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Abstract: Incontinentia pigmenti (IP) is a rare skin disease combined with anomalies of the teeth,
eyes, and central nervous system (CNS). Mutations of the IKBKG gene are responsible for IP. Among
the most frequent CNS abnormalities found in IP using magnetic resonance imaging (MRI) are corpus
callosum (CC) abnormalities. The aim of the study was to determine the presence of CC abnormalities,
their relationship with the IKBKG mutations, and the possible presence of mutations of other genes.
A group of seven IP patients was examined. Analyses of the IKBKG gene and the X-chromosome
inactivation pattern were performed, as well as MRI and whole exome sequencing (WES) with the
focus on the genes relevant for neurodegeneration. WES analysis showed IKBKG mutation in all
examined patients. A patient who had a mutation of a gene other than IKBKG was excluded from
further study. Four of the seven patients had clinically diagnosed CNS anomalies; two out of four had
MRI-diagnosed CC anomalies. The simultaneous presence of IKBKG mutation and CC abnormalities
and the absence of other mutations indicate that IKBKG may be the cause of CC abnormalities and
should be included in the list of genes responsible for CC abnormalities.

Keywords: incontinentia pigmenti; IKBKG gene mutation; central nervous system (CNS);
corpus callosum; whole exome sequencing (WES); X-chromosome inactivation; magnetic resonance
imaging (MRI)

1. Introduction

Incontinentia pigmenti (IP [MIM 308300], Bloch–Sulzberger syndrome, ORPHA464) is
a rare X-linked genodermatosis with an estimated birth prevalence of 1.2/100,000 [1] in
which changes in skin and skin appendages are usually combined with anomalies of other
organs, teeth, eyes, and central nervous system (CNS) [2]. IP appears almost exclusively
in females and is usually lethal in males [3,4]. Mutations of the inhibitor of kappaB kinase
gamma (IKBKG, previously NEMO) gene, localized on the X-chromosome, locus Xq28, are
responsible for IP [5]. Skewed X-chromosome inactivation, caused by counter-selection of
cells expressing the mutation, is often observed [6]. IKBKG gene product activates nuclear
factor-kappa B (NF-κB), a transcription factor that regulates the expression of hundreds
of genes in almost all cells and is involved in cell proliferation, cell survival, the cellular
stress response, innate immunity and inflammation [7]. The highest expression level of
IKBKG was noted in the CNS [8]. According to a systematic review of CNS anomalies
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in IP performed on 1393 IP patients, the most frequent types of CNS anomalies were
seizures, motor impairment, mental retardation, and microcephaly, of 41.98%, 25.70%, and
20.36%, respectively [9]. The most frequently registered CNS lesions found using brain
imaging methods were brain infarcts or necrosis, brain atrophies, and corpus callosum (CC)
lesions, of 24.55%, 17.36%, and 13.17%, respectively [9]. The significant occurrence of CNS
anomalies in IP patients led to their inclusion in the updated IP diagnostic criteria [10]. In a
group of 44 examined IP patients with neurological disorders who underwent magnetic
resonance imaging (MRI), one patient had agenesis, and eight had hypoplasia of the CC. In
all nine patients, CC abnormalities were associated with other CNS disorders [11].

The CC is the major neural pathway that connects the left and right cerebral hemi-
spheres [12]. It is traditionally divided into four segments, the rostrum, genu, body, and
splenium [13]. The first axons cross that callosal plate at 74 days of embryonic develop-
ment, initially forming the CC as a small bundle that expands greatly to form a broad
band connecting a large part of the base of the cerebral hemispheres [14,15] (p. 232). CC
formation is complete by 115 days [15] (p. 232), and its formation is mediated by many
genes [16]. Axons for the CC are generated from the small pyramidal neurons of layer 3 of
the mature cortex [14]. The CC involves axons from a widespread area of cerebral neocortex
that includes frontal, parietal, temporal and occipital lobes [14]. Interhemispheric transfer
of information is the principal understood function of CC, but it also synchronizes the two
cerebral hemispheres in terms of electrophysiological activity [14].

