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T h e  B u l l e t i n  o f  S y m b o l i c  L o g i c  

Volume  3, Num be r  2, June  1997

T HE IMPACT  OF T HE LAMBDA CALCULUS 

IN LOGIC AN D COMP UT ER SCIENCE

H E N K  B A R E N D R E G T

Abstract. On e  o f  the  m o s t  im p o r t a n t  c o n t r ib u t io n s  o f  A. C h u r c h  to  logic  is his  in v e n t io n  

o f  the  la m b d a  c a lc ulus . We  pre s e nt  the  ge ne s is  o f  this  the o r y  a n d  its  two  m a jo r  are as  o f  

a p p lic a t io n :  the  r e pr e s e nta t ion  o f  c o m p u t a t io n s  a n d  the  r e s ult ing  fu n c t io n a l p r o g r a m m in g  

la ngua ge s  o n  the  one  h a n d  a n d  the  r e pr e s e nta t ion  o f  r e a s o n ing  a n d  the  r e s ult ing  s ys te ms  o f  

c o m p u t e r  m a th e m a t ic s  o n  the  o the r  h a n d .
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§1. Introduction. T his  pape r  is writte n to honor  Chur c h’s great inve ntion: 

the  la m bda  calculus . The  best way to do this — I th ink— is to give a descrip

t ion o f its genesis (§2) and its impac t on two areas o f mathe matica l logic: 

the repre sentation o f computa tions  (§3) and o f reasoning (§4). In  bo th  cases 

te chnological applica tions  have emerged.

The  very no tion o f computability  was firs t formalize d in te rms  o f de fin 

ability on nume rals  represented in the  la mbda  calculus . Chur c h’s Thesis, 

s tating that this  is the  correct forma liza tion o f the notion o f computability , 

has  for  more  than 60 years never seriously been challenged. One  o f the  recent 

advances  in la m bda  calculus  is that computa tions  on othe r  da ta  types, like 

trees and syntactic s tructures  (e.g., for  pars ing), can be done  by representing 

these data  types directly as la mbda  te rms  and not via a coding as Gode l 

numbe rs  tha t are the n represented as numerals . This  resulted in a much 

more  efficient repre sentation o f functions  de fined on these da ta  types.
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182 H E N K B ARE N DRE G T

The no t ion  o f lambda  de finability is conce ptually the  basis  for the  dis ci

pline  o f func tiona l programming. Recent progress in this  area has  been the 

cons truction o f very efficient compile rs  for func tiona l languages  and the  cap 

tur ing o f inte ractive  programs  (like  e.g., text editors ) w ithin the  func tiona l 

programming paradigm.

As  to the representation o f proofs , one  o f Chur c h’s or igina l goals  had been 

to cons truct a formal system for the  founda tions  o f mathe matics  by having a 

system o f functions  toge the r with a set o f logical notions . Whe n the  re sulting 

system turne d out to be incons is te nt, this  program was abandone d by him. 

Church then separated out the  cons is tent subsys tem that is now called the 

la mbda  calculus  and conce ntrated on c om puta b ility 1. It  turne d out late r that 

there are nevertheless cons is tent ways to represent logical notions  in (typed 

and untype d) la mbda  calculus  so that a founda tion for  mathe matics  is ob 

taine d. Some  o f the  re sulting systems are used in recently deve loped systems 

for compute r  mathe matics , i.e., programs  for the  inte ractive  de ve lopme nt 

and automate d ve rification o f mathe matica l proofs .

We restrict a tte ntion to applica tions  o f the  la mbda  calculus  to the  fields 

o f mathe matica l logic and compute r  science. Othe r  applica tions  like  several 

forms  o f grammars  s tudied in linguis tics  (e.g., Montague  (see [45]) and 

cate gorial grammars  (see [17])) are not treated in this  paper.

We end this  introduc tion by te lling what seems to be the  s tory how the 

le tter ‘A’ was chosen to denote  func tion abs traction. In  [100] Pr inc ipia  

Mathe matica  the  no ta t ion for the  func tion ƒ  with ƒ  ( x )  =  2x  +  1 is 2x  +  1. 

Church or iginally inte nde d to use the  no ta t ion x  .2x  + 1. The  typesetter could 

not pos ition the hat on top o f the  x  and placed it in front o f it, re sulting in

¿x .2x  +  1.

T hen anothe r  typesetter change d it into  Xx .2x  +  1.

Preliminaries. T his  short subsection with pre liminar ie s  is given for readers 

not familia r  with the  la mbda  calculus . For  more  informa tion see e.g., [6, 

Chapte rs  2, 3 and 6], or [8, Sections  2 (untype d la mbda  calculus ) and 3 

(s imply typed lambda  calculus)] . Topics  outs ide  these chapters  or sections 

needed in this  pape r  will be explicitly me ntione d.

Untyped lambda calculus.

D e f i n i t i o n  1 .1 . The sets o f variables  and te rms o f the  la mbda  calculus  

are defined by the  following abs tract syntax. (This  means  that no me ntion is 

made  o f necessary partentheses  in orde r to warrant unique  re adability; one

'Chur c h  had been cons ide rably he lpe d by his  s tudents  in the  early de ve lopme nt o f the  

la mbda  calculus , notably by Kleene , see [70] a nd [99]. Othe r  impor ta n t  influences  came  from 

[36] and [37].
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thinks  about trees ins te ad o f s trings  be ing generated.)

v a r  =  a v a r '

te r m  =  v a r  | te r m  te r m  | X v a r  te rm.

The  syntactic category var is for  the  colle ction o f variables . Example s  o f 

variables  are a, a\  a". The  letters x, y , z , . . .  range  over arbitrary variables . 

The syntactic category te rm is for the  colle ction o f lambda  te rms , no ta t ion

A.

N o t a t i o n , (i) MN\  . . . N k s tands  for  {..{{MN\ )N2) . . .  N k).

(ii) Dually , Xx\  . . .  x k .M  s tands  for {Xx\ {Xx2{ ... (A x ^M )) ..) ) ) .

Example s  o f la mbda  te rms  are x, x y , Xx .x y , z {Xx .x y ), Xzy .z{Xx .x y ) and 

{Xzy.z {Xx .x y )) {w w )y x .

A te rm o f the  form M N  is called an application, with the inte nde d inte r 

pre ta tion 'the  func tion M  applie d to the  argume nt N ’; a te rm o f the  form 

Xx .M  is called an abs traction, with the  inte nde d inte rpre ta tion ‘the  func tion 

that assigns to x  the  value  M\  In  this  inte rpre ta tion the no tion o f func tion is 

to be take n inte ns ional, i.e., as an a lgor ithm. [103] succeeded to give lambda  

calculus  also an extens ional inte rpre ta tion by inte rpre ting la mbda  te rms  as 

(continuous ) functions  on some topologica l space D  having its space o f 

continuous  func tions  [D —> D]  as a re tract.

In  a lambda  te rm like Xx y .x z  the  variable  x is said to occur as a bound 

variable  and z occurs  as a free  variable. In  z{Xz.z) the variable  occurs  both 

as free (the  firs t occurrence) and as bound (the  second occurrence) variable . 

The s tatement M  = N  s tands  for syntactic e quality modulo  a re naming 

o f the bound variables . E.g., Xx .x  =  Xy.y  or x (Ax .x ) =  x (Xy .y ), but 

Xx .x y  ^  Xy .yy  because the  free occurrence  o f y  in the LHS becomes  bound 

in the  RHS.

The  la mbda  calculus  is the  s tudy o f the  set A modulo  so called /?-  

conve r tibility which is the  least congruence  re lation =p  ax iomatize d by

(X x .M )N  =p M [ x :=N ].

Here  M[ x :=Af]  s tands  for  the  result o f s ubs tituting N  for the  free variables  o f 

M . In  this  no ta t ion the  free variables  o f N  are no t  allowed to become  bound 

afte r  s ubs titution; for example  {Xy.x)[x\ =yy] ^  {Xy .yy). By changing the 

names  o f bound variables  one  may obta in

{Xy .x )[x :=y y ]  =  {Xz.x )[x :=y y ]  = Xz.yy .

The no t ion  o f ^- conve r tibility is an equivalence  re lation compatible  with 

the syntactic ope rations  o f applica tion and abs traction. T hat is,

C[ {Xx .M)N ]  = p C[ M[ x :=N ] ]
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holds  for arbitrary contexts  C[  ].

The no tion o f /^- reduction is the least compatible  reflexive and trans itive  

re lation ax iomatize d by

(A x .M )N  - »/, M [ x :=N ] .

The difference with /^- conversion is that one  has  e.g., a =p  (.A x .x )a, but 

a - / » p  (A x .x )a: there is a dire ction involved in re duction, while  convers ion 

is bidire c tional.

The reason for the  nota tiona l conve ntion introduce d above can be unde r 

s tood by re alizing that e.g.,

(X x y z .x (y z )y )X Y Z  - */y X { Y Z )Y .

A te rm M e  A is called in ft- normal form  (/?- «ƒ) if M  has  no par t o f the 

form (L x .M )N . Such par t is called a p- redex. A te rm M  is said to have a 

ft- normal form  N  if N  is in ^- normal form and M  =p N .

T h e o r e m  1.2 (Church- Rosse r the ore m). Let M ,N  E A. Then

M  = p  N  < = * 3 Z [ M  —»// Z & N  - » p  Z] .

It  follows  from the  Church- Rosse r the ore m that a te rm can have at mos t 

one  ^- normal form. Inde e d, if M  has  M '  and M "  as /?- nf’s, the n M ' —p M "  

and so M ' - *p Z  p«-  M " . But since M '  and M "  are in /?- nf, there are no 

redexes to contract. Therefore  M '  =  Z  =  M ".

S imply  typed lambda calculus. Simple  types are defined by the  abs tract 

syntax

t v a r  =  a  | t v a r '

ty p e  =  t v a r  | ty p e  —>■ ty pe .

