. All we need to do is to follow an algorithm which 

elects an arbitrary processor with an additional phase which 

elects a participating processor. In this additional phase, the 

originally elected processor just originates a message which 

circulates twice around the ring, determining the participating 

processor with the smallest ID. 

Note that the algorithm works correctly in the case where 

communication is purely asynchronous. It is only its 

complexity that depends on the synchrony. In the general, 

asynchronous, case, the algorithm is essentially the same as 

that of [CR], and so exhibits a worst-case message behavior 

which is O(n2). 

3. Framework for Lower Bound Proofs 

In this section, we describe the assumptions we use for our 

lower bound results. We require a formal model for the lower 

bound results; we present the necessary definitions in this 

section as well. Finally, we define a special kind of algorithm 

called a "free" algorithm, and show that there is no loss of 

generality in restricting to free algorithms. 

3.1.  Assumptions 

We assume that the communication is bidirectional. (Our 

proof may easily be adapted for unid'irectiorml-.rings.) We 

assume that the value of n is a power of 2, and is known by 

each processor. All processors are assumed to awaken at the 

same time, round 1. 

For the algorithm, we counted the total number of messages 

sent during an execution, including those sent after a 

processor got elected. For our lower bound results, on the 

other hand, we measure only the messages sent up to the 

point where a processor becomes elected. 

Except for the restriction to powers of 2, our ~lssumptions 

serve to strengthen the model, and hence the lower bound 

results. 

3.2. Ring Algorithms 

Each processor is modelled as an automaton that behaves 

as follows. At each round, each processor examines its state 

and decides whether to send a message to each of Its 

neighbors, and what message to send. Then each processor 

receives any messages sent to it in that round. Each 

processor uses its current state and these new messages to 

update its state. 

We now introduce formal definitions. An ID space is any 

totally ordered set. In this paper, T will denote an ID space. 

Let A denote a finite decision alphabet. Let M denote an 

alphabet of possible messages. 

A ring algorithm over T and A is an automaton (Q,I,D,~,~), 

where 

- Q is a set of states, 

- I C Q is the set of initial states, partitioned into nonempty 

sets I t, one for each t E T, 

- D C Q is the set of decision states, partitioned into D a, a E 

A, the set of a.decision states, 

- /.t is a message generation function, mapping Q x 

{left,right} ~ M LJ {null}, 

and 

- ~ is a transition function, mapping (M U {null}) x Q x (M U 

{null}) ~ O. 

The decision states are the means by which the automata 

produce output. We assume that the various sets D a of 

decision states are "closed" under the operation of the 

transition function. Thus, once a decision has been reached, 

the same decision must persist. 

The mapping/J, decides, for each of the automaton's two 

neighbors, whether or not a message is to be sent, and in the 

former case, which message is to be sent. The mapping 8 

determines a new state from the old state and any messages 

arriving from the automaton's two neighbors. 

3.3. Executions 

We number the processors in the ring counterclockwise, ass 

0,...,n-1. We count indices modulo n. For the remainder of this 

paper, "processor i" will denote the processor numbered i in 

this counterclockwise numbering. We let <n> denote the set of 

integers {0 ...... n - l } .  

496 



A configuration of width nwis an n-tup!e of elements of Q, 

representing the states for the n processors O,...,n.1, in order. 

A message vector of width n is an n-tuple of ordered pairs of 

elements of M U {null}. It represents the messages sent left 

and right by each of the n processors. 

An execution of width n is an infinite sequence of triples 

(C1,N,C2), where C 1 and C 2 are configurations and N is a 

message vector, all of width n. An execution fragment is any 

finite prefix of an execution. We require executions to satisfy 

several properties. 

First, the initial configuration must consist of initial states. 

Each execution and execution fragment therefore has an lD 

vector in T n which is the vector of T.values represented by the 

vector of initial states in the initial configuration. That is, if 

component i of the initial configuration is in It, then component 

i of the ID vector is t. We require that the different components 

of the ID vector of an execution all be distinct. (This condition 

models the distinctness of the processors' ID's.) We also 

require that each triple in an execution be "consistent" with 

the message generation and transition functions. Finally, the 

configurations in consecutive triples must "match up". 