CC development depends on a large number of different cellular and molecular mech-
anisms. These include the formation of midline glial populations and the expression of
specific molecules required to guide callosal axons as they cross the midline [17]. Congeni-
tal CC structural abnormalities include: agenesis (ACC), with either complete or partial
absence of this structure; hypoplasia, referring to CC that is thinner than expected; and
dysgenesis, which results when the CC is present but malformed in some way [18,19]. ACC
is among the most common brain malformations observed in humans [20]. The prevalence
of ACC ranges from 0.5 in 10,000 in the general population to 600 in 10,000 in children with
neurodevelopmental disability [21]. The most frequent causes of ACC are gene mutations
that are related to pathways of axon guidance, ciliary development, and cell adhesion,
proliferation, differentiation and migration [22]. ACC is a feature of hundreds of different
disorders, and all modes of inheritance have been observed [21]. Rarely, it may occur as an
isolated malformation in the absence of other major abnormalities [13]. More often, ACC is
a component of more complex malformation syndromes [13,23,24]. ACC can occur in asso-
ciation with disorders of neuronal and/or glial proliferation, neuronal migration and/or
specification, midline patterning, axonal growth and/or guidance, and post-guidance
development [25]. Abnormalities of the CC are noted in more than 1300 unique OMIM
entries [26], suggesting that CC development is very sensitive to genetic perturbations [13].
There are more than a thousand different syndromes and metabolic disorders associated
with CC disorders, most of them leading from moderate to severe neurodevelopmental
disability [27]. Syndromes with ACC can be broadly classified by the stage in development
that is primarily affected [12,25]. It is important to emphasize how patients with similar
CC anomalies detected using MRI can present different clinical manifestations [28]. In
a recently published article, in the list of gene mutations responsible for CC anomalies,
IKBKG is not mentioned [29].

To date, there has been a lack of publications dealing directly with the impact of
the IKBKG gene on the development and occurrence of CC abnormalities. Considering
the frequency of CC anomalies in IP and the fact that the most frequent causes of ACC
are gene mutations [22], it would be useful to investigate the relationship between their
occurrence and gene mutations in IP patients. Using MRI and genetic analyses, the aim of
this study was to determine the presence of CNS abnormalities, especially CC anomalies
in IP patients; their relationship with the IKBKG gene mutations; the possible presence of
other gene mutations; and the X-chromosome inactivation pattern.
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2. Materials and Methods
2.1. Patients

The study enrolled a group of seven IP patients who had a clinically confirmed
diagnosis of IP, according to the updated IP diagnostic criteria [10], and a positive finding
of IKBKG exon 4–10 deletion.

2.2. Genetic Analyses

Genetic analyses of the IKBKG gene and the X-chromosome inactivation, analysis of the
genes relevant for neurodegeneration, and whole exome sequencing (WES) analyses were
performed according to the methodology reported in Minić et al. [30]. WES was performed
by 3billion, Inc. Seoul, Republic of Korea to make sure that there were no additional
clinically significant variants/genes missing, and the gene panel was created [30].

2.2.1. Genetic Analyses of the IKBKG Gene

For the molecular genetic examination, we used the DNA extracted from a peripheral
blood sample. The genetic analysis of each patient began by confirming the IKBKG exon
4–10 deletion using an improved PCR method [31,32]. In order to elucidate the patients’
phenotypes, further molecular genetic analyses were performed.

2.2.2. X-Chromosome Inactivation

The study of the X-chromosome inactivation pattern was performed by the examination
of the methylation status of the AR locus, as previously described in the literature [33,34].
Genomic DNA restriction was digested with enzymes HpaII and RsaI, and a PCR amplifica-
tion of the selected AR locus region was performed. Products were separated using the
ABI 3500 Genetic Analyzer (Life Technologies, Carlsbad, CA, USA).

2.2.3. Analysis of Genes Relevant for Neurodegeneration

Additionally, “clinical exome” next-generation sequencing (NGS) was performed
following the manufacturer’s instruction [35] on an Illumina MiSeq platform (Illumina,
San Diego, CA, USA) using TruSight One Panel (Illumina, San Diego, CA, USA), which
comprised coding the regions of 4813 genes associated with clinically relevant phenotypes.
Using Illumina’s Variant Studio v.3.0, a data analysis was performed according to the
phenotypic characteristics of the patients. A virtual gene panel was then created, comprising
185 genes relevant for neurodegeneration listed in Minić et al., 2022 [30]. Only the variants
that passed quality filters and had a global frequency of <5% were considered. NGS analysis
singled out a heterozygous variant c.1448T > G (p.L444R) in the GBA gene in one patient.
This result was then confirmed by Sanger sequencing [36].

