
 Open access Journal Article DOI:10.2307/421013

The Impact of the Lambda Calculus in Logic and Computer Science
— Source link

Henk Barendregt

Published on: 01 Jun 1997 - The Bulletin of Symbolic Logic (Cambridge University Press)

Topics: Church encoding, Typed lambda calculus, System F, Natural deduction and Curry–Howard correspondence

Related papers:

 An Unsolvable Problem of Elementary Number Theory

 λ-definability and recursiveness

 A note on the Entscheidungsproblem

 Step by Recursive Step: Church's Analysis of Effective Calculability

 Origins of Recursive Function Theory

Share this paper:

View more about this paper here: https://typeset.io/papers/the-impact-of-the-lambda-calculus-in-logic-and-computer-
2z9kfde3rb

https://typeset.io/
https://www.doi.org/10.2307/421013
https://typeset.io/papers/the-impact-of-the-lambda-calculus-in-logic-and-computer-2z9kfde3rb
https://typeset.io/authors/henk-barendregt-5d2ooz47x9
https://typeset.io/journals/the-bulletin-of-symbolic-logic-2raledwp
https://typeset.io/topics/church-encoding-j4z1lrv8
https://typeset.io/topics/typed-lambda-calculus-3ke6e3hp
https://typeset.io/topics/system-f-3h9t9u3s
https://typeset.io/topics/natural-deduction-24dhfeba
https://typeset.io/topics/curry-howard-correspondence-19cgi3zf
https://typeset.io/papers/an-unsolvable-problem-of-elementary-number-theory-3nxt8n4lu7
https://typeset.io/papers/l-definability-and-recursiveness-20d6va5dyy
https://typeset.io/papers/a-note-on-the-entscheidungsproblem-3zl0mlk0r5
https://typeset.io/papers/step-by-recursive-step-church-s-analysis-of-effective-25kuhymtuh
https://typeset.io/papers/origins-of-recursive-function-theory-1y1kfgypz5
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/the-impact-of-the-lambda-calculus-in-logic-and-computer-2z9kfde3rb
https://twitter.com/intent/tweet?text=The%20Impact%20of%20the%20Lambda%20Calculus%20in%20Logic%20and%20Computer%20Science&url=https://typeset.io/papers/the-impact-of-the-lambda-calculus-in-logic-and-computer-2z9kfde3rb
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/the-impact-of-the-lambda-calculus-in-logic-and-computer-2z9kfde3rb
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/the-impact-of-the-lambda-calculus-in-logic-and-computer-2z9kfde3rb
https://typeset.io/papers/the-impact-of-the-lambda-calculus-in-logic-and-computer-2z9kfde3rb

PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/17274

Please be advised that this information was generated on 2022-05-31 and may be subject to

change.

http://hdl.handle.net/2066/17274

r

T h e B u l l e t i n o f S y m b o l i c L o g i c

Volume 3, Num be r 2, June 1997

T HE IMPACT OF T HE LAMBDA CALCULUS

IN LOGIC AN D COMP UT ER SCIENCE

H E N K B A R E N D R E G T

Abstract. On e o f the m o s t im p o r t a n t c o n t r ib u t io n s o f A. C h u r c h to logic is his in v e n t io n

o f the la m b d a c a lc ulus . We pre s e nt the ge ne s is o f this the o r y a n d its two m a jo r are as o f

a p p lic a t io n : the r e pr e s e nta t ion o f c o m p u t a t io n s a n d the r e s ult ing fu n c t io n a l p r o g r a m m in g

la ngua ge s o n the one h a n d a n d the r e pr e s e nta t ion o f r e a s o n ing a n d the r e s ult ing s ys te ms o f

c o m p u t e r m a th e m a t ic s o n the o the r h a n d .

Acknowledgment. The following persons provide d he lp in var ious ways.

Er ik Barendsen, Jon Barwise , Johan van Be nthe m, Andre as Blass , Olivie r

Danvy, Wil Dekke rs , Ma r ko van Eekelen, Sol Fe fe rman, Andrze j F ilins ki,

Twan Laan, Jan Kupe r , Pierre Lescanne , Hans Mo o ij, Robe r t Ma r on, Rinus

Plasmeije r , Ra ndy Pollack, Kr is toffe r Rose , Richa rd Shore, Ric k Sta tman

and Simon T homps on.

§1. Introduction. T his pape r is writte n to honor Chur c h’s great inve ntion:

the la m bda calculus . The best way to do this — I th ink— is to give a descrip

t ion o f its genesis (§2) and its impac t on two areas o f mathe matica l logic:

the repre sentation o f computa tions (§3) and o f reasoning (§4). In bo th cases

te chnological applica tions have emerged.

The very no tion o f computability was firs t formalize d in te rms o f de fin

ability on nume rals represented in the la mbda calculus . Chur c h’s Thesis,

s tating that this is the correct forma liza tion o f the notion o f computability ,

has for more than 60 years never seriously been challenged. One o f the recent

advances in la m bda calculus is that computa tions on othe r da ta types, like

trees and syntactic s tructures (e.g., for pars ing), can be done by representing

these data types directly as la mbda te rms and not via a coding as Gode l

numbe rs tha t are the n represented as numerals . This resulted in a much

more efficient repre sentation o f functions de fined on these da ta types.

Rece ived Se pte mbe r 12, 1996; revised Fe bruary 28, 1997.

Par t ia l s uppor t came fr om the Europe an H C M project Typed la mbda calculus (CHRXCT -

92- 0046), the Es pr it Wor king Gr o up Types (21900) and the Dutc h N W O project W IN S T

(612- 316- 607).

(c) 1997, As s oc ia t ion for Symbolic Logic

1079- 8986/97/0302- 0003/54.50

181

182 H E N K B ARE N DRE G T

The no t ion o f lambda de finability is conce ptually the basis for the dis ci

pline o f func tiona l programming. Recent progress in this area has been the

cons truction o f very efficient compile rs for func tiona l languages and the cap

tur ing o f inte ractive programs (like e.g., text editors) w ithin the func tiona l

programming paradigm.

As to the representation o f proofs , one o f Chur c h’s or igina l goals had been

to cons truct a formal system for the founda tions o f mathe matics by having a

system o f functions toge the r with a set o f logical notions . Whe n the re sulting

system turne d out to be incons is te nt, this program was abandone d by him.

Church then separated out the cons is tent subsys tem that is now called the

la mbda calculus and conce ntrated on c om puta b ility 1. It turne d out late r that

there are nevertheless cons is tent ways to represent logical notions in (typed

and untype d) la mbda calculus so that a founda tion for mathe matics is ob

taine d. Some o f the re sulting systems are used in recently deve loped systems

for compute r mathe matics , i.e., programs for the inte ractive de ve lopme nt

and automate d ve rification o f mathe matica l proofs .

We restrict a tte ntion to applica tions o f the la mbda calculus to the fields

o f mathe matica l logic and compute r science. Othe r applica tions like several

forms o f grammars s tudied in linguis tics (e.g., Montague (see [45]) and

cate gorial grammars (see [17])) are not treated in this paper.

We end this introduc tion by te lling what seems to be the s tory how the

le tter ‘A’ was chosen to denote func tion abs traction. In [100] Pr inc ipia

Mathe matica the no ta t ion for the func tion ƒ with ƒ (x) = 2x + 1 is 2x + 1.

Church or iginally inte nde d to use the no ta t ion x .2x + 1. The typesetter could

not pos ition the hat on top o f the x and placed it in front o f it, re sulting in

¿x .2x + 1.

T hen anothe r typesetter change d it into Xx .2x + 1.

Preliminaries. T his short subsection with pre liminar ie s is given for readers

not familia r with the la mbda calculus . For more informa tion see e.g., [6,

Chapte rs 2, 3 and 6], or [8, Sections 2 (untype d la mbda calculus) and 3

(s imply typed lambda calculus)] . Topics outs ide these chapters or sections

needed in this pape r will be explicitly me ntione d.

Untyped lambda calculus.

D e f i n i t i o n 1 .1 . The sets o f variables and te rms o f the la mbda calculus

are defined by the following abs tract syntax. (This means that no me ntion is

made o f necessary partentheses in orde r to warrant unique re adability; one

'Chur c h had been cons ide rably he lpe d by his s tudents in the early de ve lopme nt o f the

la mbda calculus , notably by Kleene , see [70] a nd [99]. Othe r impor ta n t influences came from

[36] and [37].

T HE IMP ACT OF T HE LAMB DA CALCU LU S IN LOGIC A N D C OMP U T E R S CIE NCE 183

thinks about trees ins te ad o f s trings be ing generated.)

v a r = a v a r '

te r m = v a r | te r m te r m | X v a r te rm.

The syntactic category var is for the colle ction o f variables . Example s o f

variables are a, a\ a". The letters x, y , z , . . . range over arbitrary variables .

The syntactic category te rm is for the colle ction o f lambda te rms , no ta t ion

A.

N o t a t i o n , (i) MN\ . . . N k s tands for {..{{MN\)N2) . . . N k).

(ii) Dually , Xx\ . . . x k .M s tands for {Xx\ {Xx2{ ... (A x ^M)) ..))) .