Each execution has a decision vector in (A U {null}) n, 

representing the eventual decisions made by all t h e  

component processors. That is, if component i of the 

configurations in the execution is eventually in D e , then 

component i of the decision vector is a. If component i never 

enters any D a, then component io f  the decision vector is null. 

A message instance is a quadruple (r,i,m,d), where r is a 

nonnegative integer denoting s round number, i is a processor 

index, m E M U {null}, and d E {Ioft,nght}. A message 

instance (r,i,m,d) is said to occur in execution (or execution 

fragment) e provided that in e, at round r, processor i sends 

message m in direction d. 

The following definitions allow us to describe information 

flow via nonnull messages. For nonnegative !nteger k, we 

define a right k-chain in execution (or execution fragment) e to 

be a sequence $ = 

(r 1,i,ml,right),(r2,i + i ,m2,right ) ..... (rk,i + k.1 ,ink,right ) 

of message instances occurring in e, where the rounds r i are 

strictly increasing, and the mi are nonnull messages. In this 

case, we say that the k-chain s leads to processor i + 

k. Symmetric definitions are made for left k-chains. 

Now, we define our complexity measures. For any execution 

e, let finishtime(e) denote the number of the first round after 

which the eventual decisions in e have all been made (i.e. 

each component which has a nonnull entry, a, in the decision 

vector, is in a state in Da). Let messages(e) denote the 

number of messages sent dunng e, up to and including round 

finishtime(e). We say that an algorithm requires no more than 

time t provided that finishtime(e) < t for all executions, e. We 

say that the algorithm uses no more than s messages provided 

that messages(e) < s for each execution, e. 

3.4.  Problems 

Now, we consider the sense in which a ring algorithm solves 

a problem. A problem of width n over T and A is a mapping 

from length n vectors of distinct values in T to subsets of (A U 

{null}) n. A problem represents, for each particular ID vector, 

the allowable decision vectors. 

For the problem of electing an arbitrary leader, we define the 

mapping so that it assigns to any vector, the set consisting of 

all vectors with exactly one 1, and all other positions null. For 

the problem of electing the processor with the minimum ID, 

the mapping would assign to any vector, the set consisting of 

the single vector which has 1 in the position corresponding tO 

the minimum value in T and null elsewhere. 

Two length n vectors, x and y, of T-elements are said to be 

order-equivalent provided that the elements in corresponding 

positions in x and y satisfy the same ordering relations. That 

is, for each pair of positions, i and j, we have x i < x i exactly if Yl 

< yj, and similarly for the relations = and >. A problem, P, is 

order-invariant provided that whenever two vectors, x and y, 

over T are order-equivalent, their images, P(x) and P(y) are 

identical, i.e. exactly the same set of vectors is permitted as 

output. The problem of electing a leader and the problem of 

electing the processor with the minimum ID are both order- 

invariant. 

We say that a ring algorithm over T and A solves a problem, 

P, of- width n, provided that I~1 >_ n, and that for each 

execution, e, of the algorithm, the following holds. If e'e ID 

vector is x then e's decision vector is an element of the set 

P(x) of allowable o,Jtput vectors. 

497 



3.5. Free A lgor i thms 

It will be convenient to assume that algorithms are in a 

particular "free" form, in which the states of processors 

record the initial ID and the history of messages received, and 

all messages contain the entire state of the sending processor. 

We show in this subsection that we can assume such a form.  

The most natural way to represent such history information 

is by means of LISP S-expressions. The S-expressions that 

arise during computation are of a special type. The atoms are 

t E T and NIL. The well-formed S-expressions are just the 

following: (1) the elements of T, and (2) those of the form 

(SrS2,Ss), where s 2 is a well-formed S-expression, and s 1 and 

.~ are either well.formed S-expressions or NIL. 

An algorithm is free provided that its state set and its 

message alphabet are both just the set of well-formed S- 

expressions. Also, the initial states are just the atoms in T (the 

ID's). Moreover, the message sent in either direction from any 

state q is either just the state q or null, and the new state 

arising from state q with messages m 1 and m 2 arriving from the 

left and right respectively is just the S-expression (mrq,m2). 