2.2.4. Whole Exome Sequencing (WES) Analysis

As Illumina TruSight One Panel does not include all genes, WES was performed by
3billion, Inc. Seoul, Republic of Korea. Genomic DNA was extracted from whole blood
using QIAamp DNA Blood Mini Kit (QIAGEN, Germantown, MD, USA). Exome capture
was performed using xGen Exome Research Panel v2 (Integrated DNA Technologies,
Coralville, IA, USA), and sequencing was performed using Novaseq 6000 (Illumina, San
Diego, CA, USA). Sequencing data were processed as previously described [37]. Variant
interpretation, including variant annotation, filtering and classification, was performed
using EVIDENCE, a software program developed by 3billion [37]. Variants were classified
following the ACMG guideline [38], and symptom similarity scores were calculated based
on the patient’s phenotype using a scoring system developed by 3billion [37]. Variants
were manually curated by 3billion’s medical team.
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2.3. Neuroradiological Examinations

Neuroradiological examinations of all patients were performed using MRI on a 1.5 T
scanner. All patients underwent T1- and T2-weighted sequences (or fluid attenuated
inversion recovery). Diffusion-weighted MRI was a part of the standard MRI protocol (b
factor, 1000 s/180 mm2). Brain MRI was analyzed by experienced neuroradiologists.

2.4. Inclusion Criteria

The criterion for including patients in this study was the presence of the IKBKG muta-
tion and the absence of another mutation in IP patients who met the updated diagnostic
criteria [10] for IP. The criterion was confirmed using WES analysis.

2.5. Exclusion Criteria

The criterion for excluding IP patients from further study was the presence of a
mutation of any other gene except IKBKG.

2.6. Literature Data Analysis

In addition to the analysis of the examined IP patients, a short review of data was
also performed from the published literature. The review concerned IP patients with
observed CC anomalies using neuroimaging methods published in the literature in the
period 1993–2012 [39–53]. These results were not present in the finally published version of
the quoted manuscript [9].

3. Results
3.1. Results Concerning Patients

A group of seven female patients with IP was examined, four of which had neuro-
logical disorders. All patients were positive for IKBKG exon 4–10 deletion, confirmed by
WES analysis. Only one patient who had IKBKG exon 4–10 deletion additionally had an
NGS and WES analysis-detected heterozygous GBA mutation responsible for Gaucher
disease (OMIM * 606,463, ORPHA 355). According to the exclusion criteria, this patient
was excluded from further research. This patient was recently presented in a separate
paper [30]. All patients were examined for neurological, ophthalmological, and dental
findings and underwent MRI, and the results are presented in Table 1. Different clinically
observed CNS anomalies and CNS findings were diagnosed using MRI and are presented
in Tables 2 and 3.

3.2. Case Reports
3.2.1. Case 1

Upon first examination at the age of two, the patient presented hyperpigmented
macules along Blaschko lines on the trunk and a few verrucous lesions. The first skin
changes were reported to have appeared immediately after birth. A skin biopsy was
performed, which confirmed IP. Early neurological examination revealed hypertonia, re-
duced motor activities and hyperactive deep tendon reflexes. Electroencephalographic
(EEG) recording showed focal epileptic activity, but the patient did not have seizures at
all. Later on, psychomotor development showed moderate delay in achievement of gross
motor milestones.

The patient started to walk unsupported from the age of two and a half with both feet
in valgus position. Upon teeth eruption, the patient presented peg-like teeth. At the age
of five, she had spastic quadriparesis with paraparetic gait, prominent speech delay and
moderate intellectual disability. MRI of the brain showed macrocrania with bilateral loss of
white matter volume in the frontal regions, dilated extracerebral liquor spaces and slightly
dilated lateral ventricles (Figure 1). White matter abnormalities (gliosis) in periventricular
and frontal regions were observed, as well as, hypoplasia of CC with slightly thinner body
and a pineal gland cyst.
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Table 1. Facts concerning basic patient data and key clinical findings.

