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Abstract—This article analyses the effects of system distortions
(crosstalk and channel imbalance), Faraday rotation and system
noise on estimates of the cross-polarized backscattering coeffi-
cient, σ0

hv
, by a spaceborne synthetic aperture radar. Modeling

the unknown system errors and noise by a joint complex Gaus-
sian distribution allows analytic first-order approximations to the
mean and variance of the error in σ

0

hv
to be derived that do not

depend on the SAR operating frequency. Simulation shows these
approximations to be very accurate, given the statistical model and
the expected magnitudes of system errors and noise for the P-band
instrument to be carried by the European Space Agency BIOMASS
mission. Simulation further shows that theσ0

hv
errors are Gaussian

distributed, so their exceedance probabilities can be calculated
from just the analytic expressions for the mean and variance of the
errors. Exceedance probabilities for above-ground biomass (AGB)
can then be calculated under a power law relation betweenσ

0

hv
σhv

and AGB that is consistent with P-band observations. This allows
tradeoff curves between crosstalk and channel imbalance (shown to
be segments of hyperbolas) to be calculated, along which the relative
error in AGB is within a given percentage of its true value, from
which limits on the permissible size of the errors can be determined
if BIOMASS mission requirements are to be met.

Index Terms—BIOMASS, biomass estimation error, P-band
synthetic aperture radar (SAR), polarimetric measurement, system
distortion.

I. INTRODUCTION

E
UROPEAN Space Agency (ESA)’s seventh earth explorer

mission, BIOMASS, which is planned for launch in 2022,

aims to improve the estimates of terrestrial carbon sources and

sinks by quantifying the global distribution and changes of

above-ground biomass (AGB) [1], [2]. The synthetic aperture
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radar (SAR) system operates at P-band, which gives higher sen-

sitivity to AGB than shorter wavelengths and allows the signal

to penetrate deep into or through the forest canopy. However, the

signal is degraded by system distortions (channel imbalance and

crosstalk), noise and Faraday rotation (FR). Channel imbalance

describes the system-induced deviation of the amplitude ratio

of the horizontally and vertically polarized channels from unity

and their phase difference from zero. Crosstalk is an unwanted

coupling between polarization signal paths. Both are treated

separately for the transmit and receive channels [3]. In [4], a

first-order analysis of how these effects combine to degrade

measurements of the polarimetric backscattering coefficients

in the presence of noise and FR was developed. These errors

were then translated into an associated bias in AGB estimation

under a power law relation between AGB and the cross-polarised

backscattering coefficient σ0
hv . This allowed identification of

the maximum permissible amplitudes of channel imbalance and

crosstalk in order to guarantee that the AGB estimation error did

not exceed a given limit. The system performance requirements

imposed on industry by ESA are based on these values.

However, the analysis in [4] identified worst case limits of

channel imbalance and crosstalk by searching over uncorrelated

uniform distributions for the amplitudes and phases of the dis-

tortion terms and FR angle, rather than a more realistic model

of their statistical distributions. Also, only covariance matrices

derived from airborne P-band campaign data over boreal forests

(as embodied in the BIOMASS End-to-End Mission Perfor-

mance Simulator [5]), were used to simulate polarimetric data,

but none from tropical campaigns. This article addresses both

these limitations.

After describing the system model in Section II, we show

that the analysis in [4] can be extended to provide first-order

analytic expressions for the mean and variance of the error in

σ0
hv under a joint Gaussian statistical model of the system errors,

FR and noise (see Section III). A simulation strategy for esti-

mating the σ0
hv errors, given this statistical model, is described

in Section IV. Simulation results in Section V confirm that

the first-order expressions very accurately approximate the true

mean and variance of the σ0
hv errors over the range of crosstalk

and channel imbalance errors expected for the BIOMASS sys-

tem. Simulation also indicates that the σ0
hv error distribution is
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very close to Gaussian, so is completely characterized by its

mean and variance. The analytic first-order expressions for the

mean and variance of the σ0
hv errors are then used to develop

tradeoff curves between crosstalk and channel imbalance for

given exceedance levels of the σ0
hv error. These are applicable to

any polarimetric SAR system, whatever its frequency. However,

in order to relate this analysis to AGB estimates from the P-band

BIOMASS SAR, we assume a power law relation between

AGB and σ0
hv; this allows the tradeoff curves to be expressed

in terms of relative error in AGB. The numerical calculations

use values of polarimetric covariance and power law exponent

derived from boreal and tropical airborne P-band campaign

data. The relation of these findings to the conclusions in [4]

about required BIOMASS system performance is discussed in

Section VI, together with limitations of our analysis given the

current status of AGB estimation algorithms for BIOMASS. Our

conclusion is in Section VII.

II. SYSTEM MODEL

The relationship between system errors, FR, noise and the

scattering matrix S is given in [3] and regrouped in [4] as

⎡
⎢⎢⎣

Mhh

Mhv

Mvh

Mvv

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 δ2 δ4 δ2δ4
δ1 f1 δ1δ4 f1δ4
δ3 δ2δ2 f2 f2δ2
δ1δ3 f1δ3 f2δ1 f1f2

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

c2 cs −cs −s2

−cs c2 s2 −cs
cs s2 c2 cs
−s2 cs −cs c2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

Shh

Shv

Svh

Svv

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

Nhh

Nhv

Nvh

Nvv

⎤
⎥⎥⎦ (1)

whereMpq ,Spq , andNpq , with p and q being either h or v, are the

components of the measured scattering matrix, true scattering

matrix and additive noise, respectively; fi, i = 1 − 2, are

channel imbalance terms; δi, i = 1− 4, are crosstalk terms; and

c = cosΩ, s = sinΩ, where Ω is the FR angle. Note that we

have omitted the scalar factor, Aejφ, describing the radar gain

and phase delay [3] as the analysis focuses on polarimetric rather

than absolute calibration. Since f1 and f2 are very close to 1, the

channel imbalance terms can be rewritten as fi = 1 + εi, i = 1,

2, where the εi are complex and of small amplitude. For natural

targets we expectShv = Svh, but the effects of FR, system errors

and noise break this equality in the measured signal.