(if either m I or m 2 i~; null, then we use NIL.) 

The parts of the algorithm which are still undetermined are 

whether, for each state and each direction, a message is sent, 

which of the states are decision states, and how the decision 

states are partitioned into D a for various a. For a free 

algorithm, it is helpful to define a subsidiary message function, 

p', which maps Q x {left,right} ~ {yes,no}, depending on 

whether a message is supposed to be sent in the 

corresponding direction from that state. (If a message is sent, 

its actual contents are determined by the state of the sender.) 

The following lemma .says that for the complexity measures 

considered in this paper, there is no loss of generality in 

restricting attention to free algorithms. 

Lemma 4: Let ~ be a ring algorithm, over T and 
A, which solves problem P using no more than time 
t, and no more than s messages. Then there is a 
free algorithm, .4?, over T and A, which selves P 
using no more than time t, and no more than a 
messages. 

Proof: We use notation Q, etc. from the definition 
of a ring algorithm, to refer to algorithm ..4.. For 
each t E T, let q(t) be a designated initial state in I t. 

We define eval(s), for each well-formed S; 
expression, s, to be a particular state in Q. We do 
this inductively. First, define eval(t), for t an atom, 
to be q(t). Next, if s = (sl,s2,Ss), then define eval(s) 
to be 8(a 1,eval(s2),a3), where a 1 = null if s 1 = NIL, 

and a 1 = F(eval(sl),right) otherwise, while a~ = 
null if s 3 : NIL, and a 3 = p(eval(s3),left) otherw,se. 

• Now, we allow J.' to send a message left from 
state s provided that ~ sends a message left from 
state eval(s), and analogously for messages sent 
right. Similarly, state s is an a.decision state 
exactly if state eval(s) is an a.decision state. 

It should be clear that Jl.' "simulates" the 
behavior of .A.. Therefore, it is straightforward to 
check that ~ '  also solves P in time t, and uses no 
more than s messages. 

I 

If we were interested in counting, say, the total number of 

bits of communication, it would not be sufficieat to restrict 

attention to free algorithms, since the algorithm 

transformation described in the preceding lemma can cause a 

large increase in the size of messages. 

We require one more simple but important lemma about free 

algorithms. This lemma imposes a limit on the propagation of 

information by failing to send messages. 

Lemma 5: Let J,. be any free algorithm which has 
no right kl.chains and no left k2-chains leading to 
processor i in execution fragment e. If a is a T-value 
which is in the state of processor i at the end of e, 
then a was the initial value of some processor j, 
w h e r e i - k  1 + l ~ j < i + k 2 - 1 .  

Proof: Straightforward. I 

4. Lower Bound for Comparison 
Algorithms 

In this .section, we restdct attention to algorithms which use 

comparisons only. We present our first lower bound, of Q(n 

log n), for the number of messages required for a comparison 

algorithm, to elect a leader in a synchronous ring. 

4.1.  Compar ison  A lgor i thms 

In this subsection, we define "comparison algorithms". 

We say that two S-expressions are order-equivalent provided 

that they are identical except for the padicular atoms which 

occupy various positions within the expressions, and 

corresponding atoms satisfy the same ordering relations in the 

two expressions. A free algorithm is a comparison algorithm 

provided that if s and s' are order.equivalent well-formed S- 

expressions, then processors with States q and q' transmit 

messages in the same direction or directions and are in the 

same set of decision states (if any). (That is, p'(q,left) = 

p.'(q',left), F'(q,right) = p'(q',right), and for each a E A, q is in 

D a exactly if q' is in D a. Recall that p.° is the subsidiary 

498 



message function which decides whether or not to send a 

message, hut does not say exactly which message is sent.) 

4.2. Preliminary Results 

In this subsection, we assume that n is a power of 2, and let 

T ° be the ID space consisting of the set <n>, with the usual 

ordedng. 