We use a , /?, y , . . .  for type  variables  and A, B, C , . . .  for types. The  set o f 

types is de note d by T. A s tatement is o f the  form M  : A with M e  A 

and A e  T; M  is called the subject o f the  s tatement. A basis  is a set o f 

s tatements  with only variables  as subjects . T, A , . . .  range  over bases. (For  

more  complicate d vers ions  o f typed lambda  calculus , a basis  needs to be 

ordered and then is called a contex t. T his  is unfor tunate ly a diffe rent no tion 

with the same name  as the  no tion ‘conte x t’ de fined earlier, but that is how it 

is.)

D e f i n i t i o n  1.3. We say that from basis  T  we can prove M  : A, no ta tion 

T h M  : A, if it can be derived from the  following produc tion system.

(x  : A ) E r  => Y \~ x  \ A)

r b  M  :(A - +  B),T \ -  N  :A  => Y  b  (M N )  : B\

r , x  : A h  M  : B  => Y  b (A x .M) : (A  —> B ).
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E x a m p le  1.4. (i)  x  : (A  —> A —> B ), y  : A h  x y y  : B.

(ii) h Ax y .x y y  : (A —> A —> B ) —> (A —> B ).

T his  vers ion o f the  s imply type d la m bda  calculus  has  implic it  types at 

each abs traction Ax  and is s tudie d by [37]. In  [29] a var iant with explicit 

types at abs tractions  is introduce d. In  this  the ory the rule  for  introduc ing 

abs tractions  is

r ,  x  \ A h  M  \ B  h  (A x :A .M ) : (A —> B).

An  essential difference  between the  two approaches  is tha t in the  explicit case 

the  unique  type  o f a te rm always can be found easily. In  the  implic it  case 

types are not  unique . For  the  s imply typed la m bda  calculus  the  types can 

be recons tructed even in the implic it  case, but for  more  complicate d systems 

this  is not the  case.

Inductive  types and recursion. Because inductive  types are conve nie nt to 

represent data , bo th in theories  and in programs , some type systems allow 

the  ax iomatic  intr oduc tion o f so- called inductive types. The following is a 

s imple  example .

n a t  ::=  ze r o  | s ucc  n a t .

Give n this  de finition one  has  (ax iomatica lly) h z e ro  : n a t , b  s ucc  : n a t  —► 

n a t  and b  s uc c (s uc c  ze r o ) : n a t . Inductive  types come  w ith na tura l 

pr imitive  recursive ope rators . For  example , given a type A and as s uming 

a : A , b : n a t  —> A —> A , we may define  F  : n a t  —* A  as follows.

F  ze r o  — a\

F  (s uc c  x ) —», b x  (F  x ).

This  F  depends  uniformly  on a,b . To make  this  dependence  explicit, we 

write  F  = R  a b and pos tulate  the  following.

R  a b ze r o  a ;

R a b (s uc c  x  ) b x ( R a b x ) .

With  this  ope rator  one  can represent pr imitive  recursive functions . Because 

o f the  presence o f highe r  types one  can even represent the  Acke rmann func 

t ion us ing R.

§2. Formalizing the notion ‘computable’. Church introduce d a formal the 

ory, let us call it T , based on the  no t ion  o f func tion. This  system was inte nde d 

to be a founda tion o f mathe matics . Predicates  were represented as charac 

te ris tic functions . There were many axioms  to deal with logical notions . The  

system T  turne d out to be incons is te nt, as was shown by Chur c h’s s tudents  

[71] us ing a tour de force  a rgume nt involving all the  te chniques  needed to
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prove Go d e l’s incomple teness  the ore m2. T hen [28] isolated the  (untype d) 

lambda  calculus  from the system T  by de le ting the  par t de aling with logic
9 _

and keeping the essence o f the  par t de aling with functions . This  system was 

proved cons is tent by [31], who showed the confluence  o f ̂ - re duction. Curry, 

who also wante d to build a founda tion for mathe matics  based on functions  

(in his  case in the  form o f combinators  that do not me ntion free or  bound 

variables ), found a paradox  for a system with a s imilar  a im as T , that is very 

easy to derive, see e.g., [6, Appe ndix  B3].

Church introduce d the notion o f la mbda  de finability for functions  ƒ  : 

N/v —> N in order to capture  the  no tion o f computa bility4. At  firs t only 

very e lementary functions  like a ddit ion and mult ip lica tion were proved to 

be lambda  definable . Even for a func tion as s imple  as the  predecessor 

(pre d(O) =  0, p r e d (/7 +  1) =  n) lambda  de finability re maine d an ope n 

proble m for a while . From our  present knowle dge  it is te mpting to e xplain 

this  as follows . Although  the  lambda  calculus  was conce ived as an untype d 

theory, typeable  te rms are more  intuitive . Now  the  functions  a ddit ion and 

mult iplica tion are definable  by typeable  te rms, while  [101] and [108] have 

characte r ized the lambda  definable  functions  in the (s imply) typed lambda  

calculus  and the predecessor is not among the m. Be this  as it may, Kle ene  did 

find a way to lambda  define  the predecessor func tion in the  untype d lambda  

calculus , by us ing an appropr ia te  data  type (pairs  o f integers) as aux ilia ry de 

vice. In  [69], he described how he found the s olution while  be ing anes the tized 

by laughing gas (N 20 )  for the  removal o f four  wis dom teeth. Afte r  Kleene  

showed the  s olution to his  teacher, Church remarked s ome thing like: “ But 

then all intuitive ly computable  functions  mus t be lambda  definable . In  fact, 

lambda  de finability mus t coincide  with intuitive  c omputa bility / ' Ma ny  years 

later— it was at the  occas ion o f Robin Ga n d y ’s 70- th bir thday, I believe— I 

heard Kleene  say: “I would like to be able to say that, at the  mome nt o f 

discove ring how to la mbda  define  the  predecessor func tion, I got the  idea 

o f Chur c h’s Thesis. But I did not, Church d id .” Late r, in [67], he gave 

some impor ta nt  evidence for Chur c h’s Thesis by s howing that the  lambda  

definable  functions  coincide  with the /¿- recursive ones.

: Go d e l jus t  ha d  give n a series o f lectures  in P r ince ton at which Kle e ne  a nd  Ros s e r  were 

pre sent.

^Cons is te nt  the or ie s  bas e d on func t ions  for  the  fo unda t io ns  o f  ma the ma tic s  have  been 

de s cr ibe d by [89] (s implifie d by [98] ). With  a s imila r  a im  are  the  the or ie s  in [53] a nd  [75]. 

In  a ll these the or ie s  the  paradoxe s  have  been avoide d by having  a pa r t ia l a pp lic a t io n . [43],

[44] a nd  [16] a ls o dis cus s  fo r m a l the or ie s  w ith  pa r t ia l a pp lic a t ion ; the y a im  at cons truc tive  

fo unda t io ns  a nd  come  close  to la m b d a  ca lculus  (pa r t ia l c o m b ina to r y  a lge bras ).

41 r e me mbe r  a s tory s ta t ing  tha t  Chur c h  s tar te d to wor k on the  pr oble m o f t r y ing  to s how 

tha t  the  s equence  o f Be tti numbe r s  for  a give n a lge bra ic  var ie ty is c omputa ble . He  d id  no t  

succeed in this  e nte rpr is e , but  came  up  w ith  the  pr opos a l to  capture  the  n o t io n  o f intuit ive  

c omputa bility . I have  no t  been able  to ve r ify this  s tory. Re ade rs  w ho  can c onfir m  or  re fute  it 

are  k ind ly  re que s te d to in fo r m  the  a uthor .
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Inde pe nde ntly  o f Church, an alte rnative  forma liza tion (in te rms  o f (T ur 

ing) machine s ) o f the  no tion ‘computable 1 was given in [113]. In  [114] it was 

proved that the  notions  o f la mbda  de finability and T ur ing computability  are 

e quivale nt, thereby e nlarging the  cre dibility o f Chur c h’s Thesis.

Chur c h’s Thesis  is plaus ible  but cannot be proved, nor  even s tated in (clas 

s ical) mathe matica l te rms , since it refers to the  unde fine d no tion o f intuitive  

computability . On  the othe r  hand, Chur c h’s Thesis  can be re futed. If  ever 

a func tion will be found that is intuitive ly computable  but (de mons trably) 

not la m bda  definable , the n Chur c h ’s Thesis  is false. For  more  than 60 years 

this  has  not happe ne d. This  failure  to find a counte re xample  is given as 

an argume nt in favor o f Chur c h’s Thesis. I th ink tha t it is fa ir  to say that 

mos t logicians  do believe Chur c h’s Thesis. One  may wonde r  why doubting  

Chur c h’s Thesis  is not a comple te ly acade mic que s tion. This  becomes  clear 

by re alizing that [106] had introduce d the class o f pr imitive  recursive func 

tions  that for some time  was thought to coincide  with that o f the intuitive ly 

computable  ones. But the n [2] showed that there is a func tion that is in tu 

itively computable  but not pr imitive  recursive. See also the  pape r  o f [46] for 

argume nts  in favor o f Chur c h’s Thesis and [73, 74] for ones cas ting some 

doubts .

Chur c h’s Thesis is actually used for  negative  computability  results: if  a 

func tion is shown to be not la mbda  definable  (or  T ur ing computable ) then, 

by Chur c h’s Thesis , one  can state that it is not intuitive ly computable . Church 

and T ur ing gave examples  o f unde cidable  predicates , i.e., ones with non-  

computable  characte r is tic functions : the  que s tions  whe the r a la m bda  te rm 

has a nor ma l form (the  nor m a liza t ion proble m) and whe the r a machine  with 

program p  and input  x  te rminate s  (the  ha lt ing  proble m), respectively. Both 

conclude d tha t provability in ar ithme tic  is undecidable . In  fact, the  unde c id 

ability o f many mathe matica l proble ms  has  been es tablished by trans la ting 

the ha lt ing  proble m into a given proble m. A famous  example  is [82] result 

that Hilbe r t  s te nth proble m" is unsolvable .