Example s o f la mbda te rms are x, x y , Xx .x y , z {Xx .x y), Xzy .z{Xx .x y) and

{Xzy.z {Xx .x y)) {w w)y x .

A te rm o f the form M N is called an application, with the inte nde d inte r

pre ta tion 'the func tion M applie d to the argume nt N ’; a te rm o f the form

Xx .M is called an abs traction, with the inte nde d inte rpre ta tion ‘the func tion

that assigns to x the value M\ In this inte rpre ta tion the no tion o f func tion is

to be take n inte ns ional, i.e., as an a lgor ithm. [103] succeeded to give lambda

calculus also an extens ional inte rpre ta tion by inte rpre ting la mbda te rms as

(continuous) functions on some topologica l space D having its space o f

continuous func tions [D —> D] as a re tract.

In a lambda te rm like Xx y .x z the variable x is said to occur as a bound

variable and z occurs as a free variable. In z{Xz.z) the variable occurs both

as free (the firs t occurrence) and as bound (the second occurrence) variable .

The s tatement M = N s tands for syntactic e quality modulo a re naming

o f the bound variables . E.g., Xx .x = Xy.y or x (Ax .x) = x (Xy .y), but

Xx .x y ^ Xy .yy because the free occurrence o f y in the LHS becomes bound

in the RHS.

The la mbda calculus is the s tudy o f the set A modulo so called /?-

conve r tibility which is the least congruence re lation =p ax iomatize d by

(X x .M)N =p M [x :=N].

Here M[x :=Af] s tands for the result o f s ubs tituting N for the free variables o f

M . In this no ta t ion the free variables o f N are no t allowed to become bound

afte r s ubs titution; for example {Xy.x)[x\ =yy] ^ {Xy .yy). By changing the

names o f bound variables one may obta in

{Xy .x)[x :=y y] = {Xz.x)[x :=y y] = Xz.yy .

The no t ion o f ^- conve r tibility is an equivalence re lation compatible with

the syntactic ope rations o f applica tion and abs traction. T hat is,

C[{Xx .M)N] = p C[M[x :=N]]

184 H E N K B ARE N DRE G T

holds for arbitrary contexts C[].

The no tion o f /^- reduction is the least compatible reflexive and trans itive

re lation ax iomatize d by

(A x .M)N - »/, M [x :=N] .

The difference with /^- conversion is that one has e.g., a =p (.A x .x)a, but

a - / » p (A x .x)a: there is a dire ction involved in re duction, while convers ion

is bidire c tional.

The reason for the nota tiona l conve ntion introduce d above can be unde r

s tood by re alizing that e.g.,

(X x y z .x (y z)y)X Y Z - */y X { Y Z)Y .

A te rm M e A is called in ft- normal form (/?- «ƒ) if M has no par t o f the

form (L x .M)N . Such par t is called a p- redex. A te rm M is said to have a

ft- normal form N if N is in ^- normal form and M =p N .

T h e o r e m 1.2 (Church- Rosse r the ore m). Let M ,N E A. Then

M = p N < = * 3 Z [M —»// Z & N - » p Z] .

It follows from the Church- Rosse r the ore m that a te rm can have at mos t

one ^- normal form. Inde e d, if M has M ' and M " as /?- nf’s, the n M ' —p M "

and so M ' - *p Z p«- M " . But since M ' and M " are in /?- nf, there are no

redexes to contract. Therefore M ' = Z = M ".

S imply typed lambda calculus. Simple types are defined by the abs tract

syntax

t v a r = a | t v a r '

ty p e = t v a r | ty p e —>■ ty pe .

We use a , /?, y , . . . for type variables and A, B, C , . . . for types. The set o f

types is de note d by T. A s tatement is o f the form M : A with M e A

and A e T; M is called the subject o f the s tatement. A basis is a set o f

s tatements with only variables as subjects . T, A , . . . range over bases. (For

more complicate d vers ions o f typed lambda calculus , a basis needs to be

ordered and then is called a contex t. T his is unfor tunate ly a diffe rent no tion

with the same name as the no tion ‘conte x t’ de fined earlier, but that is how it

is.)

D e f i n i t i o n 1.3. We say that from basis T we can prove M : A, no ta tion

T h M : A, if it can be derived from the following produc tion system.

(x : A) E r => Y \~ x \ A)

r b M :(A - + B),T \ - N :A => Y b (M N) : B\

r , x : A h M : B => Y b (A x .M) : (A —> B).

T HE IMP ACT OF T HE LAMB DA C ALCU LU S IN LOGIC A N D C OMP U T E R S CIE NCE 185

E x a m p le 1.4. (i) x : (A —> A —> B), y : A h x y y : B.

(ii) h Ax y .x y y : (A —> A —> B) —> (A —> B).

T his vers ion o f the s imply type d la m bda calculus has implic it types at

each abs traction Ax and is s tudie d by [37]. In [29] a var iant with explicit

types at abs tractions is introduce d. In this the ory the rule for introduc ing

abs tractions is

r , x \ A h M \ B h (A x :A .M) : (A —> B).

An essential difference between the two approaches is tha t in the explicit case

the unique type o f a te rm always can be found easily. In the implic it case

types are not unique . For the s imply typed la m bda calculus the types can

be recons tructed even in the implic it case, but for more complicate d systems

this is not the case.

Inductive types and recursion. Because inductive types are conve nie nt to

represent data , bo th in theories and in programs , some type systems allow

the ax iomatic intr oduc tion o f so- called inductive types. The following is a

s imple example .

n a t ::= ze r o | s ucc n a t .

Give n this de finition one has (ax iomatica lly) h z e ro : n a t , b s ucc : n a t —►

n a t and b s uc c (s uc c ze r o) : n a t . Inductive types come w ith na tura l

pr imitive recursive ope rators . For example , given a type A and as s uming

a : A , b : n a t —> A —> A , we may define F : n a t —* A as follows.

F ze r o — a\

F (s uc c x) —», b x (F x).

This F depends uniformly on a,b . To make this dependence explicit, we

write F = R a b and pos tulate the following.

R a b ze r o a ;

R a b (s uc c x) b x (R a b x) .

With this ope rator one can represent pr imitive recursive functions . Because

o f the presence o f highe r types one can even represent the Acke rmann func

t ion us ing R.

§2. Formalizing the notion ‘computable’. Church introduce d a formal the

ory, let us call it T , based on the no t ion o f func tion. This system was inte nde d

to be a founda tion o f mathe matics . Predicates were represented as charac

te ris tic functions . There were many axioms to deal with logical notions . The

system T turne d out to be incons is te nt, as was shown by Chur c h’s s tudents

[71] us ing a tour de force a rgume nt involving all the te chniques needed to

186 HE N K B ARE N DRE G T

prove Go d e l’s incomple teness the ore m2. T hen [28] isolated the (untype d)

lambda calculus from the system T by de le ting the par t de aling with logic
9 _

and keeping the essence o f the par t de aling with functions . This system was

proved cons is tent by [31], who showed the confluence o f ̂ - re duction. Curry,

who also wante d to build a founda tion for mathe matics based on functions

(in his case in the form o f combinators that do not me ntion free or bound

variables), found a paradox for a system with a s imilar a im as T , that is very

easy to derive, see e.g., [6, Appe ndix B3].

Church introduce d the notion o f la mbda de finability for functions ƒ :

N/v —> N in order to capture the no tion o f computa bility4. At firs t only

very e lementary functions like a ddit ion and mult ip lica tion were proved to

be lambda definable . Even for a func tion as s imple as the predecessor

(pre d(O) = 0, p r e d (/7 + 1) = n) lambda de finability re maine d an ope n

proble m for a while . From our present knowle dge it is te mpting to e xplain

this as follows . Although the lambda calculus was conce ived as an untype d

theory, typeable te rms are more intuitive . Now the functions a ddit ion and

mult iplica tion are definable by typeable te rms, while [101] and [108] have

characte r ized the lambda definable functions in the (s imply) typed lambda

calculus and the predecessor is not among the m. Be this as it may, Kle ene did

find a way to lambda define the predecessor func tion in the untype d lambda

calculus , by us ing an appropr ia te data type (pairs o f integers) as aux ilia ry de

vice. In [69], he described how he found the s olution while be ing anes the tized

by laughing gas (N 20) for the removal o f four wis dom teeth. Afte r Kleene

showed the s olution to his teacher, Church remarked s ome thing like: “ But

then all intuitive ly computable functions mus t be lambda definable . In fact,

lambda de finability mus t coincide with intuitive c omputa bility / ' Ma ny years

later— it was at the occas ion o f Robin Ga n d y ’s 70- th bir thday, I believe— I

heard Kleene say: “I would like to be able to say that, at the mome nt o f

discove ring how to la mbda define the predecessor func tion, I got the idea

o f Chur c h’s Thesis. But I did not, Church d id .” Late r, in [67], he gave

some impor ta nt evidence for Chur c h’s Thesis by s howing that the lambda

definable functions coincide with the /¿- recursive ones.

: Go d e l jus t ha d give n a series o f lectures in P r ince ton at which Kle e ne a nd Ros s e r were

pre sent.

^Cons is te nt the or ie s bas e d on func t ions for the fo unda t io ns o f ma the ma tic s have been

de s cr ibe d by [89] (s implifie d by [98]). With a s imila r a im are the the or ie s in [53] a nd [75].