For any m < log n, define a function m-high from <n> to <2a~ 

so that re.high(i) is the integer represented by the m high- 

order bits of i. Extend the m-high mapping to the set of 

expressions over T ' ,  by replacing every non.NIL atom, i, with 

m-high(i). 

For i E <n>, let reverse(i) denote the integer whose binary 

representation is the reverse of the binary representation of 

i. We assign processor ID's so that the values are arranged 

consecutively, counterclockwise around the ring in order of 

increasing reverse(i) values..Thus, for each m < log n, the 

values repeatedly cycle through the 2 m possible patterns of m 
high.order bits. This pattern exhibits a large amount of " local 

symmetry" which we exploit for our results. 

For the remainder of this subsection, assume that ~ is any 

particular comparison algorithm over T ' .  Also assume that • 

is an execution fragment of some execution of ~ whose ID 

vector is given by the pattern described above. 

The next lemma says that, if the sum of the lengths of the 

maximum right chain and maximum left chain leading to a 

processor is strictly less than 2 m, then all ordering information 

about the T'-elements which the processor has as atoms in its 

state is determined solely by the m high-order bits. 

Lemma 6: Let m < log n. Assume that, in 
execution fragment e, the sum of the lengths of the 
maximum right chain and the maximum left chain 
leading to a processor, i, is less than 2 m. Let a and 
b be any two T'-elements occurring in processor 
i's state at the end of e. Then 

(a) m-high(a) = m-high(b) if and only if e = b, 

(b) m-high(a) < m-high(b) if and only if a< b, 

and 

(c) m-high(a) > m-high(b)if and only if a ~, b. 

Proof: Lemma 5 end the distribution of ID'$ 
shows that m-high(a) = m-high(b) implies a ,, 
b. The other cases follow immediately. II 

As simple consequence of the preceding lemma is the 

following. 

Lemma 7: Let m < log n. Assume that, in 
execution fragment e, the sum of the lengths of the 
maximum right chain and the maximum left chain 
leading to processor i is less than 2 m, and similarly 
for processor j. Let q and q' be the states of 
processors i and j, respectively, after e. Assume 
that m.high(q) = m-high(q'). Then q and q' are 
order-equivalent. 

Proof: Follows easily from Lemma 6. I 

The following key claim shows how limited message 

propagation forces certain corresponding processors to be in 

corresponding states. 

Lemma 8: Let m < log n. Assume that, in 
execution fragment e, for each processor, the sum 
of the lengths of the maximum right chain and the 
maximum left chain leading to the processor is less 
than 2 m. Let q and q' be states of processors i and 
i + 2 m, respectively, after e has been executed. 

Then (a) m-high(q) = m.high(q'J. 

(b) If a E A, then q is in D a exactly if q' is in D e. 

(c) ~'(q,left) = /j.'(q',left) and /J.'(q,right) = 
~'(q',right). 

Proof:  We proceed by induction on the length of 
e. 

Base: e is of length O 

Initial states consist only of T* elements, and the 
chosen pattern ensures that processors which are 
exactly distance 2 m apart have the same m high- 
order bits. This shows (a). Then (b) and (c) follow 
because .X is a comparison algorithm. 

Inductive Step: e is of length > 0 

By inductive hypothesis, processors i and i + 2 m 
are in m-high equivalent states prior to the last step 
of e, as are processors i - 1 and i - 1 + 2 m, and 
processors i + 1 and i + 1 + 2 m. Moreover, at the 
last step of e, processors i - 1 and i - 1 + 2 m either 
both generate right messages or else neither does. 
Similarly, at the last step of e, processors i + 1 and 
i + 1 + 2 rn either both generate left messages O r 
else neither does. Therefore, q and q' are easily 
seen to be m-high equivalent, showing (a). Then 
Lemma 7 implies that q and q' are order-equivalent. 
Then (b) and (c) follow because .X is a comparison 
algorithm. 

I 

4.3. The Main Result 

In this section, we prove the main lower bound theorem. We 

require one more (fairly obvious) lemma about comparison 

algorithms. 