Patient Age
of Onset Sex

IP Diagnostic
Criteria
Positive

IKBKG Exon
4–10 Deletion
Positive

Additional Genetic
Findings Other than
IKBKG Exon 4–10 Deletion

X-Chromosome
Inactivation
Pattern

Skin
Stages

CNS
Anomalies

Eye
Anomalies

Dental and Oral
Anomalies

1 Upon birth F Yes Yes No Random
(60/40%) II, III Yes No Yes

2 Upon birth F Yes Yes No Skewed
(85/15%) III, IV Yes No Yes

3 Upon birth F Yes Yes No Random
(50/50%) I, II Yes No Yes

4 Upon birth F Yes Yes No Skewed
(90/10%) II No Yes Yes

5 Upon birth F Yes Yes No Random
(55/45%) I, III No Yes Yes

6 Upon birth F Yes Yes No Skewed
(85/15%) II, III No Yes Yes

7
(excluded from further
research because of
additional heterozygous
GBA mutation)

Upon birth F Yes Yes

Yes
Heterozygous variant
c.1448T > G (p.L444R) in
GBA gene

Random
(55/45%) III Yes Yes Yes

Legend: F-female, IP-Incontinentia pigmenti, WES-Whole Exome Sequencing, CNS-Central Nervous System, MRI-Magnetic Resonance Imaging.

Table 2. Different clinically diagnosed CNS anomalies according to clinical findings.

Patient Age at the Time of Onset of Neurological
Disorders and Current Age Seizures Pathological EEG Motor Impairment Mental Retardation Microcephaly Rarely Diagnosed or

Unspecified CNS Anomalies

1 First year of life
Now aged 5 years No Yes Yes Yes No Yes

2 Neonatal period
Now aged 8.5 years Yes Yes Yes Yes Yes No

3 Neonatal period
Now aged 2.5 years No No Yes Yes No No

4 First year of life
Now aged 3 years No No Yes No No No

5 Neonatal period
Now aged 4 years 3 months

No Yes No No No No

6 Neonatal period
Now aged 2.5 years No No No No No No

Legend: CNS-Central Nervous System, EEG-electroencephalogram.
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Table 3. Different CNS findings diagnosed using MRI.

Patient Brain Infarction White Matter
Abnormalities

Brain
Atrophies

Brain
Ventricular
Dilatation

CC
Anomalies

Brain
Cystic
Lesions

Rarely Diagnosed
or Unspecified
CNS Findings

1 No Yes Yes Yes Yes No Yes
2 No Yes Yes Yes Yes No No
3 No No No No No No Yes
4 Normal neuroimaging findings No No No No No No
5 Normal neuroimaging findings No No No No No No
6 Normal neuroimaging findings No No No No No No

Legend: CNS-Central Nervous System, MRI-Magnetic Resonance Imaging, CC-corpus callosum.
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Figure 1. (Case 1) (A) Sagittal T1 MPRAGE magnetic resonance image at the age of two shows macro-
crania, thinning of CC and a pineal gland cyst. (B) Coronal T2W magnetic resonance plane shows
mild atrophy of bilateral frontal white matter with dilated extracerebral liquor spaces. (C,D) Axial T2
FLAIR magnetic resonance planes show that lateral ventricles are slightly dilated with gliotic changes
in periventricular and frontal regions.

3.2.2. Case 2

Skin changes were visible upon birth that evolved from stage I to stages III and IV of
IP. Neonatal convulsions occurred immediately after birth. Skin biopsy was performed,
and IP was histopathologically confirmed in both the patient and her mother. IKBKG
exon 4–10 deletion was genetically confirmed in the patient’s mother as well. The patient
presented dental and oral anomalies such as peg-like teeth, delayed eruption, and gothic
palate. Ophthalmological examination revealed strabismus. The patient was severely
delayed in terms of psychomotor development, partially due to spasticity. She started
to walk independently from the age of five and a half but without a normal walking
pattern. Neurological examination revealed microcephaly, spastic quadriparesis more
severe on the right side, intellectual disability and prominent speech delay. Physical and
speech rehabilitation were performed every day. She had focal epileptic seizures from the
age of one and a half, and EEG recording showed focal epileptic activity. Antiepileptic
therapy was given (valproate), and good control of seizures was achieved. MRI of the
brain showed microcephaly and brain atrophy with atrophy of the thalamus and the basal
ganglia (Figure 2). Supratentorial white matter loss was observed with an increased signal
on T2W/FLAIR and mildly enlarged lateral ventricles, more evident on the left side. In
addition, it revealed a marked hypoplasia of the CC, especially of the rostrum and body.