The maximum likelihood estimate of the Spq given the mea-

sured values Mpq is derived in [4]. Of particular importance in

biomass estimation is the estimated cross-polarized scattering

matrix [6], given by

Ŝhv =
Mhv +Mvh

2
(2)

which does not depend on an estimate of the FR angle Ω.

Equation (1) is appropriate for a point target but we are often

more interested in distributed targets, which are characterized

by a covariance matrix C, where

C (i, j) = 〈SiS
∗
j 〉

TABLE I
COVARIANCE MATRIX VALUES FOR FOREST OF DIFFERENT BIOMASS VALUES

with 〈·〉 denoting expectation and ∗ complex conjugate. The

diagonal terms in C are denoted as σhh, σhv, σvh, and σvv,

where σpq = 〈|Spq|
2〉. For natural targets we expect σhv = σvh.

Note that we here use the notation σhv rather than σ0
hv, and

similarly for the HH and VV channels, since the analysis does

not depend on having radiometrically calibrated data. However,

the simulations reported in Sections IV and V do require the

use of reported values of the backscattering coefficients (see

Table I) because they involve comparison with noise equivalent

sigma zero (NESZ).

III. MEAN AND VARIANCE OF THE ERROR IN THE

CROSS-POLARIZED BACKSCATTERING COEFFICIENT

From (1), given the scattering vector S, the values of the

system errors and Ω, and a realization of the noise terms,

we can calculate the measured scattering vector M and hence

the errors in the components of S. More generally, given the

covariance matrix of a distributed target and the joint distribution

of the errors, FR and noise, we can use simulation to derive the

moments and joint distribution of these errors and the errors

in the covariance terms. However, simulation may yield little

insight into the most important controls on the errors, so in this

section we derive analytic first-order approximations to the mean

and variance of the error in σhv under the following assumptions

about the joint distribution of system errors, noise and FR. These

are in part guided by advice from Airbus U.K., who lead the

consortium building the BIOMASS satellite.

1) δi and δ4εi obey a joint zero-mean circular complex Gaus-

sian distribution;

2) Only correlations are between the pairs of variables δ1 and

δ3, δ2 and δ4, and ε1 and ε2;

3) Npq are identically distributed independent complex zero-

mean circular complex variables;

4) Ω has mean and variance that depend on location and time.

The Gaussian assumption is used only to simplify the variance

calculation, since the expression derived for the mean relies

solely on the system errors being zero-mean.

Note that this joint distribution describes different types of

uncertainty. The system errors are expected to be fairly stable

and have magnitudes within bounds that depend on the preci-

sion of the system engineering, but with unknown phase; the

distribution describes our lack of knowledge about their exact

values. FR is a geophysical phenomenon with large temporal

and spatial variability but known climatology, so its general
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statistical properties can be quantified. Noise is a random process

characterized by the NESZ.

The error in σhv is given by e = σ̂hv − σhv, where σ̂hv =
〈|Ŝhv|

2〉 and Ŝhv is given by (2). Under the assumption of dis-

tributed targets with reflection symmetry, a first-order expression

for this error was derived in [4] (13) for given values of the system

errors and FR

e = σhv

(
2 Re(Σε) + |Σε|

2
)

+ σhh

∣∣c2Σ13 − s2Σ24

∣∣2 + σvv

∣∣c2Σ24 − s2Σ13

∣∣2

+ c2s2 (σhh + σvv + 2R cos θ) |Y21|
2

+ 2 Re
{(

c2Σ13 − s2Σ24

) (
c2Σ∗

24 − s2Σ∗
13

)
Rejθ

}

+ 2cs Re
{
Y ∗
21

[(
c2Σ13 − s2Σ24

) (
σhh +Rejθ

)

+
(
c2Σ24 − s2Σ13

) (
σvv +Re−jθ

)}
+ σn/2 (3)

where Σ13 = (δ1 + δ3)/2, Σ24 = (δ2 + δ4)/2, Σε =
(ε1 + ε2)/2, Y21 = (ε2 − ε1)/2 and 〈ShhS

∗
vv〉 = Rejθ.

Setting

X = c2 Σ13 − s2Σ24

Y = c2 Σ24 − s2Σ13

A = Σε

B = csY21

P = σhh + σvv + 2R cos θ (4)

(3) can be written:

e = σhv

(
2 Re (A) + |A|2

)
+ P |B|2

+ 2Re
{
B∗

[
X

(
σhh +Rejθ

)
+ Y

(
σvv +Re−jθ

)] }

+ σhh|X|2 + σvv|Y |2 + 2 Re
{
RejθXY ∗

}
+ σn/2.

(5)

A. Moments of X, Y, A, and B

From the statistical assumptions given above, the variances

and covariance of X and Y are

VX = 〈c4〉V13 + 〈s4〉V24 (6a)

VY = 〈s4〉V13 + 〈c4〉V24 (6b)

CXY = 〈XY ∗〉 = CXY = −〈c2s2〉 (V13 + V24) (6c)

where VX , VY , V13 and V24 are the variances of X, Y, Σ13 and

Σ24 respectively. Note that CXY is real.

These quantities are related to the covariance statistics of the

crosstalk distribution by

V13 = 〈|Σ13|
2〉 =

1

4
(V1 + V3 + 2Re (C13)) (7a)

V24 = 〈|Σ24|
2〉 =

1

4
(V2 + V4 + 2Re (C24)) (7b)

where Vi is the variance of δi, C13 = 〈δ1δ
∗
3〉 and C24 = 〈δ2δ

∗
4〉.