In a ll these the or ie s the paradoxe s have been avoide d by having a pa r t ia l a pp lic a t io n . [43],

[44] a nd [16] a ls o dis cus s fo r m a l the or ie s w ith pa r t ia l a pp lic a t ion ; the y a im at cons truc tive

fo unda t io ns a nd come close to la m b d a ca lculus (pa r t ia l c o m b ina to r y a lge bras).

41 r e me mbe r a s tory s ta t ing tha t Chur c h s tar te d to wor k on the pr oble m o f t r y ing to s how

tha t the s equence o f Be tti numbe r s for a give n a lge bra ic var ie ty is c omputa ble . He d id no t

succeed in this e nte rpr is e , but came up w ith the pr opos a l to capture the n o t io n o f intuit ive

c omputa bility . I have no t been able to ve r ify this s tory. Re ade rs w ho can c onfir m or re fute it

are k ind ly re que s te d to in fo r m the a uthor .

T HE IMP ACT OF T HE LAMB DA C ALCU LU S IN LOGIC A N D C OMP U T E R S CIE NCE 187

Inde pe nde ntly o f Church, an alte rnative forma liza tion (in te rms o f (T ur

ing) machine s) o f the no tion ‘computable 1 was given in [113]. In [114] it was

proved that the notions o f la mbda de finability and T ur ing computability are

e quivale nt, thereby e nlarging the cre dibility o f Chur c h’s Thesis.

Chur c h’s Thesis is plaus ible but cannot be proved, nor even s tated in (clas

s ical) mathe matica l te rms , since it refers to the unde fine d no tion o f intuitive

computability . On the othe r hand, Chur c h’s Thesis can be re futed. If ever

a func tion will be found that is intuitive ly computable but (de mons trably)

not la m bda definable , the n Chur c h ’s Thesis is false. For more than 60 years

this has not happe ne d. This failure to find a counte re xample is given as

an argume nt in favor o f Chur c h’s Thesis. I th ink tha t it is fa ir to say that

mos t logicians do believe Chur c h’s Thesis. One may wonde r why doubting

Chur c h’s Thesis is not a comple te ly acade mic que s tion. This becomes clear

by re alizing that [106] had introduce d the class o f pr imitive recursive func

tions that for some time was thought to coincide with that o f the intuitive ly

computable ones. But the n [2] showed that there is a func tion that is in tu

itively computable but not pr imitive recursive. See also the pape r o f [46] for

argume nts in favor o f Chur c h’s Thesis and [73, 74] for ones cas ting some

doubts .

Chur c h’s Thesis is actually used for negative computability results: if a

func tion is shown to be not la mbda definable (or T ur ing computable) then,

by Chur c h’s Thesis , one can state that it is not intuitive ly computable . Church

and T ur ing gave examples o f unde cidable predicates , i.e., ones with non-

computable characte r is tic functions : the que s tions whe the r a la m bda te rm

has a nor ma l form (the nor m a liza t ion proble m) and whe the r a machine with

program p and input x te rminate s (the ha lt ing proble m), respectively. Both

conclude d tha t provability in ar ithme tic is undecidable . In fact, the unde c id

ability o f many mathe matica l proble ms has been es tablished by trans la ting

the ha lt ing proble m into a given proble m. A famous example is [82] result

that Hilbe r t s te nth proble m" is unsolvable .

F ina lly it is wor th me ntioning that in intuit ionis tic mathe matics , say in

He yting’s a r ithme tic H A, one can precisely formulate Chur c h’s Thesis as a

formal s tatement; this in contras t to the s itua tion in the class ical theory. This

s tatement is called CT and is

Vx [P (x) V - iP(x)] => 3eV x [[P(x) c/>e(x) = 1]

& [(t>e{x) = 0 = 1]],

where (¡>e(x) = y 3z[T {e , x, z) & U (z) = y] states that the e- th pa r tia l

recursive func tion with input x te rminate s with y as value (T is Kle e ne ’s

computa tion predicate and U is the value extracting func tion, see [68]). In

this form CT states tha t if P is a decidable predicate (i.e., the excluded middle

•“ Is it de cidable whe the r a given Dio pha n t ine e qua tion has a s o lut ion in the intege rs?”

188 H E N K B ARE N DRE G T

holds for P), then P has a recursive characte r is tic func tion. See [112] for

formal consequences , mode ls , counte r- mode ls and an extens ion o f CT.

§3. Computing. La m bda calculi are prototype programming languages .

As is the case with impe rative programming languages , where several ex

amples are untype d (machine code, assembler, Bas ic) and several are typed

(Algol- 68, Pascal), systems o f la mbda calculi exist in untype d and typed

versions. There are also othe r differences in the var ious la m bda calculi.

The lambda calculus introduce d in [28] is the untype d /ll- calculus in which

an abs traction A x .M is only allowed if x occurs among the free variables

o f M . Nowadays , “la mbda ca lculus ” refers to the >lK- calculus deve loped

unde r the influence o f Curry, in which A x .M is allowed even if x does not

occur in M . There are also typed vers ions o f the la m bda calculus . O f

these, the mos t e lementary are two vers ions o f the s imply typed la mbda

calculus A—>. One vers ion is due to [37] and has implic it types. Sim

ply typed la mbda calculus with explicit types is introduce d in [29] (this

system is inspired by the theory o f types o f [100] as s implifie d by [95]).

In order to make a dis tinc tion between the two vers ions o f s imply typed

lambda calculus , the vers ion with explicit types is sometimes called the

Church ve rs ion and the one with implic it types the Curry vers ion. The d if

ference is that in the Church vers ion one explicitly types a variable when it

is bound afte r a lambda , whereas in the Cur ry vers ion one does not. So

for example in Chur c h’s vers ion one has \A = (Ax : A .x) : A —> A and

s imilar ly \Â B : (A —> B) —> (A —> B), while in Cur r y ’s system one has

I = (Ax .x) : A —> A but also I : (A —> B) —> (A —> B) for the same te rm

I. See [8] for more informa tion about these and othe r typed la mbda calculi.

Par ticular ly inte re s ting are the second and highe r orde r calculi A2 and Aco

introduce d by [49] (unde r the names ‘system F ’ and ‘system Fco’) for a ppli

cations to p r oo f the ory and the calculi with de pe nde nt types introduce d by

[26] for p r oo f ve rification.

3.1. Computing on data types. In this subsection we e xplain how it is

poss ible to represent da ta types in a very direct manne r in the var ious lambda

calculi.

La m bda de finability was introduce d for functions on the set o f na tura l

numbe rs N. In the re sulting mathe matica l theory o f c omputa tion (recurs ion

theory) othe r domains o f input or output have been treated as second class

citizens by coding the m as na tura l numbers . In more practical compute r

science, a lgor ithms are also directly defined on othe r da ta types like trees or

lists.

Ins te ad o f coding such data types as numbe rs one can treat the m as first

class citizens by coding the m directly as la mbda te rms while preserving their

T HE IMP ACT OF T HE LAMB DA C ALCU LU S IN LOGIC A N D C OMP U T E R S CIE NCE 189

structure. Inde e d, la m bda calculus is js trong e nough to do this , as was e m

phas ize d in [21] and [23]. As a result, a much more efficient representation

o f a lgor ithms on these da ta types can be given, than when these types were

represented via numbers . This me thodology was perfected in two diffe rent

ways in [22] and [24] or [19]. The firs t pape r does the repre sentation in a way

tha t can be typed; the othe r papers in an essentially s tronger way, but one

tha t cannot be typed. We present the me thods o f these papers by tre ating

labe led trees as an example .

Le t the (inductive) data- type o f labe led trees be de fined by the following

abs tract syntax.

le a f n a t | t r e e + t r e e

n a t = 0 | s u c c n a t .

We see tha t a labe l can be e ither a bud (•) or a le a f w ith a numbe r writte n

on it. A typical such tree is (le a f 3) + ((le a f 5) + •) . This tree toge the r

w ith its mir ror image look as follows .

+

3 +

5

+

3

5

Ope ra tion on such trees can be de fined by recurs ion. For example the ac tion

o f mir ror ing can be de fined by

y'mir(#) = •>

/ m ir (le a f n) — le a f n\

y"mir (^l t l) = y 'mir (h) “I” / 'm ir (1̂)•

T hen one has for example that

ƒ m ir ((le a f 3) + ((le a f 5) + •)) = ((• + le a f 5) + le a f 3).

We will now show in two diffe rent ways how trees can be represented as

lambda te rms and how ope rations like / mir on these objects become la mbda

definable . The firs t me thod is from [22]. The re sulting da ta objects and

functions can be represented by la m bda te rms typeable in the second order

lambda calculus A2, see [51] or [8].

190 H E N K B ARE N DRE G T

D e f i n i t i o n 3.1. (i) Le t b , l,p be variables (used as mne monics for bud,

le a f and p lu s) . De fine 0 = : t r e e —> te rm, where te r m is the

colle ction o f untype d la mbda te rms , as follows .