499 



Lemma 9: Let T and T' be arbitrary ID spaces, n 
any integer. Assume that ~ is a comparison 
algorithm over T which elects a leader in a ring of 
size n and uses at most s messages. Then there 
exists a comparison algorithm ~ '  over T' which 
elects a leader in a ring of size n and uses at most s 
messages. 

Proof:  We define ~ '  as follows. For each well- 
formed S.expression, L', with atoms in T', let L be 
an order-equivalent S-expression with atoms in 
T. Define the values of the message decision 
function and the decision status for L' to be the 
same as the corresponding values for L. The fact 
that ..A. is a comparison algorithm assures that this 
definition is unique. 

Any input vector, y, of ID's in T' is order- 
equivalent to some input vector, x, of ID's in T. The 
computation of J.' on input y therefore imitates the 
computation of .A. on input x, sending messages at 
the same times, and entering decision states at 
corresponding times. Since a leader is elected in 
the computation of Jl. on x, it follows that a leader is 
elected in the computation of .X' on y, and the 
message requirements are bounded by the 
corresponding requirements for Jt on x. 

Now, we prove the main result. 

Theorem 10: Assume n is a power of 2. Let J. 
be a comparison algorithm over an arbitrary ID 
space, T, which elects a leader in a synchronous 
ring of size n. Then there is an execution, e, of 
for which messages(e) _~ (n/2)(Iog n + 1). 

Proof: Lemma 9 implies that it suffices to 
consider T = T °. Let e be the execution on the 
distribution of ID's given in the preceding 
subsection. Let e' be the execution fragment of e 
which terminates just when the elected processor 
enters a~state in D 1 (i.e. an elected state). 

We first claim that in e', some processor i must 
have the sum of the lengths of the maximum right- 
chain and the maximum left-chain leading to it, at 
least n/2. For if not, then Lemma 8 implies that any 
pair of diametrically opposed processes would 
have the same decision status at the end of e', 
making it impossible to elect a leader. 

For any prefix, e", of e', let maxright(e") denote 
the maximum length of any right chain in e", and 
analogously for max~eft(e"). Let sum(e") denote 
maxright(e") + maxleft(e"). The claim above 
implies that s u m ( e ' ) >  n/2. Thus, sum(e') starts 
out with a value of O, when e" is the empty 
sequence, and increases until it reaches at least 
n/2,  when e" = e'. 

Consider any step at which sum(e") increases. It 
is only possible for maxright(e") to increase by 1 at 
one step, and similarly for maxleft(e"). Assume, for 
some particular m < log n, that sum(e") < 2 m at the 
beginning of this step• We consider three cases. 

500 

Case 1: maxright(e") increases by 1 and 
maxleft(e") does not increase. 

Then someone sends a message to the right at 
this step. Therefore, by Lemma 8, all processors 
which are separated from this processor by 
multiples of 2 m also send messages to the right at 
this step. Thus, at least n/(2 m) messages are sent 
to the right at this step. 

Case 2: maxleft(e") increases by 1 and 
maxright(e") does not increase. 

An argument similar to the one for Case 1. shows 
that at least n/(2 m) messages are sent to the left at 
this step. 

Case 3: Both maxright(e") and maxleft(e") 
increase by I at this step. 

Then a similar argument to the previous two 
cases shows that at least n/(2 m) messages are sent 
right, and also at least n/(2 m) messages are sent 
left at this step. 

Thus, a cost of at least n / (2 m) messages is 

incurred for each increase of 1 in sum(e"), 
whenever the sum before the increase is less than 
2m• Therefore, increasing sum(e") from 0 to 1 
requires n messages to be sent• Increasing 
sum(e") from 1 to 2 requires n/2 additional 
messages, •from 2 to 3 requires at least n /4  
additional messages, from 3 to 4 requires at least 
n /4  additional messages, from 4 to 5 requires n /8  
messages, etc. In other words, n/2 messages are 
required to increase sum(e') from 2 to 4, from 4 to 
8, and in general, from any 2 m to 2 m* 1• So the total 
number of messages required to increase sum(e") 
from Oto n/2 is at least n + (n/2)(Iog n -  1) = 
(n/2)(Iog n ÷ 1), as required. 