F ina lly  it is wor th me ntioning  that in intuit ionis tic  mathe matics , say in 

He yting’s a r ithme tic  H A, one  can precisely formulate  Chur c h’s Thesis  as a 

formal s tatement; this  in contras t to the s itua tion in the  class ical theory. This  

s tatement is called CT  and is

Vx [ P (x ) V - iP(x)]  => 3eV x [[P(x ) c/>e(x ) =  1]

& [(t>e{x ) =  0 =  1]],

where (¡>e(x ) = y  3z[T {e , x, z ) & U (z ) = y] states that the  e- th pa r tia l 

recursive func tion with input  x  te rminate s  with y  as value  (T  is Kle e ne ’s 

computa tion predicate  and U is the  value  extracting func tion, see [68]). In  

this form CT  states tha t if P  is a decidable  predicate  (i.e., the  excluded middle

•“ Is it de cidable  whe the r  a given Dio pha n t ine  e qua tion has  a s o lut ion in the  intege rs?”
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holds  for P ), then P has  a recursive characte r is tic func tion. See [112] for 

formal consequences , mode ls , counte r- mode ls  and an extens ion o f CT.

§3. Computing. La m bda  calculi are prototype  programming languages . 

As  is the  case with impe rative  programming languages , where several ex

amples  are untype d (machine  code, assembler, Bas ic) and several are typed 

(Algol- 68, Pascal), systems o f la mbda  calculi exist in untype d and typed 

versions. There are also othe r  differences in the  var ious  la m bda  calculi. 

The  lambda  calculus  introduce d in [28] is the  untype d /ll- calculus in which 

an abs traction A x .M  is only allowed if x  occurs  among the  free variables  

o f M .  Nowadays , “la mbda  ca lculus ” refers to the  >lK- calculus deve loped 

unde r  the  influence  o f Curry, in which A x .M  is allowed even if x  does not 

occur in M . There are also typed vers ions o f the  la m bda  calculus . O f 

these, the mos t e lementary are two vers ions  o f the  s imply typed la mbda  

calculus  A—>. One  vers ion is due  to [37] and has  implic it  types. Sim 

ply typed la mbda  calculus  with explicit types is introduce d in [29] (this  

system is inspired by the  theory o f types o f [100] as s implifie d by [95]). 

In  order to make  a dis tinc tion between the  two vers ions  o f s imply typed 

lambda  calculus , the  vers ion with explicit types is sometimes  called the 

Church ve rs ion and the  one  with implic it  types the  Curry  vers ion. The  d if 

ference is that in the  Church vers ion one  explicitly types a variable  when it 

is bound afte r  a lambda , whereas in the  Cur ry  vers ion one  does not. So 

for example  in Chur c h’s vers ion one  has  \A =  (Ax : A .x ) : A  —> A  and 

s imilar ly \Â B : (A  —> B ) —> (A  —> B ), while  in Cur r y ’s system one  has

I =  (Ax .x ) : A —> A  but also I : (A  —> B ) —> (A —> B ) for  the  same te rm 

I. See [8] for  more  informa tion about these and othe r  typed la mbda  calculi. 

Par ticular ly inte re s ting are the  second and highe r  orde r calculi A2 and Aco 

introduce d by [49] (unde r  the  names  ‘system F ’ and ‘system Fco’) for  a ppli

cations  to p r oo f the ory and the calculi with de pe nde nt types introduce d by 

[26] for p r oo f ve rification.

3.1. Computing on data types. In  this  subsection we e xplain how it is 

poss ible  to represent da ta  types in a very direct manne r  in the  var ious  lambda  

calculi.

La m bda  de finability was introduce d for functions  on the  set o f na tura l 

numbe rs  N. In  the  re sulting mathe matica l theory o f c omputa tion (recurs ion 

theory) othe r  domains  o f input  or  output  have been treated as second class 

citizens  by coding the m as na tura l numbers . In  more  practical compute r  

science, a lgor ithms  are also directly defined on othe r  da ta  types like  trees or 

lists.

Ins te ad o f coding such data  types as numbe rs  one  can treat the m as first 

class citizens  by coding the m directly as la mbda  te rms  while preserving their
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structure. Inde e d, la m bda  calculus  is js trong e nough to do this , as was e m

phas ize d in [21] and [23]. As  a result, a much more  efficient representation 

o f a lgor ithms  on these da ta  types can be given, than when these types were 

represented via numbers . This  me thodology was perfected in two diffe rent 

ways in [22] and [24] or  [19]. The  firs t pape r  does the  repre sentation in a way 

tha t can be typed; the  othe r  papers  in an essentially s tronger way, but one  

tha t cannot be typed. We present the  me thods  o f these papers  by tre ating 

labe led trees as an example .

Le t the  (inductive ) data- type  o f labe led trees be de fined by the  following 

abs tract syntax.

le a f  n a t  | t r e e  +  t r e e  

n a t  =  0 | s u c c n a t .

We see tha t a labe l can be e ither a bud (•) or a le a f w ith a numbe r  writte n 

on it. A typical such tree is ( le a f  3) +  ( ( le a f  5) +  •) . This  tree toge the r 

w ith its  mir ror  image  look as follows .

+

3 +

5

+

3

5

Ope ra tion on such trees can be de fined by recurs ion. For  example  the  ac tion 

o f mir ror ing can be de fined by

y'mir(#) =  •>

/ m ir ( le a f n ) — le a f  n\

y"mir (^l t l )  =  y 'mir  ( h )  “I” / 'm ir  ( 1̂ )•

T hen one  has  for  example  that

ƒ m ir ( ( le a f  3 ) +  ( ( le a f  5) +  • ) )  =  ( ( •  +  le a f  5) +  le a f  3 ).

We will now show in two diffe rent ways how trees can be represented as 

lambda  te rms  and how ope rations  like  / mir on these objects  become  la mbda  

definable . The  firs t me thod is from [22]. The  re sulting da ta  objects  and 

functions  can be represented by la m bda  te rms  typeable  in the  second order 

lambda  calculus  A2, see [51] or  [8].
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D e f i n i t i o n  3.1. (i) Le t b , l,p  be variables  (used as mne monics  for  bud,

le a f  and p lu s ) . De fine  0 =  : t r e e  —> te rm, where te r m  is the

colle ction o f untype d la mbda  te rms , as follows .

</>(•) =  b\

0 ( le a f  n) =  / r /7n;

Here  r /7n =  k f x . f ' x  is Chur c h’s nume ral representing n as la mbda  te rm, 

(ii) De fine  y/\  : t r e e  —> te r m  as follows.

y/\ {t) = Xblp.(j)(t).

P r o p o s i t i o n  3.2. Define

B\  =  Xblp.b\

L\  =  k nb lp .ln ;

P i =  Xt\ tiblp.p (t\ blp)(tiblp).

Then one has

(i) =  B\ .

(ii) </ / i(le af n) = L\ r n n.

(iii) +  t2) =  Pi il/\ (tx)if/\ (t2).

P r o o f .

(i) Trivial.

(ii) We have

i/ / i( le a f/ î)  =  Aè / /7 .0 (le a f n)

=  Xblp .lr n n 

=  (Xnblp.ln)r n n 

= L ir /2_1.

(iii) Similarly, us ing that i//j (t )b lp  = 0 (0 * “I

This  propos ition states that the  trees we cons ide red are representable  as 

la mbda  te rms in such a way that the  cons tructors  (•, le a f  and + ) are lambda  

definable . In  fact, the  lambda  te rms involved can be typed in X2. A nice 

conne ction between these te rms and proofs  in second orde r logic is given in 

[ 7 9 ] .

Now  we will show that ite rative  functions  over these trees, like  f mir, are 

lambda  definable .



P r o p o s i t i o n  3.3 (Ite ra tion). Given lambda terms Aq,A\ ,A2 there exists a 

lambda term F  such that {for variables n, t\ ,t2)

FB\  =  Ao;

F(L\  n) = Ai n\

F{P\ t\ t2) = A 2(Ft l)(Ft2).
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P r o o f . Take F  =  Aw.wAqA\ A2. H

As  is well known, pr imitive  recursive functions  can be obta ine d from 

ite rative  functions .

There is a way o f coding a finite  sequence o f la mbda  te rms M\ ,. . .  , M k as 

one  la m bda  te rm

(M i, . . .  , M k) =  Az.zM\  . . .  M k 

such that the compone nts  can be recovered. Inde e d, take

Ul. = Ax\  . . .  x k .x j,

then

C o r o l l a r y  3.4 (Pr imitive  re curs ion). Given lambda terms C 0, C \ , C2 there 

exists ci lambda term H  such that

H B , =  C0;

H{L\  n) =  C\  n\

H(P\ t\ t2) = C2t xt2(H t x){Ht2).

P r o o f . De fine  the  aux iliary func tion F  =  At.(t, H t ). T hen by the  pr opo 

s ition F  can be de fined us ing ite ration. Inde e d,

F { P xt xt2) = (P t {t2,H ( P t xt2)) = A 2(Ft l){Ft2),

with

A 2 =  / li,/ 2. (P ( / 1/721)(r2^ ) , C 2( / , ^ ) ( / 2^ ) ( / , t / f ) ( i2C/f)).

Now  take  H  =  At.FtU}. [This was the tr ick Kle ene  found at the  dentis t.]  H

Now  we will present the  me thod o f [24] and [19] to represent da ta  types. 

Aga in we cons ide r  the  example  o f labe led trees.

D e f i n i t i o n  3.5. De fine  y/2 : t r e e  —» te r m  as follows.

y/2{*) =  Ae.eU\ e\  

i//2( le a f  n ) = Ae.eUjne\

Vi(t\  + t2) =  Ae.eU^y/2(ti)i//2(t2)e.



T hen the basic cons tructors  for  labeled trees are definable  by

B 2 =  Ae.eUje]
m

L i =  XnXe.eU^ne\

P2 = Xt\ t2Xe.eU]t\ t2e.

P r o p o s i t i o n  3.6. Given lambda terms A 0, A \ , A 2 there exists a term F  such

that

FB 2 = A 0F ;

F { L 2n ) =  A\ nF]

F  (P2 x y ) =  A 2xyF.