The corresponding results for A A and B B are

VA =
1

4
(Vε1 + Vε2 + 2Re (Cε12)) (8a)

VB =
1

4
〈c2s2〉 (Vε1 + Vε2 − 2Re (Cε12)) (8b)

CAB = 〈AB∗〉 =
〈cs〉

4
(Vε2 − Vε1 + 2j Im (Cε12)) (8c)

where Vεi is the variance of εi and Cε12 = 〈ε1 ε
∗
2〉.

B. Moments of the Trigonometric Functions of Ω

The above expressions contain the following moments of

trigonometric functions of Ω

〈c4〉 = (3 + 4〈cos 2Ω〉+ 〈cos 4Ω〉) /8 (9a)

〈s4〉 = (3− 4〈cos 2Ω〉+ 〈cos 4Ω〉) /8 (9b)

〈c2s2〉 = (1− 〈cos 4Ω〉) /8 (9c)

〈cs〉 = 〈sin 2Ω〉/2. (9d)

These can be easily calculated if Ω is Gaussian distributed

with mean 〈Ω〉 and standard deviation (SD) σΩ , in which case

〈cos pΩ〉 = cos (p〈Ω〉) exp
(
−σ2

Ω p2/2
)

(10)

This is only approximate because Ω is a circular variable, but

is acceptable if σΩ is not too large and 〈Ω〉 is not too close to

π (taking Ω between −π and π). Note that near the magnetic

equator 〈Ω〉 will be near zero and σΩ will be small, but both the

magnitude of the mean and σΩ will increase as we move away

from the equator.

C. Mean and Variance of the Error in σhv

We can now assemble the expected value of (5) over the

system error and FR angle distributions (for details see Appendix

A):

〈e〉 = σhvVA + PVB+σhhVX+σvvVY +2R cos θCXY +
σn

2
(11)

where P, VA, VB , VX , VY and CXY are given by (4), (6) and

(8).

Equation (11) relies only on the assumption that the com-

plex system errors are zero-mean with the correlation proper-

ties discussed above, but makes no further assumptions about

their distributions. With the extra assumption that they obey

a circular Gaussian distribution, X, Y, A, and B will also be

circular zero-mean Gaussian. The variance of the error in σhv,

i.e., Ve = 〈(e− 〈e〉)2〉, is then given by the sum of three terms

(details are given in Appendix A)

Ve1 = σ2
hv

(
V 2
A + 2VA

)
+ P 2V 2

B + 2σhvP |CAB |
2

(12a)

Ve2 = σ2
hhV

2
X + σ2

vvV
2
Y + 2R2

{
VXVY + C2

XY cos 2θ
}

+ 2σhhσvvC
2
XY + 4R cos θCXY (σhhVX + σvvVY )

(12b)

Ve3 = 2VB{VXσ2
hh + VY σ

2
vv + 2CXY σhhσvv
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+ 2R cos θ (VXσhh + VY σvv + CXY (σhh + σvv))

+R2 (VX + VY + 2CXY cos 2θ)}. (12c)

The first comes purely from channel imbalance, the second

from crosstalk, while the third is an interaction term.

The expressions in (11) and (12) can be simplified if we

assume the crosstalk terms all have the same variance, i.e.,

Vi = Vδ for all i, and the complex correlation coefficients of

δ1 and δ3, δ2 and δ4 are ρ13 = ρ24 = C13/Vδ = C24/Vδ = ρδ .

We write ∠ρδ = θδ. Then we have

VX = VY =
Vδ

8
(1 + |ρδ| cos θδ) (3 + 〈cos 4Ω〉) (13a)

CXY = CY X = −
Vδ

8
(1 + |ρδ| cos θδ) (1− 〈cos 4Ω〉) .

(13b)

Similarly, with similar notation

VA =
Vε

2
(1 + |ρε| cos θε) (14a)

VB = 〈c2s2〉
Vε

2
(1− |ρε| cos θε) (14b)

CAB = j〈cs〉
Vε

2
|ρε| sin θε. (14c)

These expressions can be substituted into (11) and (12) to

give the mean and variance of the error in σhv in terms of the

variances and correlation coefficients of the δi and εi.
Note that the unknown phase of the system error correlation

coefficients has significant effects. For example, (12b) has a

maximum and minimum when θδ = 0 and π respectively, since

these values of θδ maximise and minimize the expressions in

(13a) and (13b). If the magnitude of the correlation coefficients

is near 1, (12b) is nearly 0 when θδ = π. Similarly, the value of

(12a) is maximised when θε = 0, in which case for ρε near 1,

VA ≈ Vε and VB and CAB are both nearly 0, and it is minimised

when θε = π, in which case VA and CAB are both nearly 0 and

VB ≈ 〈c2s2〉Vε.

D. Relation Between Error in σhv and Error in AGB

The error in σhv can be related to the error in AGB, denoted

as B, under a power law for AGB [6]

B = Aσp
hv. (15)

An erroneous estimate of BB can be written as B̂ = (1 + q)B
and the corresponding estimate of σhv is given by

Aσ̂p
hv = (1 + q)Aσp

hv.

The relative error in B is then

B̂ −B

B
= q =

σ̂p
hv − σp

hv

σp
hv

.

Hence the corresponding relative error in σhv is

σ̂hv − σhv

σhv

= (1 + q)1/p − 1. (16)

Typical values of p for boreal and tropical forests are 2.2 and

1.9, respectively [6]. The relative errors in σhv yielding a 20%

overestimate in AGB are 0.0864 in the first case and 0.101 in

the second, while for a 20% underestimate they are−0.0965 and

−0.1108 respectively. This implies two things: requirements for

system accuracy are more stringent in boreal forests than in

tropical forests; and because the σhv errors have a symmetric

distribution (see Section V-A), constraining the system errors

to keep overestimates of AGB below a given relative level

will automatically have the same effect for underestimates. The

second point is reinforced by the fact that the error distribution

has a positive mean (11).