3.2.3. Case 3

The patient presented stage I and II skin changes following Blaschko lines on the
extremities and trunk upon birth. IP skin changes were on the same side of the scalp where
small foci of hyperintensities were found using MRI (Figure 3). The patient presented oral
anomalies typical for IP, such as gothic palate. Upon neurological examination, there were
mildly decreased muscle tones with normal reflexes and motor activity. The patient had
mild psychomotor delay, developing unsupported walk from the age of 19 months. She
displayed mild speech delay. MRI of the brain showed small foci of hyperintensities, which
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appeared in a band and triangle-like shape, spreading from subcortical white matter to the
left lateral ventricle.
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Figure 2. (Case 2) (A) Sagittal T2W magnetic resonance image at the age of one shows CC hypoplasia
especially of the rostrum and body. (B) Axial T2W magnetic resonance image shows brain atrophy,
supratentorial white matter reduction with elevated IS on T2W/FLAIR and gliotic changes. Mild
bilateral non-progressive ventriculomegaly is more prominent on the left.
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Figure 3. (Case 3) Sagittal (A), coronal (B) and axial (C) T2 FLAIR magnetic resonance images at the
age of 2.5 showing small foci of hyperintensities, which appear in a band and triangle-like shape,
spreading from subcortical white matter to the left lateral ventricle similarly to radial migration lines.
(D) IP skin changes in the form of Blaschko lines on the same side of the scalp where the small foci of
hyperintensities were found.

3.2.4. Case 4

The patient was one and a half months old at the initial visit, presenting hyperpig-
mented macules following Blaschko lines and a few verrucous papules. Two biopsies were
performed depicting stage II and III of IP. After six months, skin changes were at stage
III. As in previous stages, the affected area was devoid of terminal hair. The patient was
diagnosed with retinopathia ischemica proliferativa. The patient also presented a gothic
palate, delayed eruption and peg-like teeth. At the age of six months, the neurological
examination revealed mild hypertonia, symmetrical motor activity and brisk deep tendon
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reflexes. The patient achieved slightly delayed developmental milestones, starting to walk
without support from the age of two. Speech development was also mildly delayed. MRI
showed no pathological findings (Figure 4).
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3.2.5. Case 5

Upon birth, the patient presented hyperpigmented and verrucous skin changes along
Blaschko lines corresponding to stages II and III of IP. Histopathological analysis of skin
biopsy confirmed IP. The patient also presented a gothic palate and peg-like teeth. Be-
sides the patient, IKBKG exon 4–10 deletion was genetically confirmed in the patient’s
mother. The patient was diagnosed with retinopathia prematuri, and anti-VEGF therapy
was administered. Developmental milestones were within the physiological range and
neurological development was normal. The patient could sit and walk unsupported and
pick up objects with a pincer grip. EEG showed focal epileptic activity but without seizures.
MRI showed no pathological findings (Figure 5).
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3.2.6. Case 6

The patient was two weeks old at the initial visit and presented with vesiculobullous
lesions grouped in stripe-like shapes following the lines of Blaschko. Three months later, the
patient had several verrucous changes, hyperpigmented macules, and a very few vesicles.
When six-months-old, there were Blaschko linear, slightly erythematous and pigmented
changes forming atrophic lines with a verrucous part. Biopsy was performed, confirming
IP. The patient presented stage I solitary and grouped vesicles in a linear arrangement
with yellowish content and serocrusts on an erythematous skin. Skin hair was significantly
reduced in the affected area. Early verrucous lesions were yellowish or whitish on an
erythematous and slightly pigmented skin. The patient was ophthalmologically diagnosed
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with retinopathia prematuri and administered anti-VEGF therapy. The patient also had a
gothic palate and peg-like teeth. Neurological development was normal. MRI revealed no
pathological findings (Figure 6).
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3.3. Literature Data Analysis

Un-summarized data published in the literature in the period 1993–2012 [9] were
analyzed regarding 89 IP patients with neurological disorders who underwent CNS neu-
roimaging analysis. The review of the data showed that 22 females (24.7%) had CC
anomalies (Table S1, Supplementary Material). A subsequent detailed analysis of these
IP patients’ CNS anomalies showed that only one had hypoplasia of the CC without the
presence of other CNS anomalies [9]. Of the remaining 21 patients, 18 had CC hypoplasia,
all with other, associated CNS anomalies, two patients had CC agenesis, and one had a
CC stroke.