P r o o f . Try F = ((Xq, X \ , X 2)), the  1- tuple o f a triple . T he n we mus t have

FB 2 = B2(X 0,X\ ,X2)

= U\ X*XxX 2(X o ,X u X 2)

= X 0(X 0, X UX 2)

= A q ((X o, X u X 2))

= A 0F,

provide d X 0 = Ax .A0(x ). Similar ly one  can find X l} X 2. H

This  second representation is essentially untype able , at least in typed 

lambda  calculi in which all typeable  te rms  are norma lizing . T his  follows  

from the following consequence  o f a result s imilar  to P ropos ition 3.6. Le t 

K =  Xx y .x , K* =  Xx y .y  represent true  and false respectively. T hen wr iting

i f  b o o l t h e n  X  e ls e  Y  f  i

for

b o o l X  Y,

the usual behavior  o f the conditiona l is obta ine d. Now  if we represent the 

na tura l numbe rs  as a data  type  in the  style o f the second representation, 

we imme diate ly get tha t the  la mbda  definable  functions  are closed unde r  

minima liza tion. Inde e d, let

x (x ) = ny \ g(x ,y ) =  0],

and suppose  that g is lambda  defined by G. T he n there exists a la m bda  te rm 

H  such that

Hx y  =  i f  ze r o .) (Gx y ) t h e n  y  e ls e  (H x (s ucc  j>)) f  i .

Inde e d, we can write  this  as Hx  =  A x H  and apply P ropos ition 3.6, but now 

formulate d for the inductive ly defined type  num. T hen F  =  Xx .Hx r 0~] does 

represent / .  Here  s ucc  represents the  successor func tion and ze r o ? a test
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for  zero; both are la mbda  definable , again by the  ana logon to Propos ition 

3.6. Since  m inim a liza t ion  anables  us to define  all pa r tia l recursive functions , 

the te rms  involve d cannot be typed in a nor ma lizing  system.

Self- interpretation. A la mbda  te rm M  can be represented inte rnally as a 

la m bda  te rm r M~ ]. T his  represe ntation s hould be such that, for  example , 

one  has  la mbda  te rms P i, P 2 s atis fying PfX\  X 2n = X,- . [67] already showed 

that there is a (‘me ta- circular’) self- interpreter E such that, for  closed te rms 

M  one  has  Er M n =  M . The  fact tha t da ta  types can be represented directly 

in the la mbda  calculus  was exploited by [85] to find a s imple r representation 

for  r M n and E.

The  difficulty o f representing la mbda  te rms  inte rnally is tha t they do not 

form a firs t orde r algebraic da ta  type  due  to the  b inding  effect o f the  lambda . 

[85] solved this  proble m as follows . Cons ide r  the  data  type with s ignature

c o n s t , a pp , abs

where c o n s t  and abs  are unary  cons tructors  and app a binary cons tructor . 

Le t c o n s t , app and abs  be a representation o f these in la m bda  calculus

(according to De finit ion 3.5).

Pr oposit ion 3.7 ([85]). Define

r x n =  c o n s t  x; 

r P£>n =  app r P~ir jg~l;

r /bc.Pn =  a b s U x .r P n).

Then there exists a self- interpreter E such that fo r all lambda terms M  [possibly 

containing variables) one has

Er M n =  M.

Pr oof . By an ana logon to P ropos ition 3.6 there exists a la mbda  te rm E 

such that

E(c o n s t  x ) — x ;

E(app p  q) =  (E/>)(Eg);

E(abs  z ) = Xx .E(zx ).

T he n by an easy induc tion one  can show tha t Er M~ ] = M  for  all te rms  M  A

Following the  cons truction o f P ropos ition 3.6 in [24], this  te rm E is given 

the following very s imple  form:

E =  ((K, S, C)),

where S =  A x y z .x z (y z ) and C =  A x y z .x (zy ). This  is a good improve me nt 

over [67] or [6]. See also [7], [9] and [10] for more  about self- interpreters.
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3.2. Functional programming. In  this  subsection a short his tory is pre 

sented o f how lambda  calculi (untype d and typed) inspired (e ither con 

sciously or uncons cious ly) the cre ation o f func tiona l programming.

Imperative  versus functional programming. While  Church had capture d the 

no tion o f computability  via the  lambda  calculus , T ur ing had done  the same 

via his mode l o f c omputa tion based on T ur ing machines . Whe n in the  second 

world war computa tiona l power was needed for milita ry  purposes , the first 

e lectronic devices were built  bas ically as T ur ing machine s  with r andom access 

memory. Statements  in the ins truc tion set for these machine s , like x  :=  x  + 1, 

are directly re lated to the ins tructions  o f a T ur ing machine . Such s tatements  

are much more  easily inte rpre ted by hardware  than the act o f s ubs titution 

fundame nta l to the  lambda  calculus . In  the be ginning, the hardware  o f the  

early compute rs  was modifie d each time  a diffe rent computa tiona l jo b  had 

to be done . T hen von Ne uma nn, who mus t have know n6 T ur ing’s concept 

o f a unive rsal T uring machine , suggested building  one machine  that could 

be programme d to do all poss ible  computa tiona l jobs  us ing software. In  

the  re sulting compute r  re volution, a lmos t all machine s  are based on this  

so called von Ne um a nn compute r , cons is ting o f a programmable  unive rsal 

machine . It  would have been more  appropr ia te  to call it the T ur ing compute r .

The mode l o f computability  introduce d by Church (lambda  de finability)—  

a lthough e quivale nt to that o f T ur ing— was harde r  to inte rpre t in hardware . 

Therefore  the emergence o f the paradigm o f func tiona l programming, that 

is based essentially on lambda  de finability, took much more  time. Because 

func tiona l programs  are closer to the  specification o f c omputa tiona l pr ob 

lems than impe rative  ones, this  pa radigm is more  convenie nt than the tr a 

d it iona l imperative  one. Anothe r  impor ta nt  feature  o f func tiona l programs  

is that paralle lis m is much more  natura lly  expressed in the m, than in im 

perative programs . See [117] and [64] for some evidence for the elegance 

o f the func tiona l paradigm. The imple me nta tion difficultie s  for func tiona l 

programming have to do with me mory usage, compila t ion time  and ac 

tua l run time  o f func tiona l programs . In  the conte mporary state o f the 

art o f imple me nting func tiona l languages , these proble ms  have been solved 

satis factorily.7

Classes o f  func tional languages. Le t us describe some languages  that have 

been— and in some cases s till are— influe ntia l in the  e xpans ion o f func tiona l 

programming. These languages  come  in several classes.

(,C h u r c h  h a d  invite d T ur ing  to the  U n it e d  State s  in the  m id  1930’s. Aft e r  his  fir s t ye a r  it 

was  vo n  N e u m a n n  w ho  invite d  T ur in g  to  s tay for  a s e cond year. See [60] .

Lo g ic a l p r o g r a m m in g  la ngua ge s  a ls o  have  the  m e n t io n e d  a dva nta ge s . But  so fa r  pure  

logica l la ngua ge s  o f  in d us t r ia l q u a lit y  have  n o t  be e n de ve lope d. (P r o lo g  is n o t  pur e  a nd  

/ - P r o log , see [87] , a lt h o u g h  pur e , is pr e s e nt ly a p r o to ty pe .)
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La m bda  calculus  by itse lf is not yet a comple te  mode l o f computa tion, 

since an express ion M  may be evaluated by diffe rent so- called re duction 

strategies that indicate  which sub- term o f M  is evaluated first (see [6, Chapte r  

12]). By the  Church- Rosse r the ore m this  order o f e valuation is not impor ta nt  

for the final result: the nor ma l form o f a la mbda  te rm is unique  if it exists. 

But the  order o f e valuation makes  a difference for efficiency (both time  and 

space) and also for  the que s tion whe the r or not a norma l form is obta ine d 

at all.

So called 'eager’ func tiona l languages  have a re duction s trategy that eval

uates an express ion like FA  by first e valuating F  and A (in no par ticula r  

order) to, say, F ' = Aa. • • • a • • • a • • • and A' and then contrac ting F'A ' 

to . . .  A' . . .  A' —  This  e valuation s trategy has  de finite  advantages  for the 

efficiency o f the  imple me nta tion. The  ma in reason for this  is that if A  is large, 

but its nor ma l form A' is small, the n it is advantage ous  both for  time  and 

space efficiency to pe rform the  re duction in this  order. Inde e d, e valuating 

FA  directly to

• • • • • •

takes more  space and if A is now evaluated twice, it also takes more  time.

Eager e valuation, however, is not a nor ma lizing  re duction s trategy in the 

sense o f [6 , Chapte r  12]. For  example , if F  =  Ax .I and A does not have a 

nor ma l form, then e valuating FA  eagerly diverges, while

FA  =  (Ax.\ )A — I,

if it is evaluated le ftmos t oute rmos t (roughly ‘from left to r ight '). This  kind 

o f re duction is called la zy  e valuation'.

It  turns  out that eager languages  are, nevertheless, computa tiona lly  c om 

plete, as we will soon see. The  imple me nta tion o f these languages  was the 

first mile s tone  in the de ve lopme nt o f func tiona l programming. The  second 

mile s tone  cons is ted o f the efficient imple me nta tion o f lazy languages .

In  a ddit ion to the  dis tinc tion between eager and lazy func tiona l languages  

there is anothe r  one  o f e qual importance . This  is the difference between un 

typed and typed languages . The  difference  comes directly from the  difference 

between the  untype d lambda  calculus  and the various  typed la mbda  calculi, 

see [8]. T yping is use ful, because many programming bugs  (errors) result 

in a typing error that can be detected automatica lly  pr ior  to r unning  one ’s 

program. On the  othe r  hand, typing is not too cumbe rs ome , since in many 

cases the  types need not be given explicitly. The  reason for  this  is tha t, by the 

type re cons truction a lgor ithm o f [38] and [59] (late r rediscovered by [84]), 

one  can automatica lly  find the  type  (in a ce rtain context) o f an untype d but 

typeable  expression. Therefore , the  typed vers ions o f func tiona l program 

ming languages  are ofte n based on the  implic itly  typed la mbda  calculi a la
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Curry. Types also play an impor ta nt  role in ma king  imple me nta tions  o f lazy 

languages  more  efficient, see below.