IV. NUMERICAL SIMULATIONS

The accuracy of the first-order approximations developed in

Section Ⅲ was tested by simulating the measurement process

directly from (1) without making any approximations. Table I

gives the covariance values used in the simulation for three

boreal forest biomass values (50, 200, and 350 t/ha) [4] and

two tropical biomass values (338 t/ha from TropiSAR [7] and

341 t/ha from AfriSAR [8]). The latter are both for dense forest

because this was the focus of the tropical campaigns.

The simulation involves three steps:

1) Scene Generation: A homogeneous “scene” consisting

of L independent samples of scattering vectors S(k),
k ∈ [1, L], drawn from a zero-mean complex Gaussian

distribution characterized by the covariance values in Ta-

ble I, is generated using Choleski decomposition. The

associated estimate of σ0
hv is

σ0
hv =

1

L

L∑

k=1

|Shv (k)|
2. (17)

The value of L is chosen to be large enough that this gives a

very good approximation to the true value of σ0
hv, so we use the

same notation for both.

2) Generate M Joint Samples of System Errors and FR, and

N Joint Samples of Noise: M independent realizations of

the combined system errors and FR are generated under

the statistical model given in Section ⅡI. Each of these

is applied to all the pixels in the simulated scene. An

independent realization of the noise vector for a given

NESZ is then added to each pixel. This corresponds to a

single realization of the measured scene under the system

model (1) in which all the pixels suffer the same system

distortion and FR, but where each pixel is independently

affected by noise. The effects of system noise can then be

simulated by holding the system errors and FR fixed, and

adding new noise realizations to each pixel, an operation

carried out N times. This yieldsM ×N simulations of the

measured scene.

3) Statistics of the Error in σ0
hv: Given the ensemble of

simulated scene measurements and the estimate (17) we

can calculate the mean and variance of the error in σ0
hv

and compare them with the predictions in SectionⅢ. The



MEN et al.: IMPACT OF SYSTEM DISTORTIONS AND NOISE ON HV BACKSCATTER AND ITS RELEVANCE TO AGB ESTIMATION 4093

Fig. 1. Mean and variance of the error in σ0

hv
for a boreal biomass of 200 t/ha

as NESZ varies under Gaussian distributed FR with mean π/3 and SD π/36,
shown for two different levels of system distortions indicated by different line
styles.

simulation also provides information on the distribution

of errors in σ0
hv.

In the following simulations we fix L = 100000, M = 10000,

and N = 1. The correlation coefficient of both the crosstalk and

channel imbalance terms is fixed as ρ = 0.9ej0 (∠ρ = 0 is the

most stringent situation, see Section III-C).

V. RESULTS

A. Testing the Predictions of the σhv Error Statistics

The bias and variance of the error in σhv calculated using

both numerical simulation and (11) and (12) are shown in Fig. 1

for a boreal biomass of 200 t/ha (see Table Ⅰ) under Gaussian

distributed FR with mean π/3 and SD π/36, and two levels of

system error, with mean zero and Vδ = −30 dB, Vε = −34 dB

andVδ =−28 dB,Vε =−32 dB (this 4 dB difference is based on

the observation in [4] that the channel imbalance term needs to

be smaller than crosstalk to yield similar errors in biomass). Note

that the accuracy of the predictions using the analytic calculation

does not depend on this 4 dB difference.

For NESZ <−35 dB the bias is almost entirely due to system

errors, but as NESZ increases beyond this point the relative

contribution of noise to the bias increases rapidly. When NESZ

=−27 dB (the specification for the BIOMASS instrument) noise

is a factor 2.1 and 1.7 greater than the system error for the lower

curves and upper curves, respectively.

The theoretical and simulated bias are very similar (they can

barely be distinguished in Fig. 1) so we can use (11), (13) and

(14) to calculate the contribution to the bias by system errors

as 1.43 × 10−4 (lower curves) and 2.11 × 10−4 (upper curves).

The crosstalk contribution to the bias is an order of magnitude

greater than that from channel imbalance (this is true for all five

biomass values in Table Ⅰ; see Appendix C). The lower panel

in Fig. 1 shows that the variance is independent of the noise,

as predicted by (12), and the simulated value of the variance is

TABLE II
RELATIVE ERROR IN THE BIAS AND VARIANCE OF ESTIMATED σ0

hv

very close to the analytic value. Similar behavior is seen for all

the cases given in Table I over a range of conditions on the FR

angles.

The relative differences in the bias and variance between the

simulations and analytic expression are defined as

Biasnumerical − Biasanalytic
Biasanalytic

(18a)

Vnumerical − Vanalytic

Vanalytic

. (18b)

TableⅡ gives their values for calculations like those illustrated

in Fig. 1 for all the AGB values in Table I when NESZ =
−27dB and for several FR angles. The relative differences are all

below 1.32% for bias and 0.84% for variance, and for the boreal

data tend to decline as AGB increases. These results confirm

that under the assumed statistical model the analytical approach

provides very accurate estimates of both the bias and variance

of the σ0
hv errors given the target covariance, the variance-

covariance properties of crosstalk and channel imbalance, the

mean and variance of FR, and the NESZ. The last three entries

in Table II also illustrate that the difference between crosstalk

and the channel imbalance term is not a significant control on

the accuracy.

In order to fully exploit this we need to know the σ0
hv error

distribution, but this can be measured from the simulations, as

shown in Fig. 2 for an AGB of 200 t/ha with a range of noise

levels when the levels of crosstalk and the channel imbalance

terms are −30 and −34 dB, respectively. Gaussian distributions

parameterized by the estimated mean and variance (superim-

posed in red) clearly provide very good approximations to the

histograms. The increasing bias as NESZ increases is also clear.