4. Discussion

All examined patients diagnosed according to the updated diagnostic criteria [10] had
skin changes characteristic of IP in different stages. All seven female IP patients had IKBKG
exon 4–10 deletion. In addition to the IKBKG exon 4–10 deletion, one patient (Case 7) also
had a heterozygous variant of the GBA gene and was excluded from further research. WES
analysis showed that the remaining six IP patients had no significant mutations other than
IKBKG exon 4–10 deletion, the most common IP-causing mutation. Four of six remaining
IP patients (Cases 1–4) had clinically diagnosed CNS disorders, and one (Case 5) had EEG
showing pathological focal epileptic activity. One patient (Case 6) had normal neurological
development. Hypoplasia of the CC along with other brain changes (atrophy, gliosis,
ventricular dilatation) was found in two patients (Cases 1 and 2) using MRI. Case 1 also
had macrocrania. In the remaining three IP patients (Cases 4–6), no morphological changes
of the brain were found using MRI, but they were diagnosed with severe retinopathy.

In the group of IP patients that was examined using MRI, three out of six had positive
CNS findings. The MRI findings in two patients (Cases 1 and 2) in which the CC was
affected were severe, and in the third (Case 3), mild.

The findings of X-chromosome inactivation in these patients were interesting. Namely,
Cases 1 and 3 had a random type X-chromosome inactivation, and Case 2 had skewed
X-chromosome inactivation. Furthermore, Case 3 with mild MRI findings had a random
X-chromosome inactivation.

The process of X-chromosome inactivation is very complex and takes place in a certain
short period of time [54] (p. 141). Due to its easy availability in comparison to other
tissues, monitoring of X-chromosome inactivation is usually performed on the DNA of
leukocytes. The choice of active X-chromosome is random at onset, but the mutant allele
in expressing cells adversely affects their proliferation, leading to the overgrowth of the
wild-type cells. Skewing can also occur when the choice of the active X-chromosome
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during embryogenesis is biased because of mutations that affect the choice process [54]
(p. 175). In the case of IP, it is the disease process itself that causes the death of mutant
cells, which explains their growth disadvantage [54] (p. 185). There is a severe mutant cell
selection in IP [54] (p. 237). A significant association of the X-inactivation ratios between
each tissue is present in most individuals, but wide variations were apparent in some cases,
making accurate extrapolations between tissues impossible [55]. In the general population
of normal females, 15% of the X-chromosome had skewed patterns of inactivation [56].
X-chromosome inactivation ratios in normal women depend on age and tissue type [55].
Results show that the incidence of severe skewing is relatively common and increases with
age, occurring in 7% of women under 25 years of age and 16% of women over 60 [55].
On the other hand, such an investigated group may include normal females who are
unidentified carriers of one or more deleterious alleles [54] (pp. 180–181). In the literature,
there is a known case of a female patient with IP, heterozygous for a less severe IKBKG
mutation [57]. Over a period of four years, a pattern of X-chromosome inactivation in her
granulocytes and T cells that was random at birth gradually changed to one in which all
of the cells expressed the normal allele, presumably because of the progressive death of
mutant cells. The percentage of cells expressing the normal allele was 55% at the age of
24 months, and 100% at four years of age [57]. These findings show all the complexity of
X-chromosome selection and the difficulties in their interpretation.