Besides the  func tiona l languages  that will be treated below, the  languages  

AP L and FP  have been impor ta nt  his torically. The  language  AP L, intr o 

duced in [65], has  been, and still is, re latively widespread. The  language  FP  

was des igned by Backus , who gave, in his lecture ([5]) at the  occas ion o f 

receiving his  T ur ing award (for  his  work on impe rative  languages ) a s trong 

and influe ntia l plea for the use o f func tiona l languages . Both AP L and FP  

programs  cons is t o f a set o f bas ic functions  that can be combine d to define  

ope rations  on data  s tructures . The language  AP L has, for example , many 

functions  for matr ix  ope rations . In  both languages  compos ition is the  only 

way to obta in new functions  and, therefore, they are less comple te  than a 

full func tiona l language  in which user de fined functions  can be created. As  

a consequence , these two languages  are essentially limite d in the ir  ease o f 

expressing algor ithms .

Eager functional languages. Le t us first give the  promis e d argume nt that 

eager func tiona l languages  are computa tiona lly  comple te . Every computable  

(recursive) func tion is lambda  definable  in the Al- calculus (see [30] or [6 , 

T heorem 9.2.16] ). In  the  / l- calculus  a te rm having a norma l form is s trongly 

norma lizing  (see [31] or [6 , T he ore m 9.1.5] ). Therefore  an eager e valuation 

s trategy will find the  required nor ma l form.

The first func tiona l language , LISP, was des igned and imple me nte d by 

[83]. The  e valuation o f expressions in this  language  is eager. LIS P  had (and 

still has) cons ide rable  impact on the art o f programming. Since  it has  a 

good programming e nvironme nt, many s killful programme rs  were attracted 

to it and produce d inte re s ting programs  (so called ‘ar tific ial inte llige nce ’). 

LISP  is not a pure  func tiona l language  for several reasons. As s ignme nt 

is poss ible  in it; there is a confus ion between local and globa l variable s8 

(‘dynamic  b ind ing ’; some LISP  users even like  it); LISP  uses the  ‘Quo te ’, 

where (Quote  M )  is like  r M n. In  later vers ions  o f LISP, Co m m o n LISP  

(see [110]) and Scheme (see [32]), dynamic  b inding  is no longe r  present. The  

‘Quote ' ope rator , however, is s till present in these languages . Since \ a = a 

but r \ a~] ^  r a n adding  ‘Quo te 1 to the lambda  calculus  is incons is te nt. As  

one may not reduce in LISP  within the scope o f a ‘Quote ’, however, having 

a ‘Quo te ’ in LIP S is not incons is te nt. 'Quo te ’ is not an available  func tion 

but only a cons tructor . T hat is, if M  is a well- formed expression, so is

sT his  me ans  s ubs titut ion o f an express ion with a free var iable  into  a context in which that 

var iable  becomes  bound. T he  or igina tors  o f LIS P  were in good company: in [58] the  same 

mis take  was made .
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(Quote  M ) 9. Also, LISP  has  a pr imitive  fixed- point ope rator  ‘LAB E L’ 

(imple me nte d as a cycle) tha t is also found in late r func tiona l languages .

In  the  me antime , [77] deve loped an abs tract machine — the S E CD m a 

chine — for the  imple me nta tion o f re duction. Ma ny  imple me nta tions  o f 

eager func tiona l languages , inc luding  some vers ions  o f LISP, have used, 

or are s till us ing, this  computa tiona l mode l. (The  S E CD machine  also 

can be mode lle d for  lazy func tiona l languages , see [57].) Anothe r  way o f 

imple me nting func tiona l languages  is based on the  so called CPS- trans lation. 

This  was introduce d in [96] and used in a compile rs  by [109] and [3]. See 

also [93] and [97].

The first im por ta nt  typed func tiona l language  with an eager e valuation 

s trategy is Standard ML, see [84]. This  language  is based on the  Cur ry  

var iant o f >1—►, the  s imply typed la mbda  calculus  with implic it  typing, see 

[8]. Express ions  are type- free, but are only legal if a type can be derived for 

the m. By the a lgor ithm o f Cur ry and Hindle y  cited above, it is decidable  

whe the r an expression does have a type  and, moreover, its mos t general type 

can be compute d. Milne r  adde d two features  to X—>. The first is the a ddit ion 

o f new primitives . One  has  the  fixed- point combina tor  Y as pr imitive , with 

essentially all types o f the  form (A —> A) —> A, with A = (B  —► C ), ass igned 

to it. Inde e d, if ƒ  : A —> A, the n Y ƒ  is o f type  A so that both sides o f

/ ( V / )  =  V /

have type  A. Pr imitive s  for bas ic ar ithme tic  ope rations  are also adde d. With  

these additions , M L  becomes  a unive rsal programming language , while  X—> 

is not (since all its te rms  are nor ma lizing). The second a ddit ion to M L  is 

the ‘le t’ cons truction

(1) le t  x  be  N  in  M  e nd .

This  language  cons truct has  as its inte nde d inte rpre tation

(2) M [ x  := TV],

so that one  may th ink tha t the  let cons truc tion is not necessary. If, however, 

N  is large, the n this  trans la tion o f (1) becomes space inefficient. Anothe r

9Us ing ‘Quo te ’ as a func t ion would violate  the Church- Rosse r  property. An  e xample  is

{Xx.x(\ a)) Quote

tha t the n would reduce  to bo th

Quote  (Ia) —► r lan

and to

(Xx.xa) Quote  —► Quote  a —> ran 

and there is no c ommon re duct for these two express ions  r \ an and r a n.
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inte rpre ta tion o f ( 1) is

(3) • (X x .M )N .

Blit this  inte rpre ta tion has  its limita tions , as N  has  to be given one  fixed type, 

whereas in (2) the var ious  occurrences  o f N  may have diffe rent types. The 

expression ( 1) is a way to make  use o f both the  space re duction (‘s har ing’) 

o f the expression (3) and the ‘implic it  polymorphis m' in which N  can have 

more  than one type o f (2). An  example  o f the  let express ion is

le t  id  be  Xx .x  in  A f  x . ( id  ƒ  ) ( id  x ) e nd .

This  is typeable  by

(A  - > A ) - > (A - > A ),

if the  second occurrence  o f id  gets type (A  —> A) —> (A  —> A) and the third

(A  - ► A ).

Because o f its re latively efficient imple me nta tion and the  pos s ibility o f type 

che cking at compile  time  (for  finding errors), the  language  M L  has  evolved 

into  impor tant  indus tr ia l var iants  (like  Standard M L  o f Ne w Jersey).

Although  not wide ly used in indus try, a more  efficient imple me nta tion o f 

M L  is based on the  abs tract machine  C A M L, see [34]. C A M L  was inspired 

by the categorical founda tions  o f the  la mbda  calculus , see [107], [72] and 

[35]. All o f these papers  have been inspired by the work on de nota tiona l 

semantics  o f Scott, see [103] and [54].

Lazy  func tional languages. Although all computable  functions  can be rep

resented in an eager func tiona l programming language , not all re ductions  in 

the  full /K- calculus  can be pe rforme d us ing eager e valuation. We already 

saw that if  F  =  Ax A and A does not have a norma l form, the n eager e valua 

t ion o f FA  does not te rminate , while  this  te rm does have a nor ma l form. In  

la zy '  func tiona l programming languages  the re duction o f FA  to I is poss i

ble, because the re duction s trategy for these languages  is essentially le ftmos t 

oute rmos t re duction which is norma lizing .

One  o f the advantages  o f having lazy e valuation is that one  can work with 

'infinite ' objects . For  example  there is a legal expression for the  pote ntia lly  

infinite  lists o f primes

[ 2 ,3 ,5 ,7 ,1 1 ,1 3 ,1 7 ,...] ,

o f which one  can take  the  /7- th proje ction in  order to get the H- th prime . See 

[117] and [64] for inte re s ting uses o f the lazy programming style.

Above  we e xplained why eager e valuation can be imple me nte d more  effi

ciently than lazy e valuation: copying large expressions is expensive because 

o f space and time  costs. In  [119] the idea o f graph reduction was introduce d 

in order to also do lazy e valuation efficiently. In  this  mode l o f computa tion, 

an expression like  (Xx . • • • x  • • • x  • • • )A  does not reduce to • • • A  • • • A  • •



but to • • • @ @ ; @ : A , where the  firs t two occurrences  o f @ are 

pointe rs  re fe rring to the  A be hind the third occurrence. In  this  way la mbda  

expressions become  dags (directed acyclic graphs ) .10

Based on the  idea o f graph re duction, us ing care fully chosen combinators  

as pr imitive s , the  expe rimental language  SASL, see [115] and [116], was one 

o f the  first imple me nte d lazy func tiona l languages . The no t ion  o f graph 

re duction was extended by T urne r by imple me nting the  fixed- point combi-  

na tor  (one  o f the  pr imitive s ) as a cyclic graph. (Cyclic graphs  were already 

described in [119] but were not used there.) Like  LISP, the language  SASL 

is untype d. It  is fa ir  to say tha t— unlike  programs  writte n in the  eager la n 

guages such as LISP  and Standard M L — the execution o f SASL programs  

was orders  o f magnitude  slower than tha t o f impe rative  programs  in spite  o f 

the  use o f graph re duction.

In  the  1980s typed vers ions  o f lazy func tiona l languages  did emerge, as 

well as a cons ide rable  speed- up o f the ir  pe rformance . A lazy vers ion o f ML, 

called Lazy M L  (LM L), was imple me nte d efficiently by a group at Chalme rs  

Unive rs ity, see [66]. As  unde r lying computa tiona l mode l they used the  

so called G- machine , that avoids  build ing  graphs  whenever efficient. For  

example , if an express ion is pure ly ar ithme tica l (this  can be seen from type 

infor ma tion), then the  e valuation can be done  more  efficiently than by us ing 

graphs . Anothe r  imple me nta tion feature  o f the  L M L  is the  compila t ion into 

supe r- combinators , see [63], tha t do not form a fixed set, but are created on 

de mand de pe nding on the  express ion to be evaluated. Eme rging from SASL, 

the firs t fully deve loped typed lazy func tiona l language  called Mir a nda ™ was 

deve loped by [118]. Special me ntion s hould be made  o f its elegance and its 

func tiona l I/ O  inte rface  (see be low).