B. Tradeoff Curves for Crosstalk and Channel Imbalance

Because the σ0
hv error distribution is well approximated by a

Gaussian distribution parameterized by the first-order estimates

of the mean and variance of the error (see Section V-A), we can

calculate exceedance probabilities using standard Gaussian ta-

bles. For example, the probability of error exceedsα = 5%, 1%,

and 0.135% when the standardized error, zα = (e− 〈e〉)/σe,

exceeds the values zα = 1.65, 2.33, and 3.00, respectively (here,

σe is the SD of the error). These values relate to overestimates;
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Fig. 2. Histograms of the error in σ0

hv
for an AGB of 200 t/ha and a range of

values of NESZ when the crosstalk and the channel imbalance terms have values
−30 and −34 dB, respectively, derived by simulation of (1). The red curve is a
Gaussian distribution parameterized by the mean and variance estimated from
the simulated errors.

the corresponding standardized errors for underestimates are

−1.65, −2.33, and −3.00.

The combinations of the channel imbalance and crosstalk

variances that keep the error in σ0
hv below fσ0

hv, i.e., a given

fraction f of σ0
hv, with probability α, are therefore given by

solving

b (Vδ, Vε) + zασe (Vδ, Vε) = fσ0
hv (19)

where b(Vδ, Vε) = 〈e〉 is the mean error (bias) and zα is the

standardized error giving an exceedance probability α under

a one-sided test. As explicitly indicated, both b and σe are

functions of Vδ and Vε. It is shown in Appendix B that the

tradeoff curve (19) is a segment of a hyperbola.

Although the magnitude of the errors in the εi and δi can be

quantified by their variances Vε and Vδ, we instead characterize

them by the probability that their amplitudes, |εi| and |δi|, are

less than 3σ, where σ is the SD of the real and imaginary parts

of the errors. This is because industry prefers to quantify system

error uncertainty in terms of amplitude. Under the Gaussian

assumption, the amplitudes obey Rayleigh distributions, so have

cumulative density functions of the form

P|δ| (x) = p {|δ| < x} = 1− exp
(
−x2/

(
2σ2

))
, (20)

Hence, the probability that the amplitude error exceeds 3σ
is 0.01111. The tradeoff curves displayed in the next sec-

tion are labeled in terms of the associated dB value given by

10log10(3σ)
2 = 10log10(9Vδ/2) (with similar expressions for

the channel imbalance terms).

It should be noted that up to this point the results deal only

with the HV backscattering coefficient, so are equally applica-

ble to any spaceborne polarimetric SAR system, whatever its

frequency. This includes the tradeoff (19). The only place where

TABLE III
SIMULATION PARAMETERS

Fig. 3. Tradeoff curves of crosstalk and channel imbalance for three different
confidence levels that the AGB is overestimated by less than 20% and 10% for
a boreal biomass of 200 t/ha, power law index p = 2.2, and mean FR = π/3.

frequency is specifically invoked is in the use of target covariance

values and FR angles appropriate to P-band to generate Table II

and Figs. 1 and 2, but this is unlikely to significantly affect our

findings. However, the P-band frequency is important in what

follows since we express the tradeoff between crosstalk and

the channel imbalance term in terms of relative error in AGB

using the power law relations described in Section III-D and

parameters inferred from P-band data in [6].

The following calculations use the simulation parameters

summarized in TableⅢ. Fig. 3 shows the crosstalk and channel

imbalance tradeoff curves for 95%, 99%, and 99.865% confi-

dence levels that an estimate of AGB does not exceed 20% and

10% of its true value for an AGB of 200 t/ha and power law

exponent p = 2.2 (boreal), while Fig. 4 shows the correspond-

ing tradeoff curves for underestimation. It is clear that values

of crosstalk and channel imbalance that bound overestimation

within desired limits guarantee the same for underestimation, as

already noted in Section III-D, i.e., controlling overestimation

places more stringent requirements on the system errors.

For overestimation, there is only one solution of (19)

for a given level of channel imbalance because b(Vδ, Vε) +
zασe(Vδ, Vε) always increases with Vδ. However, for underes-

timation, there can be two solutions for higher levels of channel
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Fig. 4. Tradeoff curves of crosstalk and channel imbalance for three different
confidence levels that the AGB is underestimated by less than 20% and 10% for
a boreal biomass of 200 t/ha, power law index p = 2.2, and mean FR = π/3.

Fig. 5. Tradeoff curves of crosstalk and channel imbalance for three different
confidence levels that the AGB is overestimated by less than 20% and 10% for
a boreal biomass of 50 t/ha, power law index p = 2.2, and mean FR = π/3.

imbalance because zα is negative and the bias increases faster

than the variance as Vδ increases. As a result, b(Vδ, Vε) +
zασe(Vδ, Vε) first increases then decreases as crosstalk in-

creases. This has the counter-intuitive effect that for fixed chan-

nel imbalance the underestimation in AGB decreases as crosstalk

increases (see Appendix C). This behavior does not contradict

the hyperbolic form of (19), but arises from the rotational and

logarithmic transformations involved in converting from the

standardized form of the hyperbola given in Appendix B back

to channel imbalance and crosstalk.

Figs. 5 –8 are similar to Fig. 3 but for the other four values of

AGB in Table II. The calculations in Figs. 5 and 6 use a power

law exponent p = 2.2 (boreal) while Figs. 7 and 8 use p = 1.9

(tropical). The corresponding plots for underestimation are not

shown since they are similar to Fig. 4, and the conditions keep-

ing the magnitude of overestimation below a given probability

always guarantee the same for underestimation.