Dangouloff-Ross et al. [58] reviewed brain MRI findings of 18 female patients with
genetically proven IP. They found five IP patients with normal MRI, six patients with
mild white matter abnormalities with cortical and CC atrophy, and seven patients with
severe cortical abnormalities suggesting a vascular disease. Most patients with severe
abnormalities had random X-inactivation (6/7, 86%), while 80% (4/5) of patients with
normal MRI and 100% (6/6) of patients with mild white matter abnormalities had skewed
inactivation. They concluded that skewed X-chromosome inactivation may protect the brain
from damage, while in the case of random inactivation, the expression of the mutated IKBKG
gene may lead to severe brain lesions. Based on the findings of Danguloff-Ross et al. [35],
one would expect both Cases 1 and 2 presented in this study to have random X-chromosome
inactivation, but Case 2 had skewed X-chromosome inactivation. Skewed X-chromosome
inactivation in Case 2 did not prevent severeness of IP. The occurrence of skewed X-
chromosome inactivation in Case 2 and random X-chromosome inactivation in Case 3 can
be explained in several ways. It is possible that the results for the investigated patients
were influenced by the age of the patients [55] at the time of blood sampling. As even in
the normal population of women, there is a small percentage of skewed X-chromosome
inactivation pattern [56], this may have been the case in Case 2.

Dental and oral anomalies were found in all six examined IP patients. Two patients
had delayed teeth eruption, four patients had peg-like teeth, and five patients had a gothic
palate. These findings are consistent with dental and oral findings in other patients with
IP [59].

MRI shows brain changes in most patients with neurological disease associated with
IP [60]. In IP patients without neurological disease, MRI does not reveal abnormalities [60].
There is also no correlation between the size of the affected skin surface and the severity of
the CNS changes [61]. In general, an IP patient can have a large area of the skin affected by
changes, but not have MRI-detected CNS disorders, and conversely, the affected skin area
can be small, and the MRI-detected CNS changes very pronounced [61]. Abnormalities are
located in the cerebral hemisphere contralateral to the most severely affected side of the
body [60], as documented in Case 2. The most severe MRI changes are subjacent to the scalp
areas where the most severe cutaneous lesions appear located in the neonatal period [60]. In
the presented Case 3, a combination of typical IP skin changes on the scalp and underlying
gliotic changes of the brain detected by MRI was observed. This phenomenon was first
described by Pascual-Castroviejo et al. 1994 [62]. In the available literature, there is no
explanation of this phenomenon except a suggestion that cutaneous and subjacent brain
lesions have the same pathogenesis during the neonatal period [60]. There is a possibility
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that this happened during early embryogenesis, during the embryonic disc stage, when the
neural plate was formed and the ectoderm and neuroectoderm separated [15] (pp. 79–80).
If at their very border there was a group of mutated cells, one part of which entered the
nerve plate and the other part into the ectoderm, it is possible that during development,
because of cell migrations, they found themselves opposite each other, one in the skin, and
the other in the CNS. However, there is no evidence to support this hypothesis.

In IP, the most frequent clinically diagnosed CNS types of anomalies were seizures,
motor impairment, mental retardation, and microcephaly. The most frequently registered
CNS lesions found using imaging methods were brain infarcts or necrosis, brain atrophies,
and CC lesions [9]. Apart from these, a white matter hyperintensity T2/FLAIR signal was
common [63].

In the group of examined patients, two (Case 1 and Case 2) had severe CNS disorders
on MRI. Case 1 had macrocrania, bilateral loss of white matter, dilated extracerebral liquor
spaces and slightly dilated lateral ventricles, and gliosis in periventricular and frontal
regions. Case 2 had microcephaly and brain atrophy with atrophy of the thalamus and the
basal ganglia, supratentorial white matter loss with an increased signal on T2W/FLAIR
and mildly enlarged lateral ventricles. Both patients had significant CC changes. Case 1
had hypoplasia of the CC, with a slightly thinner body, and Case 2 had marked hypoplasia
of the CC, especially of the rostrum and body. According to the majority of authors,
the hypoplasia of the CC is not a primary part of the disease, but is secondary to the
cortical and subcortical neuronal lesions in the cerebral hemispheres [11,60,62]. Axons are
principal constituents of the CC. Their loss occurs due to neuronal death in the cerebral
cortex [14]. CNS lesions in IP may arise from the same mechanism as in the skin, by
inducing apoptosis in IKBKG-mutated neurons [9,61]. Sarnat [14] suggested that chronic
brain ischemia may lead to atrophy of the corpus callosum. Although some studies have
reported ischemic changes involving distinct vascular territories, in most cases lesions affect
the microvasculature [63]. Bodemer [64] supposed that the primary cause of the central
nervous system lesions is, therefore, vasculopathy with the possibility of a secondary
inflammation process. Minić et al. [9] suggested that apoptosis could be triggered by the
IKBKG mutation in affected cells in blood vessel walls, as it occurs in other mutation-
affected tissues, resulting in compromised vascularization, leading to brain infarction
with ischaemic and hemorrhagic necrosis. Considering that, in CNS, pericytes have the
same neuroectodermal origin as nerve cells [65], it is possible that the IKBKG mutation
causes apoptosis in them as well as in neurons. Taking into account the concept of the
neurovascular unit and the relationship between brain cells and their blood vessel cells, the
embryonic origin of pericytes, and the pericytes’ high susceptibility to oxidative stress, it
is possible that oxidative stress occurs in IP patients’ pericytes [66]. However, data on the
findings of oxidative stress in IP are very rare; only one paper was found on PubMed [67] in
which it was analyzed, so the possible role of oxidative stress in IP can only be speculated
for now. In Case 1, a pineal cyst was found. Pineal cysts are common, usually asymptomatic,
and typically found incidentally [68].