</>(•) = b\

0 (le a f n) = / r /7n;

Here r /7n = k f x . f ' x is Chur c h’s nume ral representing n as la mbda te rm,

(ii) De fine y/\ : t r e e —> te r m as follows.

y/\ {t) = Xblp.(j)(t).

P r o p o s i t i o n 3.2. Define

B\ = Xblp.b\

L\ = k nb lp .ln ;

P i = Xt\ tiblp.p (t\ blp)(tiblp).

Then one has

(i) = B\ .

(ii) </ / i(le af n) = L\ r n n.

(iii) + t2) = Pi il/\ (tx)if/\ (t2).

P r o o f .

(i) Trivial.

(ii) We have

i/ / i(le a f/ î) = Aè / /7 .0 (le a f n)

= Xblp .lr n n

= (Xnblp.ln)r n n

= L ir /2_1.

(iii) Similarly, us ing that i//j (t)b lp = 0 (0 * “I

This propos ition states that the trees we cons ide red are representable as

la mbda te rms in such a way that the cons tructors (•, le a f and +) are lambda

definable . In fact, the lambda te rms involved can be typed in X2. A nice

conne ction between these te rms and proofs in second orde r logic is given in

[7 9] .

Now we will show that ite rative functions over these trees, like f mir, are

lambda definable .

P r o p o s i t i o n 3.3 (Ite ra tion). Given lambda terms Aq,A\ ,A2 there exists a

lambda term F such that {for variables n, t\ ,t2)

FB\ = Ao;

F(L\ n) = Ai n\

F{P\ t\ t2) = A 2(Ft l)(Ft2).

T HE IMP ACT OF T HE LAMB DA C ALCU LU S IN LOGIC A N D C OMP U T E R S CIE NCE 191

P r o o f . Take F = Aw.wAqA\ A2. H

As is well known, pr imitive recursive functions can be obta ine d from

ite rative functions .

There is a way o f coding a finite sequence o f la mbda te rms M\ ,. . . , M k as

one la m bda te rm

(M i, . . . , M k) = Az.zM\ . . . M k

such that the compone nts can be recovered. Inde e d, take

Ul. = Ax\ . . . x k .x j,

then

C o r o l l a r y 3.4 (Pr imitive re curs ion). Given lambda terms C 0, C \ , C2 there

exists ci lambda term H such that

H B , = C0;

H{L\ n) = C\ n\

H(P\ t\ t2) = C2t xt2(H t x){Ht2).

P r o o f . De fine the aux iliary func tion F = At.(t, H t). T hen by the pr opo

s ition F can be de fined us ing ite ration. Inde e d,

F { P xt xt2) = (P t {t2,H (P t xt2)) = A 2(Ft l){Ft2),

with

A 2 = / li,/ 2. (P (/ 1/721)(r2^) , C 2(/ , ^) (/ 2^) (/ , t / f) (i2C/f)).

Now take H = At.FtU}. [This was the tr ick Kle ene found at the dentis t.] H

Now we will present the me thod o f [24] and [19] to represent da ta types.

Aga in we cons ide r the example o f labe led trees.

D e f i n i t i o n 3.5. De fine y/2 : t r e e —» te r m as follows.

y/2{*) = Ae.eU\ e\

i//2(le a f n) = Ae.eUjne\

Vi(t\ + t2) = Ae.eU^y/2(ti)i//2(t2)e.

T hen the basic cons tructors for labeled trees are definable by

B 2 = Ae.eUje]
m

L i = XnXe.eU^ne\

P2 = Xt\ t2Xe.eU]t\ t2e.

P r o p o s i t i o n 3.6. Given lambda terms A 0, A \ , A 2 there exists a term F such

that

FB 2 = A 0F ;

F { L 2n) = A\ nF]

F (P2 x y) = A 2xyF.

P r o o f . Try F = ((Xq, X \ , X 2)), the 1- tuple o f a triple . T he n we mus t have

FB 2 = B2(X 0,X\ ,X2)

= U\ X*XxX 2(X o ,X u X 2)

= X 0(X 0, X UX 2)

= A q ((X o, X u X 2))

= A 0F,

provide d X 0 = Ax .A0(x). Similar ly one can find X l} X 2. H

This second representation is essentially untype able , at least in typed

lambda calculi in which all typeable te rms are norma lizing . T his follows

from the following consequence o f a result s imilar to P ropos ition 3.6. Le t

K = Xx y .x , K* = Xx y .y represent true and false respectively. T hen wr iting

i f b o o l t h e n X e ls e Y f i

for

b o o l X Y,

the usual behavior o f the conditiona l is obta ine d. Now if we represent the

na tura l numbe rs as a data type in the style o f the second representation,

we imme diate ly get tha t the la mbda definable functions are closed unde r

minima liza tion. Inde e d, let

x (x) = ny \ g(x ,y) = 0],

and suppose that g is lambda defined by G. T he n there exists a la m bda te rm

H such that

Hx y = i f ze r o .) (Gx y) t h e n y e ls e (H x (s ucc j>)) f i .

Inde e d, we can write this as Hx = A x H and apply P ropos ition 3.6, but now

formulate d for the inductive ly defined type num. T hen F = Xx .Hx r 0~] does

represent / . Here s ucc represents the successor func tion and ze r o ? a test

192 H E N K B ARE N DRE GT

T HE IMP ACT OF T HE LAMB DA C ALCU LU S IN LOGIC A N D C OMP U T E R S CIE NCE 193

for zero; both are la mbda definable , again by the ana logon to Propos ition

3.6. Since m inim a liza t ion anables us to define all pa r tia l recursive functions ,

the te rms involve d cannot be typed in a nor ma lizing system.

Self- interpretation. A la mbda te rm M can be represented inte rnally as a

la m bda te rm r M~]. T his represe ntation s hould be such that, for example ,

one has la mbda te rms P i, P 2 s atis fying PfX\ X 2n = X,- . [67] already showed

that there is a (‘me ta- circular’) self- interpreter E such that, for closed te rms

M one has Er M n = M . The fact tha t da ta types can be represented directly

in the la mbda calculus was exploited by [85] to find a s imple r representation

for r M n and E.

The difficulty o f representing la mbda te rms inte rnally is tha t they do not

form a firs t orde r algebraic da ta type due to the b inding effect o f the lambda .

[85] solved this proble m as follows . Cons ide r the data type with s ignature

c o n s t , a pp , abs

where c o n s t and abs are unary cons tructors and app a binary cons tructor .

Le t c o n s t , app and abs be a representation o f these in la m bda calculus

(according to De finit ion 3.5).

Pr oposit ion 3.7 ([85]). Define

r x n = c o n s t x;

r P£>n = app r P~ir jg~l;

r /bc.Pn = a b s U x .r P n).

Then there exists a self- interpreter E such that fo r all lambda terms M [possibly

containing variables) one has

Er M n = M.

Pr oof . By an ana logon to P ropos ition 3.6 there exists a la mbda te rm E

such that

E(c o n s t x) — x ;

E(app p q) = (E/>)(Eg);

E(abs z) = Xx .E(zx).

T he n by an easy induc tion one can show tha t Er M~] = M for all te rms M A

Following the cons truction o f P ropos ition 3.6 in [24], this te rm E is given

the following very s imple form:

E = ((K, S, C)),

where S = A x y z .x z (y z) and C = A x y z .x (zy). This is a good improve me nt

over [67] or [6]. See also [7], [9] and [10] for more about self- interpreters.

194 H E N K B ARE N DRE GT

3.2. Functional programming. In this subsection a short his tory is pre

sented o f how lambda calculi (untype d and typed) inspired (e ither con

sciously or uncons cious ly) the cre ation o f func tiona l programming.

Imperative versus functional programming. While Church had capture d the

no tion o f computability via the lambda calculus , T ur ing had done the same

via his mode l o f c omputa tion based on T ur ing machines . Whe n in the second

world war computa tiona l power was needed for milita ry purposes , the first

e lectronic devices were built bas ically as T ur ing machine s with r andom access

memory. Statements in the ins truc tion set for these machine s , like x := x + 1,

are directly re lated to the ins tructions o f a T ur ing machine . Such s tatements

are much more easily inte rpre ted by hardware than the act o f s ubs titution

fundame nta l to the lambda calculus . In the be ginning, the hardware o f the

early compute rs was modifie d each time a diffe rent computa tiona l jo b had

to be done . T hen von Ne uma nn, who mus t have know n6 T ur ing’s concept

o f a unive rsal T uring machine , suggested building one machine that could

be programme d to do all poss ible computa tiona l jobs us ing software. In

the re sulting compute r re volution, a lmos t all machine s are based on this

so called von Ne um a nn compute r , cons is ting o f a programmable unive rsal

machine . It would have been more appropr ia te to call it the T ur ing compute r .

The mode l o f computability introduce d by Church (lambda de finability)—

a lthough e quivale nt to that o f T ur ing— was harde r to inte rpre t in hardware .