Fig. 6. Tradeoff curves of crosstalk and channel imbalance for three different
confidence levels that the AGB is overestimated by less than 20% and 10% for
a boreal biomass of 350 t/ha, power law index p = 2.2, and mean FR = π/3.

Fig. 7. Tradeoff curves of crosstalk and channel imbalance for three different
confidence levels that the AGB is overestimated by less than 20% and 10% for
a tropical AGB of 338 t/ha, power law index p = 1.9, and mean FR = 0.

Several points must be made concerning the figures.

1) The plots shown in Figs. 3–8 can be calculated using a full

simulation based on (1) or the analytic approach described

above, where the σ0
hv errors are taken to be Gaussian with

bias and SD given by (11) and (12). In practice, these

are indistinguishable. Hence the effects of system errors

on errors in σ0
hv and AGB can be quickly and accurately

quantified and tradeoff curves plotted without the need for

complex simulation schemes.

2) As expected, tighter confidence limits on the AGB error

require smaller values of the system errors.

3) The maximum permissible size of the channel imbalance

terms needs to be significantly smaller than for crosstalk

to meet the 10% or 20% constraints on AGB error, as can

be seen by the values at which the curves cross the axes.
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Fig. 8. Tradeoff curves of crosstalk and channel imbalance for three different
confidence levels that the AGB is overestimated by less than 20% and 10% for
a tropical AGB of 341 t/ha, power law index p = 1.9, and mean FR = 0.

4) Figs. 3, 5, and 6 indicate that the constraints on channel

imbalance are more stringent for lower values of AGB,

but the constraints on crosstalk are less so.

5) In principle, the higher value of the power law exponent

in boreal forests compared to tropical forests (p = 2.2 and

1.9, respectively) means that better system performance

is required in boreal forests. In practice, this is weakened

because of the dependence of the errors on the terms in

the variance-covariance matrix of the target. For example,

comparing Fig. 6 (boreal) with Fig. 7 (tropical) shows that

similar requirements are found for channel imbalance, but

weaker constraints on crosstalk are needed in the tropical

case. The differences between Figs. 7 and 8, which are

both tropical, are entirely caused by differences in their

variance-covariance matrices.

6) In the worst case shown (see Fig. 5), meeting the 99.865%

confidence limit that the AGB relative error is less than

20% requires the channel imbalance terms to be smaller

than −30.2 dB. The crosstalk requirement is much less

demanding: here the worst case (see Fig. 6) requires

crosstalk not to exceed −20.16 dB.

VI. DISCUSSION

The BIOMASS mission specifications for crosstalk and chan-

nel imbalance terms are currently defined as -30 and -34 dB, re-

spectively, based on the analysis in [4], where they were derived

by examining the worst possible case when the system error am-

plitudes varied over a uniform distribution. Here, however, the

errors follow complex Gaussian distributions, in which case their

magnitudes obey Rayleigh distributions. A further important

difference is that [4] dealt only with the bias inσhv and AGB, and

the numerical results did not consider noise, whereas this new

analysis treats noise on an equal footing with the system errors

and considers both bias and variance. This leads to different

conclusions. In [4], the channel imbalance term was found to

be the major contributor to bias, whereas here it is noise, while

channel imbalance is the dominant contributor to the variance.

Hence the quantitative results in [4] cannot be directly compared

with those in this article. However, the specifications for the

crosstalk and channel imbalance terms derived here are likely

to be more realistic, and indicate that the current specifications

are unnecessarily demanding. Nonetheless, both analyses make

clear that the channel imbalance terms need to be considerably

smaller than crosstalk if the BIOMASS mission requirements

on AGB accuracy are to be met.

The assumption in this article that the system errors follow

complex Gaussian distributions can be questioned, but key as-

pects of the analysis do not depend on it. The bias in the σhv

error (11) does not need it. Moreover, although it played a very

useful part in yielding compact expressions for the fourth-order

moments involved in the variance calculation (12), the dominant

part of the variance comes from the linear term in the εi in

(3), i.e., 2σhvRe(Σε). This yields the 2σ2
hvVA term in (12a),

which is the largest term and does not depend on the Gaussian

assumption.

The analysis of σ0
hv errors performed in this article is applica-

ble to any SAR frequency, and it is only in the tradeoff curves in

Figs. 3–8 that the properties of P-band and the relation between

the P-band HV backscattering coefficient and AGB become

important. Similar tradeoff curves could have been produced

for relative error in σ0
hv. However, unless the errors in σ0

hv can

then be related to the accuracy of AGB estimation, they provide

little insight into how important such errors are, for example

to meeting BIOMASS mission objectives. This motivated the

use of a power law to provide this connection, since it has a

sound empirical basis [6] and has been used in many earlier

studies (an extensive list of such studies using P- and L-band

SAR data is provided in the references in [6]). Nonetheless, a

reasonable criticism of our results is that they do not reflect

current developments in estimation of AGB from polarimetric

SAR data, in particular: the combined use of the co-polarised

and cross-polarised backscattering coefficient [10], [11]; and the

exploitation of ground-cancelled data [9], [12], [13].

The prototype AGB estimation algorithm for BIOMASS [13]

combines both of these elements. It assumes separate power

law relations between the backscattering coefficient and AGB

for each of the HH, HV, and HV channels after the ground

and double-bounce returns have been strongly suppressed using

coherent subtraction of interferometric signals [12], thus leaving

only the backscatter from the forest volume. The parameters

controlling the power laws are then estimated by numerical

minimization of a cost function.