I 

5. Lower  Bound for T ime-Bounded 
Algorithms 

In this section, we prove our lower bound for time-bounded 

algorithms. We use the lower bound for comparison 

algorithms to do this. First, we show how to map from time° 

bounded algorithms to comparison algorithms. This result, 

presented in the paracomputer model, is due to Snir [$1]. 

(Snir [$2] credits Yao [Y] with inspiration for this result.) For 

completeness, we present a careful proof in our seffing, even 

though basically the same proof appears in [$1]• We then 

infer the lower bound for time-bounded algorithms. 



5 . 1 .  Def in i t ions 

In order to map from time-bounded to comparison 

algorithms, we require definitions describing the behavior of 

an algorithm within a bounded amount of time. 

We say that a free algorithm is a t-comparison algorithm 

provided that both of the following conditions hold. 

(1) If s and s' are order-equivalent S-expressions of 

parenthesis depth at most t- l ,  then p/(s,left) = F'(s',left) and 

F'(s,right) =/J.'(s',right). 

(2) If s and s' are order-equivalent S-expressions of depth at 

most L and a E A, then s is in D a exactly if s' is in De. 

During execution of a free algorithm, the S-expressions 

which appear as states at the end of any round t have depth 

exactly t. Thus, this definition says that the algorithm behaves 

as a comparison algorithm up to the end of the first t rounds. 
We also add the qualifier "on inputs from U" to this 

definition, provided that the appropriate conditions ho ld  for 

those S-expressions which use atoms chosen from the set U. 

5.2. Mapping a T ime-Bounded Algor i thm to • 

Compar ison Algor i thm 

in this subsection, we show how to convert a time.bounded 

algorithm to a comparison algorithm. The first step is to show 

that any free algorithm behaves as a comparison algorithm on 

a subset of its inputs. For the first lemma, we use a particular 

fast-growing function f(n,t). The precise definition of f 

depends on Ramsey's Theorem, and is implicit in the proof of 

the lemme. 
Lemma 11; Rx n, t, Let ~ be any free algorithm 

over ID space T and alphabet A, where T has at 
least f(n,t) elements. Then there exists a subset U 
of T, of size at least n, such that .,4. is a t. 
comparison algodthm, on inputs from U. 

P r o o f :  For any set V, let L(V) denote the set of 
well-formed S-expressions over atoms in V, of 
depth up to t. The order-equivalence relation splits 
the set .L(T) into finitely many equivalence classes, 
E1,...,E k, We build a sequence of sets U I, each 
contained in the previous, such th3t the following 
property is satisfied. If s and s' are two S. 
expressions in L(Ui) N E i, then: 

(1) /2(s,left) = #'(s',left) and F'(S,dght) = 

~'(s',dght), 

and 

(2) for any a in A, s E D a exactly if s' E D a. 

Letting U = U k then yields the needed result. 

Initially, let U o = T. We now describe how to 
generate U i, assuming that Ui. 1 has been defined. 

There are only c = 4(IAI + 1) possible 
combinations of choices that can be made for each 
expression in E.: whether a message is sent left, 

J 
whether a message is sent right, and the decision 
status. 

Suppose that the expressions in E i contain m 
distinct atoms. For each size m subset, X, of I.~ 1' 
there is a unique expression, L(X), in E, contaim~g 
the elements of X as atoms. We "colOr" X with • 
color corresponding to the choices made for the 
expression L(X). Thus, we obtain a c-coloring of 
the collection of size m subsets of Ui. 1. 

According to Ramsey's Theorem [BE], there is a 
subset of U. 1 which we ca U., such that all m- i- ' I 
element subsets of U. are colored the same color; 
U i can be chosen to be of any predetermined size 
provided that Uj. 1 is sufficiently large. 

This U i is easily seen to have the needed 
properties. 

The next lemma gives the mapping from free time-bounded 

algorithms to comparison sigodthms. 

Lemma 12: Fix n and t. Let Jt be a free algorithm 
over ID space T and alphabet A, where T has at 
least f(n,t) elements. Let P be an order-iovadant 
problem, of size n. If J. solves P in t rounds, using 
at most s messages in the worst case, then there 
exists e comparison algorithm .X', which solves P in 
t rounds, using at most s messages in the worst 
case. 