Notably, the  ideas  in the  G- machine  made  lazy func tiona l programming 

much more  efficient. In  the  late 1980s very efficient imple me nta tions  o f 

two typed lazy func tiona l languages  appeared that we will discuss below: 

Cle an, see [40], and Has ke ll, see [92], [62]. These languages , with the ir  

imple me nta tions , execute func tiona l programs  in a way tha t is comparable  

to the speed o f conte mporary impe rative  languages  such as C.

Interactive  func tional languages. The  vers ions  o f func tiona l programming 

that we have cons ide red so far  could be called ‘autis tic ’. A program consis ts  

o f an express ion M ,  its execution o f the  re duction o f M  and its output  o f 

the nor ma l form M nf (if it exists). Altho ug h  this  is quite  use ful for many
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"'Ro b in  Ga nd y  me ntione d at a me e ting for  the  ce le bration o f his  seventie th bir thday that 

already in the  early 1950s T ur ing had told him tha t he wante d to evaluate  la m bda  te rms  us ing 

graphs . In  T ur ing’s de s cr iption o f the  e va lua tion me chanis m he made  the  c o m m o n ove rs ight 

o f confus ing free a nd bound  variables . Ga nd y  pointe d this  out  to T ur ing, who the n said: 

“Ah, this  re mark is wor th 100 pounds  a m o n th !”
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purposes , no inte raction with the  outs ide  wor ld is made . Even jus t  de aling 

with input  and output  ( I/ O )  requires  inte raction.

We need the  concept o f a ‘process’ as oppos e d to a func tion. Intuitive ly  a 

process is s ome thing tha t (in general) is geared towards  continua tion while  a 

func tion is geared towards  te rmina tion. Processes have an input  channe l on 

which an input  s tream (a pote ntia lly  infinite  sequence o f tokens ) is coming 

in and an output  channe l on which an output  s tream is coming out. A 

typical process is the  control o f a traffic light system: it is geared towards  

continua tion, there is an input  s tream (coming from the  pus hbuttons  for  

pedes tr ians ) and an output  s tream (re gulating the  traffic lights ). Text e diting 

is also a process. In  fact, even the  mos t s imple  form o f I/ O  is already a 

process.

A pr imitive  way to deal w ith I/ O  in a func tiona l language  is used in some 

vers ions  o f ML. There is an input  s tream and an output  s tream. Suppose  

one wants  to pe rform the  following process P:

read the  first two numbe rs  x, y  o f the  input  s tream; 

put the ir  difference x  -  y  onto  the  output  s tream.

T he n one can write  in M L  the  following program

w r it e  (r e a d  — r e a d ).

This  is not very satis factory, since it relies on a fixed orde r o f e va luation o f 

the  express ion ‘r e a d  — r e a d ’.

A more  satis factory way consis ts  o f so- called continua tions , see [52]. To 

the  la mbda  calculus  one  adds  pr imitive s  Re ad, Wr it e  and Stop . The  ope r 

a t iona l semantics  o f an express ion is now as follows:

M  => M hnf, where M hnf is the  he ad nor m a l fo r m 11 o f M\

Re ad M  => M  a, where a is take n off the  input  s tream;

Wr it e  b M  => M, and b is put  into  the  output  s tream;

Stop  => i.e., do nothing.

Now  the  process P  above can be writte n as

P  =  Re ad (Ax. Re ad (Ay. Wr it e  (x  — y ) S to p )).

If, ins tead, one  wants  a process Q tha t continuous ly  takes two e lements  o f 

the  input  s tream and put  the  difference on the  output  s tream, the n one  can 

write  as a program the  following extended la m bda  te rm

Q = Re ad (Ax. Re ad (Ay. W r it e  (x  — y ) Q)),

11A he ad n f in la m bda  calculus  is o f the  form Xx.yM\  . . .  M„, with the  M\  . . .  M„ pos s ibly 

no t  in nf.
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which can be found us ing the  fixed- point combinator .

Now, every inte ractive  program can be writte n in this  way, provide d that 

special commands  writte n on the  output  s tream are inte rpre ted. For  example  

one  can imagine  tha t wr iting

‘e c h o ’ 7 or  i p r i n t 3 1

on the  output  channe l will put  7 on the  screen or pr int it out respectively. 

The use o f continua tions  is e quivale nt to that o f monads  in programming 

languages  like  Has ke ll, as s hown in [52]. (The  present vers ion o f Has ke ll 

I/ O  is more  refined than this ; we will not cons ide r  this  issue.)

If  A qj A  i, A 2} . . .  is an effective sequence o f te rms  (i.e., A n — F  r n n for 

some F) ,  the n this  infinite  lis t can be represented as a la mbda  te rm

Mo, A  i , A 2j . . .  ] — [A0, \ A i, \ A2? . . .  ]]]

=  H  r 0n,

where [M, N ] =  X z .z M N  and

H  r /7n -  [F r n~], H  r n +  P ] .

T his  H  can be de fined us ing the  fixed- point combinator .

Now  the  ope rations  Re a d , W r it e  and S to p  can be made  explicitly la m bda  

de finable  if  we use

In  [^o? A  i , A 2 > . . .  ]j

Out =  [ . . .  , B2, B\ , B0 ],

where In  is a repre sentation o f the  pote ntia lly  infinite  input  s tream given 

by ‘the  wor ld' (i.e ., the  user and the  exte rnal ope rating system) and Out 

o f the  pote ntia lly  infinite  output  s tream given by the machine  r unning  the  

inte ractive  func tiona l language . Every inte ractive  program M  s hould be 

acting on [ In, Out]  as argume nt. So M  in the  continua tion language  becomes

M  [ In, Out] .

The following de finition the n matches  the  ope ra tiona l semantics .

{
Re ad F  [[A, In '] , Out]  =  F A  [ In ', Out] ;

W r it e  F  B  [ In, Out]  =  F  [ In, [B, Out] ]

S to p  [ In, Out]  =  [ In, Out] .

In  this  way [ In, Out]  acts  as a dynamic  state. An  ope rating system s hould 

take care tha t the  actions  on [ In, Out]  are ac tually pe rforme d to the  I/ O  

channe ls . Als o we have to take  care tha t s tatements  like  f e c h o , 7 are be ing 

inte rpre ted. It  is easy to find pure  la m bda  te rms  Re ad, W r it e  and S to p
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satis fying (1). This  seems to be a good imple me nta tion o f the  continua tions  

and therefore  a good way to deal with inte ractive  programs .

There is, however,*a serious proble m. De fine

M  =  Xp .[ Wr ite  b\  S to p  p, Wr it e  bi S to p  p\ .

Now  cons ide r  the e valuation

M  [ In, Out]  =  [ Write  b\  S to p  [ In, Out] , Wr it e  b2 S to p  [ In, Out] ]

=  [ [ In, [ ¿i, Out] ] , [ In, [¿2, Out] ] .

Now  what will happe n to the  actual output  channe l: s hould b\  be adde d to 

it, or pe rhaps  ¿ 2?

The dile mma is caused by the  duplica tion o f the I/ O  channe ls  [ In, Out] . 

One  s olution is not to explicitly me ntion the I/ O  channe ls , as in the  lambda  

calculus  with continuations . This  is essentially what happe ns  in the me thod 

o f monads  in the inte ractive  func tiona l programming language  Has ke ll. If  

one  writes  s ome thing like

Main ƒ  1 o • • • o f  n

the inte nde d inte rpre ta tion is ( ƒ 1 o • • • o / „ ) [ In ,  Out] .

The s olution put forward in the func tiona l language  Cle an is to use a typing 

system that guarantees  that the I/ O  channe ls  are never duplicate d. For  this  

purpose  a so- called ‘unique ne s s ’ typing system is des igned, see [14, 15], that 

is related to line ar  logic (see [50]). Once  this  is done , one  can improve  the  way 

in which parts  o f the  world are used explicitly. A representation o f all aspects 

o f the world can be incorporate d in lambda  calculus . Ins te ad o f having jus t 

[ In, Out] , the world can now be extended to include  (a repre sentation of) 

the screen, the pr inte r , the  mouse , the  keyboard and whatever gadgets  one 

would like to add to the compute r  pe riphe ry (e.g., othe r  compute rs  to form 

a ne twork). So inte rpre ting

‘p r i n t J 7 

now becomes s imply s ome thing like

p u t  7 p r in t e r .

This  has  the advantage  that if one  wants  to echo a 7 and to pr int a 3, but 

the order in which this  happe ns  is immate r ia l, the n one  is not forced to make  

an over- specification, like sending first ‘p r i n t ’ 3 and then 'e c h o '  7 to the 

output channe l:

[ . . .  , ‘ e c h o ; 7, ' p r i n t 3 3].

By representing ins ide  the  lambda  calculus  with uniqueness  types as many 

gadgets  o f the world as one  would like, one  can write  s ome thing like

F  [ ke yboa rd, mouse , s c r e e n , p r in t e r ]
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=  [ ke yboard, mouse, p u t  3 s c r e e n, p u t  7 p r in t e r ] .

What happe ns  first depends  on the ope rating system and parame te rs , that 

we do not know (for example  on how long the pr inting  queue  is). But we are 

not interested in this . The  system satisfies the Church- Rosse r the orem and 

the eventual result (7 is pr inte d and 3 is echoed) is unambiguous . This  makes  

Cle an somewhat more  na tura l than Has ke ll (also in its present vers ion) and 

de finite ly more  appropr ia te  for  an imple me nta tion on paralle l hardware .

Both Cle an and Has ke ll are state o f the art func tiona l programming la n 

guages produc ing efficient code; as to compiling  time  Cle an be longs  to the 

class o f fast compile rs  (inc luding those  for imperative  languages ). Many  

serious  applica tions  are writte n in these languages . The inte ractive  aspect 

o f both languages  is made  poss ible  by lazy e valuation and the use o f highe r  

type 12 functions , two themes that are at the core o f the lambda  calculus  (AK, 

that is). It  is to be expected that they will have a s ignificant impact on the 

produc tion o f mode rn (inte ractive  window based) software.

§4. Reasoning.