Analysis of the effects of system errors on this full AGB

estimation scheme has not yet been attempted, but some progress

has been made towards doing so. For example, empirical analysis

based on airborne data indicates that the HV ground-cancelled

data still display a power law relationship with AGB, and that,

just as was found above, the mean AGB relative error is primarily

controlled by noise while its variance is strongly affected by the

correlation and phase difference between the channel imbalance

terms. There is no obvious difficulty in extending our theoretical

analysis to this case, as long as the system errors are stable be-

tween the times of the two interferometric acquisitions. The only
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proviso is that, since ground-cancellation involves subtracting

complex images gathered at different times, it will be necessary

to account for differences in FR between the two images.

As regards the combination of co- and cross-polarized chan-

nels, in all three cases, pq=HH, HV, VV, the relative error in the

backscattering coefficient, (σ̂0
pq − σ0

pq)/σ
0
pq , will be dominated

by terms that are linear in the system errors (as shown in this

article, these will be the channel imbalance terms for HV, but for

the co-polarized channels both channel imbalance and crosstalk

terms would make significant contributions [4]). Hence it should

be fairly straightforward to extend the theoretical analysis of

the HV term in this article to the co-polarized terms, though

this remains to be carried out. While this would give insight

into what controls these relative errors and their possible sizes

and variances, the real difficulty would be to evaluate how the

system- and noise-induced errors in each channel interact in the

full AGB estimation algorithm. This is likely to be difficult, not

least because it is not clear how to perform realistic simulation

of the overall algorithm.

Seen against this background, our estimates of the required

system performance, as captured by Figs. 3–8, are likely to be

conservative, and if the BIOMASS system is compatible with

them it will comfortably achieve mission requirements. Current

work is extending the analysis to ground-cancelled data, while

retaining the use of the HV channel to estimate AGB, and this

will make a valuable further step to refining the constraints on

the system errors. However, full analysis of the AGB estimation

algorithm described in [13] remains a challenging problem.

VII. CONCLUSION

The cross-polarized backscattering coefficient σ0
hv plays an

important role in estimating AGB from SAR data, since numer-

ous studies indicate that the dependence of AGB on σ0
hv can be

approximated by a power law relationship (see [6] and references

therein). However, system effects (crosstalk, channel imbalance,

and system noise) and FR can cause errors in measurements

of σ0
hv by a spaceborne SAR system. This article quantifies

the mean and variance of these errors for a distributed target

characterized by a given covariance matrix when the unknown

values of crosstalk, the channel imbalance terms, system noise,

and FR obey a joint Gaussian distribution. For system errors

whose order of magnitude is likely to be representative of the

BIOMASS instrument, first-order expressions for the mean and

variance of the σ0
hv errors are shown to be very accurate when

compared with simulations that use the full system model. Using

these expressions, it is demonstrated that, for the levels of

system error expected for BIOMASS, noise is the dominant term

causing bias in σ0
hv, while its variance is primarily controlled by

channel imbalance.

In addition to confirming the accuracy of the first-order ap-

proximations, the simulations indicate that the σ0
hv error dis-

tribution is close to Gaussian. Since a Gaussian distribution is

completely characterized by its mean and variance, this allows

the exceedance probabilities of the σ0
hv error to be quickly and

easily calculated using the first-order approximations to these

quantities. It is then straightforward to calculate tradeoff curves

showing how crosstalk and channel imbalance need to be related

to keep the relative error in σ0
hv below a given value at a given

level of significance.

Based on a power law relation between AGB and σ0
hv, associ-

ated tradeoff curves can be calculated that show the acceptable

joint levels of channel imbalance and crosstalk that ensure the

relative error in AGB is less than a given percentage for a given

level of significance. These are provided for 20% and 10% rela-

tive error for a range of AGB and for conditions corresponding

to both boreal and tropical forests, in which different power law

exponents are needed.

It must be stressed that the quantitative tradeoff calculations

offer only an approximate and conservative guide to the required

constraints on the size of the BIOMASS system errors, for two

main reasons.

1) Significantly better estimation of AGB from theσ0
hv signal

is achieved after removing contamination by the ground

using coherent subtraction of signals from different times

[12]. This requires a modified analysis because FR is likely

to differ between the two times.

2) The most recent prototype algorithm [13] for estimating

AGB from BIOMASS data uses ground-cancelled data

and combines information from all three of the HH, HV,

and VV channels, each of which is assumed to be related to

AGB by an independent power law. Assessing the effects

of system errors on this AGB estimation scheme provides

a much greater challenge.

APPENDIX A

FIRST-ORDER ESTIMATES OF THE MEAN AND VARIANCE OF

THE ERROR IN σhv

From (5), the error in σhv can be written as

e = σhv

(
2Re (A) + |A|2

)
+ P |B|2

+ 2Re
{
B∗

[
X

(
σhh +Rejθ

)
+ Y

(
σvv +Re−jθ

)]}

+ σhh|X|2 + σvv|Y |2 + 2Re
{
RejθXY ∗

}
+ σn/2 (A1)

whereP = σhh + σvv + 2R cos θ. Since A, B, X, and Y are zero-

mean, and the A and B terms are uncorrelated with X and Y, the

expectation of e is

〈e〉=σhv VA+PVB+σhhVX+σvvVY +2R cos θCXY +
σn

2
.

(A2)

From (A1) and (A2)

e− 〈e〉 = σhv

(
2Re (A) + |A|2 − VA

)
+ P

(
|B|2 − VB

)

+ σhh

(
|X|2 − VX

)
+ σvv

(
|Y |2 − VY

)

+ 2Re
{
RejθXY ∗

}

− 2R cos θ CXY

+ 2Re
{
B∗

[
X

(
σhh +Rejθ

)
+ Y

(
σvv +Re−jθ

)] }
.