P r o o f :  The proof is similar to that of Lemma 9. 
We are going to construct ~ '  which "simulates" 
the behavior of ....4. for the first t rounds. Since 
arrives at all the proper decisions by the end of 
round t, ....4., will also do so. Thus, we can allow ...4.' 
to carry out only trivial activity after round t. 

All the states which arise in algorithm J.. up to the 
end of round t have expression depth which is at 
most t. Thus, we define the message generation 
function to yield "null" for any expression of depth 
greater than or equal to t. In order to make sure 
that the algorithm satisfies the required "closure" 
condition for sets of decision states, we define a 
well-formed S-expression of depth greater than t to 
be in D a provided that its middle component is in 
D a. It is clear that these conventions are consistent 
with the fact that ~ '  is a comparison algorithm. 

Now we must describe the message decision 
function of J.' for expressions of depth up to and 
including t -  1, and decision status for expressions 
of depth up to and including t. 

501 



Lemma 11 says that there exists a subset, U, of T, 
of size at least n, such that for inputs from U, the 
algorithm J. is a t-comparison algorithm. Consider 
any S-expression, L, of depth less than t, with 
atoms in T. Define the value of the message 
decision function on this expression to be that of 
the message decision function of ~ on any S- 
expression, L', with atoms from U, which is order- 
equivalent to L. The fact that J. is a t-comparison 
algorithm on inputs from U ensures that this value 
is uniquely defined. Similarly, for any S-expression 
of depth at most t, with atoms in T, define 
membership in any D a according to membership in 
D a of any order-equivalent S-expression with atoms 
in U. It is obvious that ,4.' is a comparison algorithm. 

Now, we argue that .,¢' solves P in t rounds. Any 
length n ID vector, y, over T, is order-equivalent to 
some ID vector, x, over U. The computation of ~ '  
on input y therefore imitates the computation of J. 
on input x, up to the end of round t, sending 
messages at the same times, and entering decision 
states at corresponding times. Since Jl. solves P in 
t rounds, the vector of states after t rounds of the 
computation of .X on input x has the decision status 
of all components corresponding to some vector in 
(A U {null}) n in the set allowed by P fo~" input x. The 
vector of states after t rounds of the computation of 
J_' on input y therefore has the decision status of all 
components corresponding to the same vector. 
Since P is an order-invariant problem, this vector is 
in the set allowed by P for input y. Therefore, Jl.' 
solves P in t rounds. 

Finally, we consider the numberof messages sent 
before reaching final decision status. Say that ..£' 
on input y reaches its final decision status after 
round t'. It must be that t' < t. Then the 
computation of ..X on input x reaches its final 
decision status after round t' also. So the numbers 
of messages correspond as required. II 

We can combine the immediately preceding result 

Lemma 4 to obtain the following. 

Lemma 13: Fix n and t. Let J, be any algorithm 
over ID space T and alphabet A, where T has at 
least f(n,t) elements. Let P be an order-invariant 
problem, of size n. If Jl. solves P in t rounds, using 
at most s messages in the worst case, then there 
exists a comparison algorithm JJ, which solves P in 
t rounds, using at most s messages in the worst 
case. 

with 

The immediately preceding result appears to be of much 

• wider applicability than just to this work and Snir's. This 

result, or variants, should be very useful for the study of other 

order-invadant problems on many different kinds of 

computation models. 

5.3. The Main Result 

Finally, we present our lower bound for time-bounded 

algorithms. 

Theorem 14: Fix n, t, where n is a power of 2. 
Let T be an arbitrary ID space with at least f(n,t) 
elements. Let ..X. be any algorithm over T which 
elects a leader in a synchronous ring of size n, 
using no more than t ime t. Then there is an 
execution, e, of .X for which messages(e) 
(n/2)(Iog n + 1). 