Computer mathematics . Mode r n systems for compute r  algebra (CA) are 

able to represent mathe matica l notions  on a machine  and compute  with 

the m. These objects  can be integers , real or comple x numbers , polynomials , 

integrals  and the like. The  computa tions  are us ually symbolic, but can also 

be nume rical to a vir tua lly  arbitrary degree o f precis ion. It  is fair  to say— as is 

sometimes  done — tha t “a system for CA can represent \ il exactly” . In  spite 

o f the fact that this  numbe r  has an infinite  de cimal expans ion, this  is not a 

miracle . The numbe r  \ /2 is represented in a compute r  jus t  as a s ymbol (as we 

do on pape r  or  in our  m ind), and the  machine  knows  how to manipula te  it. 

The common feature  o f these kind o f notions  represented in systems for  CA 

is that in some sense or anothe r  they are all computable . Systems for C A have 

reached a high level o f s ophis tication and efficiency and are comme rcially 

available . Scientis ts  and both pure  and applie d mathe matic ians  have made  

good use o f the m for the ir  research.

There is now emerging a new technology, name ly that o f systems for 

Compute r  Mathe matics  (C M). In  these systems vir tually all mathe matica l 

notions  can be represented exactly, inc luding those  that do not have a com 

puta tiona l nature . How is this  poss ible? Suppose , for example , tha t we want 

to represent a non- computable  object like the  co- Diophantine  set

X  =  {/7 E N I - *3x D (x , n) =  0}.

12In the  func t iona l pr ogr a mming c ommunity  these are called ‘highe r  order func t ions ’. We 

prefer to use the  more  logically correct express ion ‘highe r  type\  s ince ‘highe r  orde r ’ refers to 

quantifica t ion over types  (like  in the  system X2).
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T hen we can do as before and represent it by a special s ymbol. But now 

the compute r  in general cannot operate  on it because the  object may be o f a 

non- computa tional nature .

Before answering the que s tion in the previous  paragraph, let us firs t analyze  

where non- computability  comes from. It  is always the  case tha t this  comes 

from the  quantifie rs  V (for  all) and 3 (exists). Inde e d, these quantifie rs  

us ually range  over an infinite  set and therefore  one  loses decidability.

Nevertheless , for  ages mathe matic ians  have been able to obta in inte re s ting 

informa tion about these non- computable  objects . T his  is because there  is a 

no tion o f proof. Us ing proofs  one  can state with confidence  tha t e.g.,

3 g I ,  i.e., - >3x D(x ,  3) =  0.

Ar is totle  had already remarked tha t it is often hard to find proofs , but the 

ve rification o f a putative  one  can be done  in a re lative ly easy way. Anothe r  

contr ibution o f Ar is totle  was his  ques t for the  forma liza tion o f logic. Afte r  

about 2300 years, when Frege had found the r ight fo r mula tion o f predicate  

logic and Gode l had proved tha t it is comple te , this  ques t was fulfille d. 

Mathe matica l proofs  can now be comple te ly formalize d and verified by 

compute rs . This  is the unde r lying basis  for the systems for C M.

Present day prototype s  o f systems for C M  are able to he lp a user to 

deve lop from pr imitive  notions  and axioms  many theories , cons is ting o f 

de fined concepts , theorems  and proofs .13 All the systems o f C M  have been 

inspired by the  AU T OMAT H  project o f de Bruijn (see [26] and [27] and 

[88]) for  the  automate d ve rification o f mathe matica l proofs .

Representing proofs  as lambda terms. Now  that mathe matica l proofs  can 

be fully formalize d, the  que s tion arises how this  can be done  best (for  effi

ciency reasons conce rning the  machine  and pragmatic  reasons  conce rning 

the huma n user). Hilbe r t  represented a p r oo f o f s tatement A from a set o f 

axioms  T as a finite  sequence A 0,A  \ • • • Mn  such tha t A = A n and each A if 

for 0 <  / <  /7, is e ithe r in T or follows  from previous  s tatements  us ing the 

rules o f logic.
w

A more  efficient way to represent proofs  employs  typed la mbda  terms 

and is called the  propositions- as- types  inte rpre ta tion discovered by Curry, 

Howard and de Bruijn. T his  inte rpre ta tion maps  propos itions  into  types 

and proofs  into the  cor re s ponding inhabitants . The  me thod is as follows . A 

s tatement A is trans forme d into  the  type (i.e., colle ction)

[A] =  the set o f proofs  o f A.

So A is provable  if and only if [A] is ‘inhabite d’ by a p r oo f p. Now  a pr oof 

o f A ==> B  consis ts  (according to the  Brouwer- Heyting inte rpre ta tion o f

l3T his  way o f do ing  mathe matics , the  ax iomatic  me thod, was  also descr ibed by Aris totle . 

It  was [42] who first used this  me thod very successfully in his  Ele me nts .
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implica tion) o f a func tion having as argume nt a p r oo f o f A and as value  a 

p r o o f o f B. In  symbols

[A => B] = [A] -  [B].

Similar ly

[Vx e  XP x ]  =  n *  : X.[Px ],

where r ix  : A .[ Px ] is the  Car te s ian product o f the  [P x ], because a p r o o f o f 

Vx e  y i.P x  consis ts  o f a func tion tha t assigns to each e lement x  e  A a p r oo f 

o f P x . In  this  way proof- objects  become  is omorphic  with the intuit ionis tic  

na tura l de duc tion proofs  o f [48]. Us ing this  inte rpre ta tion, a p r oo f o f 

Vy e  A .Py  => Pv  is Xy :AXx  :Py .x . Here  Xx :A .B (x )  denotes  the func tion 

tha t assigns to input  x  e  A the  output  B(x ) .  A pr oo f o f

( A =>A =>B ) =>A =>B

is

Xp:(A  => A => B)Xq \ A.pqq.

A  de s cr iption o f the  typed la mbda  calculi in which these types and inha b i

tants  can be formula te d is given in [8], which also gives an example  o f a large 

pr oo f object. Ve rifying whe the r  p  is a p r oof o f A boils  down to ve r ifying 

whether, in the  given context, the  type  o f p  is e qual (convertible ) to [A\ . 

The me thod can be extended by also representing connectives  like  & and - i 

in the r ight type  system. T rans lating propos itions  as types has  as de fault  

intuit ionis t ic  logic. Clas s ical logic can be de alt with by adding the  excluded 

middle  as an ax iom.

If  a complica te d compute r  system claims  tha t a ce rtain mathe matica l 

s tatement is correct, the n one  may wonde r  whe the r this  is indeed the  case. 

For example , there may be software  errors in the  system. A satis factory 

me thodologica l answer has  been given by de Bruijn. Proof- objects  s hould 

be public  and writte n in such a formalis m tha t a reasonably s imple  proof-  

checker can verify the m. One  s hould be able to verify the  program for 

this  proof- checker ‘by h a n d ’. We call this  the  de Bruijn criterion. The  

proof- deve lopment systems Lego (see [80]) and Coq (see [33]) satisfy this  

cr ite r ion.

A way to keep proof- objects  from growing too large is to e mploy the  so-  

called Poincare  pr inciple . [94, p. 12] s tated tha t an argume nt s howing tha t

2 +  2 =  4 “is not a p r o o f in the  s trict sense, it is a ve r ification” (actually 

he c la ime d tha t an arbitra ry ma the matic ian will make  this  re mark). In  

the AU T OMAT H  project o f de Bruijn the  following inte rpre ta tion o f the 

Poincare  pr inc iple  was given. If  p  is a p r oo f o f A(t )  and t = R the n the 

same p  is also a p r o o f o f A(t ' ) .  Here  R  is a no t ion  o f re duction cons is ting o f 

ordinary ^- re duction and ¿- re duction in orde r to deal w ith the  unfo ld ing  o f 

de finitions . Since  /?- ¿- reduction is not too complica te d to be programme d,
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the type systems e njoying this  inte rpre ta tion o f the Poincare  pr inciple  s till 

satisfy the  de Bruijn c r ite r ion14.

In  spite  o f the compact representation in typed lambda  calculi and the 

use o f the Poincare  pr inciple , proof- objects  become  large, s ome thing like 10 

to 30 times  the  length o f a comple te  informa l proof. Large  proof- objects  

are tiresome to generate  by hand. With  the  necessary persis tence [18] has 

wr itte n lambda  afte r  lambda  to obta in the  proof- objects  s howing that all 

proofs  (but one ) in [76] are correct. Us ing a mode rn system for C M  one  can 

do better. The  user introduce s  the context cons is ting o f the pr imitive  notions  

and axioms . T hen necessary de finitions  are given to formula te  a theorem 

to be proved (the  goal). The pr oof is deve loped in an inte ractive  session 

with the  machine . Thereby the  user only needs to give ce r tain 'tac tics ’ 

to the machine . (The  inte rpre ta tion o f these tactics  by the  machine  does 

no thing  mathe matica lly  s ophis ticate d, only the  necessary bookke e ping. The 

s ophis tica tion comes  from giving the  r ight tactics .) The  fina l goal o f this  

research is that the  necessary e ffort to inte ractive ly generate  formal proofs  

is not more  complica te d tha n produc ing a text in, say, LxT gX. T his  goal has 

not been reached yet. See [11] for references, inc luding  those  about other 

approaches  to compute r  mathe matics . (These include  the  systems NuP r l, 

H OL, Otte r , Miza r  and the  Boyer- Moore  the ore m proven These systems 

do not satisfy the  de Br uijn  cr ite r ion, but some o f the m probably can be 

modifie d easily so tha t they do.)

Computations  in proofs. The  following is take n from [12]. There  are several 

computa tions  that are needed in proofs . T his  happe ns , for example , if we 

want to prove forma l vers ions  o f the  following intuitive  s tatements .

( 1) [\ ^45] = 6 where [ /•] is the  intege r par t o f a real;

(2) P r ime (61)

(3) (x +  1 )(jc+  1) =  jc2 +  2 jc+  1.