(A3)
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The variance of e can be split into terms coming solely

from channel imbalance, solely from crosstalk and interaction

between the two. The first is given by

Ve1 = 〈σ2
hv

(
A+A∗ + |A|2 − VA

)2

+ P 2
(
|B|2 − VB

)2

〉

+ 〈2Pσhv

(
A+A∗ + |A|2 − VA

)(
|B|2 − VB

)
〉

= σ2
hv

(
V 2
A + 2VA

)
+ P 2V 2

B + 2σhvP |CAB |
2. (A4)

The second is given by

Ve2 = {σhh (XX∗ − VX) + σvv (Y Y ∗ − VX)

+R
(
XY ∗ejθ +X∗Y e−jθ − 2 cos θCXY

)}2

= σ2
hh V 2

X + σ2
vvV

2
Y + 2R2

{
VXVY + C2

XY cos 2θ
}

+ 2σhhσvvC
2
XY +4R cos θCXY (σhhVX+σvvVY ) .

(A5)

All the interaction terms in the square of (A3) have expectation

0 except for the square of the last term
〈{

B∗
[
X

(
σhh +Rejθ

)
+ Y

(
σvv +Re−jθ

)]

+B
[
X∗

(
σhh +Re−jθ

)
+ Y ∗

(
σvv +Rejθ

)] }2〉
.

Here, the only part not averaging to 0 is from the product of

the 2 terms involving square brackets, whose expectation is

Ve3 = 2VB{VX

(
σhh +Rejθ

) (
σhh +Re−jθ

)

+ VY

(
σvv +Re−jθ

) (
σvv +Rejθ

)

+ CXY [
(
σhh +Rejθ

) (
σvv +Rejθ

)

+
(
σvv +Re−jθ

) (
σhh +Re−jθ

)
]}

= 2VB{VXσ2
hh + VY σ

2
vv + 2CXY σhhσvv

+ 2R cos θ (VXσhh + VY σvv + CXY (σhh + σvv))

+ R2 (VX + VY + 2CXY cos 2θ)
}
. (A6)

The overall variance of the error is then given by (A4) + (A5)

+ (A6).

APPENDIX B

HYPERBOLIC FORM OF THE TRADEOFF CURVES

Equation (19) quantifies the tradeoff between Vε and Vδ that

keeps the error in σhv below fσhv with probability α

zασe (Vδ, Vε) + b (Vδ, Vε) = fσhv. (B1)

Under the first-order approximations (11) and (12)

b = a1Vε + a2Vδ + σn/2 (B2a)

σ2
e = b1Vε + b2V

2
ε + b3V

2
δ + b4VεVδ. (B2b)

Hence

σ2
e =

(
fσhv

zα
−

b

zα

)2

= (A0 −A1Vε −A2Vδ)
2

(B3)

where

A0 =
fσhv − σn/2

zα

A1 =
a1
zα

A2 =
a2
zα

.

(B3) can then be rewritten as

(
b2 −A2

1

)
V 2
ε +

(
b3 −A2

2

)
V 2
δ

+(b4 − 2A1A2)VεVδ + (b1 + 2A0A1)Vε

+2A0A2Vδ −A2
0 = 0.

Write this as

P1V
2
ε + P2V

2
δ + P3VεVδ + P4Vε + P5Vδ − P6 = 0. (B4)

Rotating the axes using the transform

(
Vε

Vδ

)
=

(
cosϕ sinϕ

− sinϕ cosϕ

)(
X
Y

)
(B5)

where tan 2ϕ = P3

P2−P1

, converts this to the form

C1X
2 + C2Y

2 + C3X + C4Y − C0 = 0 (B6)

where

C1 = P1c
2 + P2s

2 − P3cs

C2 = P1s
2 + P2c

2 + P3cs

C3 = P4c− P5s

C4 = P4s+ P5c

C0 = P6

with c = cosϕ and s = sinϕ.

This can be converted into the standard form of a conic by

completing squares and normalizing

(
X + C3

2C1

)2

B1

+

(
Y + C4

2C2

)2

B2

= 1 (B7)

where B1 =
C0+

C2

3

4C1
+

C2

4

4C2

C1

and B2 =
C0+

C2

3

4C1
+

C2

4

4C2

C2

.

Because B1 is positive and B2 is negative, this is a hyperbola.

(B7) can then be expressed in terms of Vε and Vδ by inverting

(B5) and substituting for X and Y. Since we are characterizing

the size of the crosstalk errors as pδ = 3σ = 3
√

Vδ/2, where σ
is the SD of the real and imaginary parts of the error, we finally

need to replace Vδ by p2δ/4.5, and similarly for Vε.
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Fig. 9. Proportion of the mean error in σ0

hv
given by the Vδ , Vε, and noise

terms in (11) against the channel imbalance term, with crosstalk fixed to be equal
to the channel imbalance term (top) and 4 dB higher than the channel imbalance
term (bottom) for a range of values of AGB and for NESZ = −27 dB.

Fig. 10. Proportion of the variance of the error in σ0

hv
given by the Vδ , Vε,

and interaction terms in (12) against the channel imbalance term, with crosstalk
fixed to be equal to the channel imbalance term (top) and 4 dB higher than the
channel imbalance term (bottom), for a range of values of AGB and for NESZ
= −27 dB.

APPENDIX C

PROPORTIONS OF THE BIAS AND VARIANCE OF THE σhv ERROR

CONTRIBUTED BY CHANNEL IMBALANCE, CROSSTALK, AND

NOISE

Fig. 9 shows the proportion of the mean error in σhv coming

from the Vδ , Vε and noise terms in (11) when the channel imbal-

ance and crosstalk terms are equal (top) and when the crosstalk

is 4 dB higher than the channel imbalance terms (bottom) for a

range of AGB values. Noise always dominates the mean error

unless crosstalk exceeds −25 dB (upper case) and −28.5 dB

(lower case), respectively. The channel imbalance contribution

is always small. Fig. 10 indicates that the channel imbalance

(12a) always dominates the variance and the interaction term

(12c) is negligible.
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