Therefore the emergence o f the paradigm o f func tiona l programming, that

is based essentially on lambda de finability, took much more time. Because

func tiona l programs are closer to the specification o f c omputa tiona l pr ob

lems than impe rative ones, this pa radigm is more convenie nt than the tr a

d it iona l imperative one. Anothe r impor ta nt feature o f func tiona l programs

is that paralle lis m is much more natura lly expressed in the m, than in im

perative programs . See [117] and [64] for some evidence for the elegance

o f the func tiona l paradigm. The imple me nta tion difficultie s for func tiona l

programming have to do with me mory usage, compila t ion time and ac

tua l run time o f func tiona l programs . In the conte mporary state o f the

art o f imple me nting func tiona l languages , these proble ms have been solved

satis factorily.7

Classes o f func tional languages. Le t us describe some languages that have

been— and in some cases s till are— influe ntia l in the e xpans ion o f func tiona l

programming. These languages come in several classes.

(,C h u r c h h a d invite d T ur ing to the U n it e d State s in the m id 1930’s. Aft e r his fir s t ye a r it

was vo n N e u m a n n w ho invite d T ur in g to s tay for a s e cond year. See [60] .

Lo g ic a l p r o g r a m m in g la ngua ge s a ls o have the m e n t io n e d a dva nta ge s . But so fa r pure

logica l la ngua ge s o f in d us t r ia l q u a lit y have n o t be e n de ve lope d. (P r o lo g is n o t pur e a nd

/ - P r o log , see [87] , a lt h o u g h pur e , is pr e s e nt ly a p r o to ty pe .)

T HE IMP ACT OF T HE LAMB DA C ALCU LU S IN LOGIC A N D C OMP U T E R S CIE NCE 195

La m bda calculus by itse lf is not yet a comple te mode l o f computa tion,

since an express ion M may be evaluated by diffe rent so- called re duction

strategies that indicate which sub- term o f M is evaluated first (see [6, Chapte r

12]). By the Church- Rosse r the ore m this order o f e valuation is not impor ta nt

for the final result: the nor ma l form o f a la mbda te rm is unique if it exists.

But the order o f e valuation makes a difference for efficiency (both time and

space) and also for the que s tion whe the r or not a norma l form is obta ine d

at all.

So called 'eager’ func tiona l languages have a re duction s trategy that eval

uates an express ion like FA by first e valuating F and A (in no par ticula r

order) to, say, F ' = Aa. • • • a • • • a • • • and A' and then contrac ting F'A '

to . . . A' . . . A' — This e valuation s trategy has de finite advantages for the

efficiency o f the imple me nta tion. The ma in reason for this is that if A is large,

but its nor ma l form A' is small, the n it is advantage ous both for time and

space efficiency to pe rform the re duction in this order. Inde e d, e valuating

FA directly to

• • • • • •

takes more space and if A is now evaluated twice, it also takes more time.

Eager e valuation, however, is not a nor ma lizing re duction s trategy in the

sense o f [6 , Chapte r 12]. For example , if F = Ax .I and A does not have a

nor ma l form, then e valuating FA eagerly diverges, while

FA = (Ax.\)A — I,

if it is evaluated le ftmos t oute rmos t (roughly ‘from left to r ight '). This kind

o f re duction is called la zy e valuation'.

It turns out that eager languages are, nevertheless, computa tiona lly c om

plete, as we will soon see. The imple me nta tion o f these languages was the

first mile s tone in the de ve lopme nt o f func tiona l programming. The second

mile s tone cons is ted o f the efficient imple me nta tion o f lazy languages .

In a ddit ion to the dis tinc tion between eager and lazy func tiona l languages

there is anothe r one o f e qual importance . This is the difference between un

typed and typed languages . The difference comes directly from the difference

between the untype d lambda calculus and the various typed la mbda calculi,

see [8]. T yping is use ful, because many programming bugs (errors) result

in a typing error that can be detected automatica lly pr ior to r unning one ’s

program. On the othe r hand, typing is not too cumbe rs ome , since in many

cases the types need not be given explicitly. The reason for this is tha t, by the

type re cons truction a lgor ithm o f [38] and [59] (late r rediscovered by [84]),

one can automatica lly find the type (in a ce rtain context) o f an untype d but

typeable expression. Therefore , the typed vers ions o f func tiona l program

ming languages are ofte n based on the implic itly typed la mbda calculi a la

196 H E N K B ARE N DRE G T

Curry. Types also play an impor ta nt role in ma king imple me nta tions o f lazy

languages more efficient, see below.

Besides the func tiona l languages that will be treated below, the languages

AP L and FP have been impor ta nt his torically. The language AP L, intr o

duced in [65], has been, and still is, re latively widespread. The language FP

was des igned by Backus , who gave, in his lecture ([5]) at the occas ion o f

receiving his T ur ing award (for his work on impe rative languages) a s trong

and influe ntia l plea for the use o f func tiona l languages . Both AP L and FP

programs cons is t o f a set o f bas ic functions that can be combine d to define

ope rations on data s tructures . The language AP L has, for example , many

functions for matr ix ope rations . In both languages compos ition is the only

way to obta in new functions and, therefore, they are less comple te than a

full func tiona l language in which user de fined functions can be created. As

a consequence , these two languages are essentially limite d in the ir ease o f

expressing algor ithms .

Eager functional languages. Le t us first give the promis e d argume nt that

eager func tiona l languages are computa tiona lly comple te . Every computable

(recursive) func tion is lambda definable in the Al- calculus (see [30] or [6 ,

T heorem 9.2.16]). In the / l- calculus a te rm having a norma l form is s trongly

norma lizing (see [31] or [6 , T he ore m 9.1.5]). Therefore an eager e valuation

s trategy will find the required nor ma l form.

The first func tiona l language , LISP, was des igned and imple me nte d by

[83]. The e valuation o f expressions in this language is eager. LIS P had (and

still has) cons ide rable impact on the art o f programming. Since it has a

good programming e nvironme nt, many s killful programme rs were attracted

to it and produce d inte re s ting programs (so called ‘ar tific ial inte llige nce ’).

LISP is not a pure func tiona l language for several reasons. As s ignme nt

is poss ible in it; there is a confus ion between local and globa l variable s8

(‘dynamic b ind ing ’; some LISP users even like it); LISP uses the ‘Quo te ’,

where (Quote M) is like r M n. In later vers ions o f LISP, Co m m o n LISP

(see [110]) and Scheme (see [32]), dynamic b inding is no longe r present. The

‘Quote ' ope rator , however, is s till present in these languages . Since \ a = a

but r \ a~] ^ r a n adding ‘Quo te 1 to the lambda calculus is incons is te nt. As

one may not reduce in LISP within the scope o f a ‘Quote ’, however, having

a ‘Quo te ’ in LIP S is not incons is te nt. 'Quo te ’ is not an available func tion

but only a cons tructor . T hat is, if M is a well- formed expression, so is

sT his me ans s ubs titut ion o f an express ion with a free var iable into a context in which that

var iable becomes bound. T he or igina tors o f LIS P were in good company: in [58] the same

mis take was made .

T HE IMP ACT OF T HE LAMB DA C ALCU LU S IN LOGIC A N D C OMP U T E R S CIE NCE 197

(Quote M) 9. Also, LISP has a pr imitive fixed- point ope rator ‘LAB E L’

(imple me nte d as a cycle) tha t is also found in late r func tiona l languages .

In the me antime , [77] deve loped an abs tract machine — the S E CD m a

chine — for the imple me nta tion o f re duction. Ma ny imple me nta tions o f

eager func tiona l languages , inc luding some vers ions o f LISP, have used,

or are s till us ing, this computa tiona l mode l. (The S E CD machine also

can be mode lle d for lazy func tiona l languages , see [57].) Anothe r way o f

imple me nting func tiona l languages is based on the so called CPS- trans lation.

This was introduce d in [96] and used in a compile rs by [109] and [3]. See

also [93] and [97].

The first im por ta nt typed func tiona l language with an eager e valuation

s trategy is Standard ML, see [84]. This language is based on the Cur ry

var iant o f >1—►, the s imply typed la mbda calculus with implic it typing, see

[8]. Express ions are type- free, but are only legal if a type can be derived for

the m. By the a lgor ithm o f Cur ry and Hindle y cited above, it is decidable

whe the r an expression does have a type and, moreover, its mos t general type

can be compute d. Milne r adde d two features to X—>. The first is the a ddit ion

o f new primitives . One has the fixed- point combina tor Y as pr imitive , with

essentially all types o f the form (A —> A) —> A, with A = (B —► C), ass igned

to it. Inde e d, if ƒ : A —> A, the n Y ƒ is o f type A so that both sides o f

/ (V /) = V /

have type A. Pr imitive s for bas ic ar ithme tic ope rations are also adde d. With

these additions , M L becomes a unive rsal programming language , while X—>

is not (since all its te rms are nor ma lizing). The second a ddit ion to M L is

the ‘le t’ cons truction

(1) le t x be N in M e nd .

This language cons truct has as its inte nde d inte rpre tation

(2) M [x := TV],

so that one may th ink tha t the let cons truc tion is not necessary. If, however,

N is large, the n this trans la tion o f (1) becomes space inefficient. Anothe r

9Us ing ‘Quo te ’ as a func t ion would violate the Church- Rosse r property. An e xample is

{Xx.x(\ a)) Quote

tha t the n would reduce to bo th

Quote (Ia) —► r lan

and to

(Xx.xa) Quote —► Quote a —> ran

and there is no c ommon re duct for these two express ions r \ an and r a n.