ACC is the most common major cerebral malformation that is neither lethal nor
produces major neurological disabilities in all cases [14]. Complex forms of ACC are those
with associated brain findings and/or syndromic, chromosomal, or genetic conditions [24].
These associated conditions are usually associated with a significantly worse prognosis [24].
In two investigated IP patients with ACC (2/2), as well as in corresponding IP patients from
the analyzed literature in the period 1993–2012 (21/22) (Supplementary Material S1), ACC
was usually associated with other CNS disorders that contributed to a more severe clinical
picture. This was also the case with the two examined patients. Case 1 had hypoplasia
of the CC with a slightly thinner body, while Case 2 had a marked hypoplasia of the CC,
especially the rostrum and body. The rostrum or splenium of the corpus callosum may be
preferentially affected [14].

In Case 3, brain MRI showed small foci of hyperintensities, in the form of a band
and triangle-like shape similar to radial migration lines, spreading from subcortical white



Diagnostics 2023, 13, 1300 12 of 15

matter to the left lateral ventricle. It can be assumed that the presented lines were Blaschko
line analogies in CNS, similar to those in the skin, representing the trace of development of
the clone of neurons arising from the cell marked with the IKBKG mutation [69].

IP ocular anomalies were more frequent than CNS anomalies, at 37.24% and 30.44%,
respectively [10]. Ophthalmological examinations showed changes in the eyes in three
investigated IP patients. Case 4 was diagnosed as retinopathia ischemica proliferativa,
and Cases 5 and 6 as retinopathia prematuri. In Cases 5 and 6, anti-VEGF therapy was
administered. Retinopathies represent serious vision-threatening anomalies and may lead
to vision-threatening manifestations or even blindness caused by retinal disease [10]. It is
assumed that the pathogenesis of retinopathy in IP is similar to the pathogenesis of CNS
changes, that is, that the apoptosis of vascular cells with IKBKG mutation is its basis [9].

All things considered, the results and findings obtained from the examinations in
our research are in accordance with the expected findings in patients with IP [10]. The
application of WES made it possible to demonstrate the presence of the IKBKG mutation
and the absence of other gene mutations that could cause CNS changes in the examined IP
patients. Such was a previously presented Case 7 [30] with severe IP, which, in addition
to the IKBKG mutation, had another mutation, GBA, and was, therefore, excluded from
further research.

5. Conclusions

The presented clinical and imaging findings and analyzed data from the literature
suggest that all changes in the CNS basically originate from IKBKG mutations in neurons
or in the vascular cells of its blood vessels. The simultaneous presence of IKBKG exon
4–10 deletion and CC abnormalities in IP patients, and the absence of other mutations
demonstrated by WES analysis, indicates that IKBKG gene mutation is the cause of CC
abnormalities and other CNS abnormalities and should be included in the list of genes
responsible for CC abnormalities.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/diagnostics13071300/s1, Table S1: Distribution of CC ab-
normalities diagnosed using brain imaging in IP patients with CNS lesions for the period 1993–2012
(unpublished data taken from study Minić et al., 2013).
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