Proof: Assume the contrary,  that there exists an 
algorithm .X over T which elects a leader in a 
synchronous ring of size n, using no more than 
time t, and using fewer than (n/2)(Iog n + 1) 
messages in the worst case. Then Lemma 
13 implies that there exists a comparison algorithm 
which elects a leader in t rounds and uses fewer 
than (n/2)(Iog n + 1) messages in the worst case. 
However, this contradicts Theorem 10. I 

6. Remaining Questions 

There are several directions for further work. 

First, the given bound is still not tight. The best known upper 

bound appears in [DKR,R], and is approximately 1.4 n log 

n. Our lower bound is approximately 1/2 n log n. It would be 

interesting to close this gap. 

Second, the lower bounds in this paper rely on n being a 

power of 2. Unlike most other cases where such an 

assumption is made, in this case the assumption seems to be 

crucial. Whereas Burns' lower bound of 0 for the 

asynchronous case applies for all values of n, we do not know 

what happens in the synchronous case for non-powers of 2. It 

seems likely that the lower bound proof should extend in some 

way, but the extension appears to be nontrivial. 

Third, it would be interesting to see whether the new 

techniques in this paper provide lower bounds for other order- 

invariant problems besides just election of a leader. Some 

preliminary work in this direction has already been carried out 

[GLTWZ]. 

Fourth, it would be interesting to consider results for election 

of a leader and other order-invariant problems in more general 

classes of graphs. For example, Angluin [A] characterizes 

graphs in terms of the possibility and impossibility of electing a 

leader, in the absence of unique identifiers. Our techniques 

• might be useful for proving lower bounds for the number of 

messages required to elect a leader in various kinds of graphs, 

even if the processors do have unique ID's. 

502 



Acknowledgements: 

The authors thank Cynthia Dwork for making us aware of the 

very interesting results of Snir, and noting their connection to 

our work. Thanks also go to Mike Fischer for several 

suggestions on improving the presentation. 

References: 
[A] D. Angluin, Local and Global Properties 

in Networks of Processors, 
Proceedings of the 12th Annual ACM Symposium 
on Theory of Computing 
(1980), pp. 82-93.) 

[B] J. E. Burns, A formal model for message passing 
systems, TR-91, 
Indiana University (September 1980). 

[BE] C. Barge, Graphs and hypergraphs, North.Holland, 
Amsterdam, 1973. 

[CR] 

[DKR] 

E. Chang and R. Roberts, An improved algorithm 
for decentralized extrema-finding in circular 
configurations of processes, 
(1979) 281-283. 

D. Dolev, M. Klawe and M. Rodeh, 
An O (n log n) unidirectional 
distributed algorithm for extrema. 
finding in a Circle, 
J. Algorithms 3,3 (September 1982) 
245-260. 

[GHS] R. G. Gallager, P. A. Humblet and P. M. Spira, 
A distributed algorithm for minimum-weight 

,sganning trees, ACM Trans. Prog. Lang. Sys. 5, 1 
(January 1983) 66-77. 

[GLTWZ] 

[HS] 

[IR] 

[L] 

[P] 

[$1] 

E. Gafni, M. Loui, P. Tiwad, D. West and 
S. Zaks, Lower bounds on common knowledge 
in distributed algorithms (ABSTRACT). 

D. S. Hirschberg and J. B. Sinclair, 
Decentralized extrema.finding in circular 
configurations of processes, Comm. ACM 23 
(November 1980) 827-628. 

A. Itai and M. Rodeh, 

G. LeLann, Distributed systems- toward a 
formal approach, Information Processing 77, 
North Holland, Amsterdam 
(1977) 155-160. 

G. L. Peterson, An O (n log nJ 
unidirectional algorithm for the circular 
extrema problem, Trans. Prog. Lang. Sys. 4, 4 
(1 982) 758-762. 

M. Snir, On parallel searching, Hebrew University 
of Jerusalem, Department of Computer Science, 
RR 83-21 (June 1983). 

[~1 

M 

M 

M. Snir, Personal communication (1983). 

P. Vitanyi, Distributed elections Archimedean 
Ring of Processors, This Proceedings. 

A. Yao, Should tables be sorted? 
• J. ACM 28, 3 (July 1981) 615-628. 

503 