198 H E N K B A R E N D R E G T

inte rpre ta tion o f (1) is

(3) • (X x .M)N .

Blit this inte rpre ta tion has its limita tions , as N has to be given one fixed type,

whereas in (2) the var ious occurrences o f N may have diffe rent types. The

expression (1) is a way to make use o f both the space re duction (‘s har ing’)

o f the expression (3) and the ‘implic it polymorphis m' in which N can have

more than one type o f (2). An example o f the let express ion is

le t id be Xx .x in A f x . (id ƒ) (id x) e nd .

This is typeable by

(A - > A) - > (A - > A),

if the second occurrence o f id gets type (A —> A) —> (A —> A) and the third

(A - ► A).

Because o f its re latively efficient imple me nta tion and the pos s ibility o f type

che cking at compile time (for finding errors), the language M L has evolved

into impor tant indus tr ia l var iants (like Standard M L o f Ne w Jersey).

Although not wide ly used in indus try, a more efficient imple me nta tion o f

M L is based on the abs tract machine C A M L, see [34]. C A M L was inspired

by the categorical founda tions o f the la mbda calculus , see [107], [72] and

[35]. All o f these papers have been inspired by the work on de nota tiona l

semantics o f Scott, see [103] and [54].

Lazy func tional languages. Although all computable functions can be rep

resented in an eager func tiona l programming language , not all re ductions in

the full /K- calculus can be pe rforme d us ing eager e valuation. We already

saw that if F = Ax A and A does not have a norma l form, the n eager e valua

t ion o f FA does not te rminate , while this te rm does have a nor ma l form. In

la zy ' func tiona l programming languages the re duction o f FA to I is poss i

ble, because the re duction s trategy for these languages is essentially le ftmos t

oute rmos t re duction which is norma lizing .

One o f the advantages o f having lazy e valuation is that one can work with

'infinite ' objects . For example there is a legal expression for the pote ntia lly

infinite lists o f primes

[2 ,3 ,5 ,7 ,1 1 ,1 3 ,1 7 ,...] ,

o f which one can take the /7- th proje ction in order to get the H- th prime . See

[117] and [64] for inte re s ting uses o f the lazy programming style.

Above we e xplained why eager e valuation can be imple me nte d more effi

ciently than lazy e valuation: copying large expressions is expensive because

o f space and time costs. In [119] the idea o f graph reduction was introduce d

in order to also do lazy e valuation efficiently. In this mode l o f computa tion,

an expression like (Xx . • • • x • • • x • • •)A does not reduce to • • • A • • • A • •

but to • • • @ @ ; @ : A , where the firs t two occurrences o f @ are

pointe rs re fe rring to the A be hind the third occurrence. In this way la mbda

expressions become dags (directed acyclic graphs) .10

Based on the idea o f graph re duction, us ing care fully chosen combinators

as pr imitive s , the expe rimental language SASL, see [115] and [116], was one

o f the first imple me nte d lazy func tiona l languages . The no t ion o f graph

re duction was extended by T urne r by imple me nting the fixed- point combi-

na tor (one o f the pr imitive s) as a cyclic graph. (Cyclic graphs were already

described in [119] but were not used there.) Like LISP, the language SASL

is untype d. It is fa ir to say tha t— unlike programs writte n in the eager la n

guages such as LISP and Standard M L — the execution o f SASL programs

was orders o f magnitude slower than tha t o f impe rative programs in spite o f

the use o f graph re duction.

In the 1980s typed vers ions o f lazy func tiona l languages did emerge, as

well as a cons ide rable speed- up o f the ir pe rformance . A lazy vers ion o f ML,

called Lazy M L (LM L), was imple me nte d efficiently by a group at Chalme rs

Unive rs ity, see [66]. As unde r lying computa tiona l mode l they used the

so called G- machine , that avoids build ing graphs whenever efficient. For

example , if an express ion is pure ly ar ithme tica l (this can be seen from type

infor ma tion), then the e valuation can be done more efficiently than by us ing

graphs . Anothe r imple me nta tion feature o f the L M L is the compila t ion into

supe r- combinators , see [63], tha t do not form a fixed set, but are created on

de mand de pe nding on the express ion to be evaluated. Eme rging from SASL,

the firs t fully deve loped typed lazy func tiona l language called Mir a nda ™ was

deve loped by [118]. Special me ntion s hould be made o f its elegance and its

func tiona l I/ O inte rface (see be low).

Notably, the ideas in the G- machine made lazy func tiona l programming

much more efficient. In the late 1980s very efficient imple me nta tions o f

two typed lazy func tiona l languages appeared that we will discuss below:

Cle an, see [40], and Has ke ll, see [92], [62]. These languages , with the ir

imple me nta tions , execute func tiona l programs in a way tha t is comparable

to the speed o f conte mporary impe rative languages such as C.

Interactive func tional languages. The vers ions o f func tiona l programming

that we have cons ide red so far could be called ‘autis tic ’. A program consis ts

o f an express ion M , its execution o f the re duction o f M and its output o f

the nor ma l form M nf (if it exists). Altho ug h this is quite use ful for many

T HE IMP ACT OF T HE LAMB DA C ALCU LU S IN LOGIC A N D C OMP U T E R S CIE NCE 199

"'Ro b in Ga nd y me ntione d at a me e ting for the ce le bration o f his seventie th bir thday that

already in the early 1950s T ur ing had told him tha t he wante d to evaluate la m bda te rms us ing

graphs . In T ur ing’s de s cr iption o f the e va lua tion me chanis m he made the c o m m o n ove rs ight

o f confus ing free a nd bound variables . Ga nd y pointe d this out to T ur ing, who the n said:

“Ah, this re mark is wor th 100 pounds a m o n th !”

2 0 0 H E N K B ARE N DRE G T

purposes , no inte raction with the outs ide wor ld is made . Even jus t de aling

with input and output (I/ O) requires inte raction.

We need the concept o f a ‘process’ as oppos e d to a func tion. Intuitive ly a

process is s ome thing tha t (in general) is geared towards continua tion while a

func tion is geared towards te rmina tion. Processes have an input channe l on

which an input s tream (a pote ntia lly infinite sequence o f tokens) is coming

in and an output channe l on which an output s tream is coming out. A

typical process is the control o f a traffic light system: it is geared towards

continua tion, there is an input s tream (coming from the pus hbuttons for

pedes tr ians) and an output s tream (re gulating the traffic lights). Text e diting

is also a process. In fact, even the mos t s imple form o f I/ O is already a

process.

A pr imitive way to deal w ith I/ O in a func tiona l language is used in some

vers ions o f ML. There is an input s tream and an output s tream. Suppose

one wants to pe rform the following process P:

read the first two numbe rs x, y o f the input s tream;

put the ir difference x - y onto the output s tream.

T he n one can write in M L the following program

w r it e (r e a d — r e a d).

This is not very satis factory, since it relies on a fixed orde r o f e va luation o f

the express ion ‘r e a d — r e a d ’.

A more satis factory way consis ts o f so- called continua tions , see [52]. To

the la mbda calculus one adds pr imitive s Re ad, Wr it e and Stop . The ope r

a t iona l semantics o f an express ion is now as follows:

M => M hnf, where M hnf is the he ad nor m a l fo r m 11 o f M\

Re ad M => M a, where a is take n off the input s tream;

Wr it e b M => M, and b is put into the output s tream;

Stop => i.e., do nothing.

Now the process P above can be writte n as

P = Re ad (Ax. Re ad (Ay. Wr it e (x — y) S to p)).

If, ins tead, one wants a process Q tha t continuous ly takes two e lements o f

the input s tream and put the difference on the output s tream, the n one can

write as a program the following extended la m bda te rm

Q = Re ad (Ax. Re ad (Ay. W r it e (x — y) Q)),

11A he ad n f in la m bda calculus is o f the form Xx.yM\ . . . M„, with the M\ . . . M„ pos s ibly

no t in nf.

T HE IMP ACT OF T HE LAMB DA C ALCU LU S IN LOGIC A N D C OMP U T E R S CIE NCE 201

which can be found us ing the fixed- point combinator .

Now, every inte ractive program can be writte n in this way, provide d that

special commands writte n on the output s tream are inte rpre ted. For example

one can imagine tha t wr iting

‘e c h o ’ 7 or i p r i n t 3 1

on the output channe l will put 7 on the screen or pr int it out respectively.

The use o f continua tions is e quivale nt to that o f monads in programming

languages like Has ke ll, as s hown in [52]. (The present vers ion o f Has ke ll

I/ O is more refined than this ; we will not cons ide r this issue.)

If A qj A i, A 2} . . . is an effective sequence o f te rms (i.e., A n — F r n n for

some F) , the n this infinite lis t can be represented as a la mbda te rm

Mo, A i , A 2j . . .] — [A0, \ A i, \ A2? . . .]]]

= H r 0n,

where [M, N] = X z .z M N and

H r /7n - [F r n~], H r n + P] .

T his H can be de fined us ing the fixed- point combinator .