A way to handle  (1) is to use the Poincare  pr inc iple  extended to the  re duction 

re lation for  pr imitive  recurs ion on the  na tur a l numbe rs . Ope ra tions  like 

f ( n )  = [yfn ] are pr imitive  recursive and hence are la mbda  de finable  (us ing 

- »//,) by a te rm, say F ,  in the  la mbda  calculus  extended by an ope ra tion for 

pr imitive  recurs ion R  s atis fying

R A B ze r o  — A 

R A B (s ue  c A') —>f B x  (R A B x ).

l4T he  re ductions  may s ome time s  cause  the  proof- che cking to be o f an unacce ptable  time 

comple xity. We have that p is a p r o o f o f A iff t y p e ( / ; )  =/*$ A. Because  the  p r o o f is coming 

from a h um a n , the  necessary conve rs ion pa th is feas ible , but to find it a utoma t ic a lly  may 

be hard. T he  proble m probably  can be avoide d by e nha nc ing  proof- objects  with hints  for a 

re duc tion strategy.



T he n, wr iting r 0n =  ze r o , r P  =  s ucc  z e r o , . . . ,  as

is formally  derivable , it follows  from the  Poincaré pr inciple  tha t the  same is 

true  for

F r 45n =  r 6n

(with the  same proof- obje ct), since F r 45n r 6n. Us ually, a p r o o f ob li

ga tion arises tha t F  is ade quate ly cons tructe d. For  example , in this  case it 

could be

V/7 (F  n)2 < n <  ((F  n) +  l ) 2.

Such a p r o o f obliga tion needs to be formally  proved, but only once; afte r  

tha t re ductions  like

f r « n ^ 7 W n

can be used freely many times .

In  a s imila r  way, a s tate me nt like  (2) can be formula te d and proved by 

cons truc ting a la m bda  de fining te rm K ?Time for  the  characte r is tic func tion 

o f the predicate  P r ime . T his  te rm s hould satisfy the  following s tatement

V/7 [ (P r im e /7 7£Prirae n = r P )  &

(^Pr ime '2 =  r 0n V î Prirae n =  r l n)]-

which is the  p r o o f obliga tion.

State me nt (3) corre s ponds  to a s ymbolic  computa t ion. T his  c om puta t ion  

takes place  on the  s yntactic level o f formal te rms. There  is a func t ion g 

acting on syntactic express ions  s atis fying

g ((x  +  \ ){x +  1) ) =  x~ +  2x  +  1,

that we want to la m bda  define. While  x  + I : Nat (in conte xt x  : Nat), 

the express ion on a s yntactic level represented inte rnally  satisfies ‘x  +  1’ : 

te r m(Na t), for the  s uitably de fine d inductive  type  te r m (Na t). Afte r  in tr o 

ducing a re duction re la tion for  pr imitive  recurs ion over this  da ta  type, 

one can use te chnique s  s imila r  to those  o f §3 to la mbda  define  g, say by G, 

so that

G (x  +  l ) ( x  +  1) —*/ii +  2x  +  1 .

Now in orde r  to finis h the  p r o o f o f (3), one  needs to cons truct a self

inte rpre ter E, such tha t for  all express ions  p  : Nat one  has

E ‘p  —»/?, p

and prove the  p r o o f obliga t ion for  G which is

V/ : te r m (Na t) E(G t) = Et.
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It  follows  that

E ( G ‘- ( * + l ) ( * + l ) ’) =  E ' ( x + l ) ( x  + l)'\

now since

E ( G ‘(* +  i) ( *  +  i n

E ‘(x  +  l ) (x  +  1) ’

we have by the  Poincare  pr inciple

(x  +  l) (x  +  1) =  .Y" -b 2x  +  1.

The  use o f inductive  types like Nat and te r m (Na t) and the  cor re s ponding 

re duction re lations  for pr imitive  re duction was suggested by [102] and the 

extens ion o f the  Poincare  pr inc iple  for the  cor re s ponding re duction re lations  

o f pr imitive  recurs ion by [81]. Since  such re ductions  are not too hard to 

program, the  re s ulting pr oo f che cking s till satisfies the  de Br uijn  cr ite r ion.

In  [90] a program is presented tha t, for  every pr imitive  recursive predicate  

P,  cons tructs  the  la mbda  te rm K P de fining its characte r is tic func t ion and 

the p r o o f o f the  ade quacy o f K P. The  re sulting computa tions  for P = P r ime  

are not e fficient, because  a s tra ightforward (non- optimize d) tr ans la tion of 

pr imitive  recurs ion is given and the  nume rals  (represented numbe rs ) used 

are in a unary (rathe r  than /7- ary) re pre sentation; but the  me thod is promis 

ing. In  [41], a more  efficient ad hoc la m bda  de finit ion o f the  characte r is tic 

func tion o f P r ime  is given, us ing Fe rmat's  s mall the ore m about pr imality. 

Als o the  required p r o o f obliga tion has  been given.

Choice o f  fo rm al systems. There  are several pos s ibilitie s  for  the  choice  of 

a formal system to be used for  the  re pre s e ntation o f theories  in systems of 

compute r  mathe matics . Since , in cons truc ting proof- objects , coope ration 

be tween researchers is des irable , this  choice  has  to be made  w ith some care 

in orde r  to reach an inte rna tiona l s tandard. As  a firs t s tep towards  this, 

one  may res trict a tte ntion to systems o f type d la m bda  ca lculi, s ince they 

provide  a compac t re pre s e ntation and meet de Br uijn ’s cr ite r ion o f having a 

s imple  proof- checker. In  the ir  s imple s t form, these systems can be described 

in a unifo r m  way as pure  type  systems (P T S’s) o f diffe re nt s tre ngth, see [8]. 

The P T S’s s hould be extended by a de finit ion me chanis m to be come  DP T S’s 

(PTS's  with de finitions ), see [104]. The  DP T S s  are good for  describing 

several var iants  o f logic: many sorted predicate  logic in its  firs t, second or 

highe r  orde r  vers ions . As  s tated before , the  de fault  logic is intuit ionis t ic , but 

can be made  class ical by as s uming the  excluded middle .

The  next step cons is ts  o f a dding  inductive  types  (IT ’s) and the  corre s pond 

ing re duction re lations  in orde r  to capture  pr imitive  re curs ion. We suggest 

that the  r ight for ma l systems to be used for  compute r  mathe matics  are the

»p, E 4x~ +  2x  +  1

*ßi 2a* +  1

»ßi (x +  1 )(-Y +  1),
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type  systems (T S), cons is ting o f DP T S ’s extended by IT ’s, as described e.g., 

in [91]. T S’s come  with two parame te rs . The  firs t is the  specification A  o f 

the unde r lying PT S specifying its logical s trength, see [8]. T he  second is B 

the  colle ction o f inductive  types and the ir  respective notions  o f re duction 

spe cifying its ma the matica l and c omputa t iona l s trength. In  my opinion, 

a system for  proof- checking s hould be able  to verify proof- objects  writte n 

in all the  systems T S (A  B ) (for  a ‘re as onable ’ choice  s pe ctrum o f the  pa 

rame te rs ). If  some one  wants  to use it for  only a subclass  o f the  choice  o f 

parame te rs — dictate d by tha t pe rs on’s founda tiona l views— then the  proof-  

checker will do its work anyway. I believe tha t this  ge ne rality will no t  be too 

expensive in te rms  o f the  comple x ity o f the  che cking.1̂

Illative lambda calculus. Cur ry  and his  s tudents  continue d to look for  a 

way to represent func tions  and logic into  one  ade quate  formal system. Some  

o f the  propos e d systems turne d out to be incons is te nt, othe r  ones turne d out 

to be incomple te . Research in T S’s for the  re pre se ntation o f logic has  resulted 

in an unexpected side effect. By m a king  a modifica tion inspire d by the  T S’s, 

it became poss ible , afte r  all, to give an extens ion o f the  untype d la m bda  

calculus , calle d Illativ e  Lam bda Calculi (ILC; ‘illa tive ’ from the  La t in  word 

infer re which me ans  to infe r ), such tha t firs t orde r logic can be fa ithfully  and 

comple te ly e mbe dde d into  it. The  me thod can be extended for  an a rbitra ry  

P T S16, so tha t highe r  orde r  logic can be represented too.

The  re s ulting IL C ’s are in fact s imple r  than the  T S’s. But do ing  compute r  

mathe matics  via IL C  is probably no t  very practica l, as it is no t  clear how to 

do proof- checking for  these systems.

One  nice  thing  about the  ILC  is tha t the  old dre am o f Chur c h  and Cur ry  

came true , namely, there  is one  sys tem based on untype d la m bda  calculus  

(or  combina tor s ) on which logic, hence  mathe matics , can be based. More  

impor tantly  there  is a ‘c ombina tor y  tr a ns for ma tion’ be tween the  ordina ry  

inte rpre ta tion o f logic and its propos itions- as - types  inte rpre ta tion. Bas ically, 

the s itua tion is as follows . T he  inte rpre ta tion o f predicate  logic in IL C  is 

such tha t

1-iogic A  w ith  p r o o f p  Vr h LC [A ]r[p]

<=> ^~\ Lc[A]\ [p]

« = ►  h L C  [ A U p ]  =  K [A][[p] =  [A][,

'T t  may be argue d tha t  the  fo llowing lis t o f features  is so im p o r ta n t  tha t  they deserve to 

be present in T S ’s as pr imitive s  a nd  be imple me nte d: quo t ie n t  types  (see [61]), s ubtype s  (see

[4]) and type  inc lus ion (see [80]). T his  is an inte re s ting que s tion a nd  e xpe r ime nts  s hould  be 

done  to de te rmine  whe the r  this  is the  case or  whe the r  these can be tr ans la te d in to  the  more  

bas ic TS s in a sufficiently e fficient way (pos s ibly us ing s ome  macros  in  the  sys tem for  C M ).

"’For firs t orde r  logic, the  e mbe dding  is na tur a l, but  e .g., for  s e cond orde r  logic  this  is less 

so. It is an ope n que s t ion whe the r  there  exists a na tur a l re pre s e nta tion o f s e cond a nd  highe r  

orde r logic in ILC .
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where r ranges over untype d la mbda  terms. Now  if r =  I, the n this  trans 

la tion is the  propositions- as- types inte rpre ta tion; if, on the  othe r  hand, one 

has  r =  K, the n the  inte rpre ta tion becomes an is omorphic  vers ion o f first 

order logic de note d by [A][. See [13] and [39] for these results. A short in 

t roduc tion to ILC  (in its combina tory  vers ion) can be found in [6 , Appe ndix  

B].
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