Now the ope rations Re a d , W r it e and S to p can be made explicitly la m bda

de finable if we use

In [^o? A i , A 2 > . . .]j

Out = [. . . , B2, B\ , B0],

where In is a repre sentation o f the pote ntia lly infinite input s tream given

by ‘the wor ld' (i.e ., the user and the exte rnal ope rating system) and Out

o f the pote ntia lly infinite output s tream given by the machine r unning the

inte ractive func tiona l language . Every inte ractive program M s hould be

acting on [In, Out] as argume nt. So M in the continua tion language becomes

M [In, Out] .

The following de finition the n matches the ope ra tiona l semantics .

{
Re ad F [[A, In '] , Out] = F A [In ', Out] ;

W r it e F B [In, Out] = F [In, [B, Out]]

S to p [In, Out] = [In, Out] .

In this way [In, Out] acts as a dynamic state. An ope rating system s hould

take care tha t the actions on [In, Out] are ac tually pe rforme d to the I/ O

channe ls . Als o we have to take care tha t s tatements like f e c h o , 7 are be ing

inte rpre ted. It is easy to find pure la m bda te rms Re ad, W r it e and S to p

2 0 2 H E N K B ARE N DRE GT

satis fying (1). This seems to be a good imple me nta tion o f the continua tions

and therefore a good way to deal with inte ractive programs .

There is, however,*a serious proble m. De fine

M = Xp .[Wr ite b\ S to p p, Wr it e bi S to p p\ .

Now cons ide r the e valuation

M [In, Out] = [Write b\ S to p [In, Out] , Wr it e b2 S to p [In, Out]]

= [[In, [¿i, Out]] , [In, [¿2, Out]] .

Now what will happe n to the actual output channe l: s hould b\ be adde d to

it, or pe rhaps ¿ 2?

The dile mma is caused by the duplica tion o f the I/ O channe ls [In, Out] .

One s olution is not to explicitly me ntion the I/ O channe ls , as in the lambda

calculus with continuations . This is essentially what happe ns in the me thod

o f monads in the inte ractive func tiona l programming language Has ke ll. If

one writes s ome thing like

Main ƒ 1 o • • • o f n

the inte nde d inte rpre ta tion is (ƒ 1 o • • • o / „) [In , Out] .

The s olution put forward in the func tiona l language Cle an is to use a typing

system that guarantees that the I/ O channe ls are never duplicate d. For this

purpose a so- called ‘unique ne s s ’ typing system is des igned, see [14, 15], that

is related to line ar logic (see [50]). Once this is done , one can improve the way

in which parts o f the world are used explicitly. A representation o f all aspects

o f the world can be incorporate d in lambda calculus . Ins te ad o f having jus t

[In, Out] , the world can now be extended to include (a repre sentation of)

the screen, the pr inte r , the mouse , the keyboard and whatever gadgets one

would like to add to the compute r pe riphe ry (e.g., othe r compute rs to form

a ne twork). So inte rpre ting

‘p r i n t J 7

now becomes s imply s ome thing like

p u t 7 p r in t e r .

This has the advantage that if one wants to echo a 7 and to pr int a 3, but

the order in which this happe ns is immate r ia l, the n one is not forced to make

an over- specification, like sending first ‘p r i n t ’ 3 and then 'e c h o ' 7 to the

output channe l:

[. . . , ‘ e c h o ; 7, ' p r i n t 3 3].

By representing ins ide the lambda calculus with uniqueness types as many

gadgets o f the world as one would like, one can write s ome thing like

F [ke yboa rd, mouse , s c r e e n , p r in t e r]

T HE IMP ACT OF T HE LAMB DA CALCU LU S IN LOGIC A N D C OMP U T E R S CIENCE 203

= [ke yboard, mouse, p u t 3 s c r e e n, p u t 7 p r in t e r] .

What happe ns first depends on the ope rating system and parame te rs , that

we do not know (for example on how long the pr inting queue is). But we are

not interested in this . The system satisfies the Church- Rosse r the orem and

the eventual result (7 is pr inte d and 3 is echoed) is unambiguous . This makes

Cle an somewhat more na tura l than Has ke ll (also in its present vers ion) and

de finite ly more appropr ia te for an imple me nta tion on paralle l hardware .

Both Cle an and Has ke ll are state o f the art func tiona l programming la n

guages produc ing efficient code; as to compiling time Cle an be longs to the

class o f fast compile rs (inc luding those for imperative languages). Many

serious applica tions are writte n in these languages . The inte ractive aspect

o f both languages is made poss ible by lazy e valuation and the use o f highe r

type 12 functions , two themes that are at the core o f the lambda calculus (AK,

that is). It is to be expected that they will have a s ignificant impact on the

produc tion o f mode rn (inte ractive window based) software.

§4. Reasoning.

Computer mathematics . Mode r n systems for compute r algebra (CA) are

able to represent mathe matica l notions on a machine and compute with

the m. These objects can be integers , real or comple x numbers , polynomials ,

integrals and the like. The computa tions are us ually symbolic, but can also

be nume rical to a vir tua lly arbitrary degree o f precis ion. It is fair to say— as is

sometimes done — tha t “a system for CA can represent \ il exactly” . In spite

o f the fact that this numbe r has an infinite de cimal expans ion, this is not a

miracle . The numbe r \ /2 is represented in a compute r jus t as a s ymbol (as we

do on pape r or in our m ind), and the machine knows how to manipula te it.

The common feature o f these kind o f notions represented in systems for CA

is that in some sense or anothe r they are all computable . Systems for C A have

reached a high level o f s ophis tication and efficiency and are comme rcially

available . Scientis ts and both pure and applie d mathe matic ians have made

good use o f the m for the ir research.

There is now emerging a new technology, name ly that o f systems for

Compute r Mathe matics (C M). In these systems vir tually all mathe matica l

notions can be represented exactly, inc luding those that do not have a com

puta tiona l nature . How is this poss ible? Suppose , for example , tha t we want

to represent a non- computable object like the co- Diophantine set

X = {/7 E N I - *3x D (x , n) = 0}.

12In the func t iona l pr ogr a mming c ommunity these are called ‘highe r order func t ions ’. We

prefer to use the more logically correct express ion ‘highe r type\ s ince ‘highe r orde r ’ refers to

quantifica t ion over types (like in the system X2).

204 H E N K B ARE N DRE G T

T hen we can do as before and represent it by a special s ymbol. But now

the compute r in general cannot operate on it because the object may be o f a

non- computa tional nature .

Before answering the que s tion in the previous paragraph, let us firs t analyze

where non- computability comes from. It is always the case tha t this comes

from the quantifie rs V (for all) and 3 (exists). Inde e d, these quantifie rs

us ually range over an infinite set and therefore one loses decidability.

Nevertheless , for ages mathe matic ians have been able to obta in inte re s ting

informa tion about these non- computable objects . T his is because there is a

no tion o f proof. Us ing proofs one can state with confidence tha t e.g.,

3 g I , i.e., - >3x D(x , 3) = 0.

Ar is totle had already remarked tha t it is often hard to find proofs , but the

ve rification o f a putative one can be done in a re lative ly easy way. Anothe r

contr ibution o f Ar is totle was his ques t for the forma liza tion o f logic. Afte r

about 2300 years, when Frege had found the r ight fo r mula tion o f predicate

logic and Gode l had proved tha t it is comple te , this ques t was fulfille d.

Mathe matica l proofs can now be comple te ly formalize d and verified by

compute rs . This is the unde r lying basis for the systems for C M.

Present day prototype s o f systems for C M are able to he lp a user to

deve lop from pr imitive notions and axioms many theories , cons is ting o f

de fined concepts , theorems and proofs .13 All the systems o f C M have been

inspired by the AU T OMAT H project o f de Bruijn (see [26] and [27] and

[88]) for the automate d ve rification o f mathe matica l proofs .

Representing proofs as lambda terms. Now that mathe matica l proofs can

be fully formalize d, the que s tion arises how this can be done best (for effi

ciency reasons conce rning the machine and pragmatic reasons conce rning

the huma n user). Hilbe r t represented a p r oo f o f s tatement A from a set o f

axioms T as a finite sequence A 0,A \ • • • Mn such tha t A = A n and each A if

for 0 < / < /7, is e ithe r in T or follows from previous s tatements us ing the

rules o f logic.
w

A more efficient way to represent proofs employs typed la mbda terms

and is called the propositions- as- types inte rpre ta tion discovered by Curry,

Howard and de Bruijn. T his inte rpre ta tion maps propos itions into types

and proofs into the cor re s ponding inhabitants . The me thod is as follows . A

s tatement A is trans forme d into the type (i.e., colle ction)

[A] = the set o f proofs o f A.

So A is provable if and only if [A] is ‘inhabite d’ by a p r oo f p. Now a pr oof

o f A ==> B consis ts (according to the Brouwer- Heyting inte rpre ta tion o f

l3T his way o f do ing mathe matics , the ax iomatic me thod, was also descr ibed by Aris totle .

It was [42] who first used this me thod very successfully in his Ele me nts .

T HE IMP ACT OF T HE LAMB DA C ALCU LU S IN LOGIC A N D C OMP U T E R S CIE NCE 205

implica tion) o f a func tion having as argume nt a p r oo f o f A and as value a

p r o o f o f B. In symbols

[A => B] = [A] - [B].

Similar ly

[Vx e XP x] = n * : X.[Px],

where r ix : A .[Px] is the Car te s ian product o f the [P x], because a p r o o f o f

Vx e y i.P x consis ts o f a func tion tha t assigns to each e lement x e A a p r oo f

o f P x . In this way proof- objects become is omorphic with the intuit ionis tic

na tura l de duc tion proofs o f [48]. Us ing this inte rpre ta tion, a p r oo f o f

Vy e A .Py => Pv is Xy :AXx :Py .x . Here Xx :A .B (x) denotes the func tion

tha t assigns to input x e A the output B(x) . A pr oo f o f

(A =>A =>B) =>A =>B

is

Xp:(A => A => B)Xq \ A.pqq.

A de s cr iption o f the typed la mbda calculi in which these types and inha b i

tants can be formula te d is given in [8], which also gives an example o f a large

pr oo f object. Ve rifying whe the r p is a p r oof o f A boils down to ve r ifying

whether, in the given context, the type o f p is e qual (convertible) to [A\ .

The me thod can be extended by also representing connectives like & and - i

in the r ight type system. T rans lating propos itions as types has as de fault

intuit ionis t ic logic. Clas s ical logic can be de alt with by adding the excluded

middle as an ax iom.

If a complica te d compute r system claims tha t a ce rtain mathe matica l

s tatement is correct, the n one may wonde r whe the r this is indeed the case.

For example , there may be software errors in the system. A satis factory

me thodologica l answer has been given by de Bruijn. Proof- objects s hould

be public and writte n in such a formalis m tha t a reasonably s imple proof-

checker can verify the m. One s hould be able to verify the program for

this proof- checker ‘by h a n d ’. We call this the de Bruijn criterion. The

proof- deve lopment systems Lego (see [80]) and Coq (see [33]) satisfy this

cr ite r ion.

A way to keep proof- objects from growing too large is to e mploy the so-

called Poincare pr inciple . [94, p. 12] s tated tha t an argume nt s howing tha t

2 + 2 = 4 “is not a p r o o f in the s trict sense, it is a ve r ification” (actually

he c la ime d tha t an arbitra ry ma the matic ian will make this re mark). In

the AU T OMAT H project o f de Bruijn the following inte rpre ta tion o f the

Poincare pr inc iple was given. If p is a p r oo f o f A(t) and t = R the n the

same p is also a p r o o f o f A(t ') . Here R is a no t ion o f re duction cons is ting o f

ordinary ^- re duction and ¿- re duction in orde r to deal w ith the unfo ld ing o f

de finitions . Since /?- ¿- reduction is not too complica te d to be programme d,

206 H E N K B A R E N D R E G T

the type systems e njoying this inte rpre ta tion o f the Poincare pr inciple s till

satisfy the de Bruijn c r ite r ion14.

In spite o f the compact representation in typed lambda calculi and the

use o f the Poincare pr inciple , proof- objects become large, s ome thing like 10

to 30 times the length o f a comple te informa l proof. Large proof- objects

are tiresome to generate by hand. With the necessary persis tence [18] has

wr itte n lambda afte r lambda to obta in the proof- objects s howing that all

proofs (but one) in [76] are correct. Us ing a mode rn system for C M one can

do better. The user introduce s the context cons is ting o f the pr imitive notions

and axioms . T hen necessary de finitions are given to formula te a theorem

to be proved (the goal). The pr oof is deve loped in an inte ractive session

with the machine . Thereby the user only needs to give ce r tain 'tac tics ’

to the machine . (The inte rpre ta tion o f these tactics by the machine does

no thing mathe matica lly s ophis ticate d, only the necessary bookke e ping. The

s ophis tica tion comes from giving the r ight tactics .) The fina l goal o f this

research is that the necessary e ffort to inte ractive ly generate formal proofs

is not more complica te d tha n produc ing a text in, say, LxT gX. T his goal has

not been reached yet. See [11] for references, inc luding those about other

approaches to compute r mathe matics . (These include the systems NuP r l,

H OL, Otte r , Miza r and the Boyer- Moore the ore m proven These systems

do not satisfy the de Br uijn cr ite r ion, but some o f the m probably can be

modifie d easily so tha t they do.)

Computations in proofs. The following is take n from [12]. There are several

computa tions that are needed in proofs . T his happe ns , for example , if we

want to prove forma l vers ions o f the following intuitive s tatements .

(1) [\ ^45] = 6 where [/•] is the intege r par t o f a real;

(2) P r ime (61)

(3) (x + 1)(jc+ 1) = jc2 + 2 jc+ 1.

A way to handle (1) is to use the Poincare pr inc iple extended to the re duction

re lation for pr imitive recurs ion on the na tur a l numbe rs . Ope ra tions like

f (n) = [yfn] are pr imitive recursive and hence are la mbda de finable (us ing

- »//,) by a te rm, say F , in the la mbda calculus extended by an ope ra tion for

pr imitive recurs ion R s atis fying

R A B ze r o — A

R A B (s ue c A') —>f B x (R A B x).

l4T he re ductions may s ome time s cause the proof- che cking to be o f an unacce ptable time

comple xity. We have that p is a p r o o f o f A iff t y p e (/ ;) =/*$ A. Because the p r o o f is coming

from a h um a n , the necessary conve rs ion pa th is feas ible , but to find it a utoma t ic a lly may

be hard. T he proble m probably can be avoide d by e nha nc ing proof- objects with hints for a

re duc tion strategy.

T he n, wr iting r 0n = ze r o , r P = s ucc z e r o , . . . , as

is formally derivable , it follows from the Poincaré pr inciple tha t the same is

true for

F r 45n = r 6n

(with the same proof- obje ct), since F r 45n r 6n. Us ually, a p r o o f ob li

ga tion arises tha t F is ade quate ly cons tructe d. For example , in this case it

could be

V/7 (F n)2 < n < ((F n) + l) 2.

Such a p r o o f obliga tion needs to be formally proved, but only once; afte r

tha t re ductions like

f r « n ^ 7 W n

can be used freely many times .

In a s imila r way, a s tate me nt like (2) can be formula te d and proved by

cons truc ting a la m bda de fining te rm K ?Time for the characte r is tic func tion

o f the predicate P r ime . T his te rm s hould satisfy the following s tatement

V/7 [(P r im e /7 7£Prirae n = r P) &

(^Pr ime '2 = r 0n V î Prirae n = r l n)]-

which is the p r o o f obliga tion.

State me nt (3) corre s ponds to a s ymbolic computa t ion. T his c om puta t ion

takes place on the s yntactic level o f formal te rms. There is a func t ion g

acting on syntactic express ions s atis fying

g ((x + \){x + 1)) = x~ + 2x + 1,

that we want to la m bda define. While x + I : Nat (in conte xt x : Nat),

the express ion on a s yntactic level represented inte rnally satisfies ‘x + 1’ :

te r m(Na t), for the s uitably de fine d inductive type te r m (Na t). Afte r in tr o

ducing a re duction re la tion for pr imitive recurs ion over this da ta type,

one can use te chnique s s imila r to those o f §3 to la mbda define g, say by G,

so that

G (x + l) (x + 1) —*/ii + 2x + 1 .

Now in orde r to finis h the p r o o f o f (3), one needs to cons truct a self

inte rpre ter E, such tha t for all express ions p : Nat one has

E ‘p —»/?, p

and prove the p r o o f obliga t ion for G which is

V/ : te r m (Na t) E(G t) = Et.

T HE IMP ACT OF T HE LAMB DA C ALC U LU S IN LOGIC A N D C OMP U T E R S CIE NCE 207

208 H E N K B A RE N D RE G T

It follows that

E (G ‘- (* + l) (* + l) ’) = E ' (x + l) (x + l)'\

now since

E (G ‘(* + i) (* + i n

E ‘(x + l) (x + 1) ’

we have by the Poincare pr inciple

(x + l) (x + 1) = .Y" -b 2x + 1.

The use o f inductive types like Nat and te r m (Na t) and the cor re s ponding

re duction re lations for pr imitive re duction was suggested by [102] and the

extens ion o f the Poincare pr inc iple for the cor re s ponding re duction re lations

o f pr imitive recurs ion by [81]. Since such re ductions are not too hard to

program, the re s ulting pr oo f che cking s till satisfies the de Br uijn cr ite r ion.

In [90] a program is presented tha t, for every pr imitive recursive predicate

P, cons tructs the la mbda te rm K P de fining its characte r is tic func t ion and

the p r o o f o f the ade quacy o f K P. The re sulting computa tions for P = P r ime

are not e fficient, because a s tra ightforward (non- optimize d) tr ans la tion of

pr imitive recurs ion is given and the nume rals (represented numbe rs) used

are in a unary (rathe r than /7- ary) re pre sentation; but the me thod is promis

ing. In [41], a more efficient ad hoc la m bda de finit ion o f the characte r is tic

func tion o f P r ime is given, us ing Fe rmat's s mall the ore m about pr imality.

Als o the required p r o o f obliga tion has been given.

Choice o f fo rm al systems. There are several pos s ibilitie s for the choice of

a formal system to be used for the re pre s e ntation o f theories in systems of

compute r mathe matics . Since , in cons truc ting proof- objects , coope ration

be tween researchers is des irable , this choice has to be made w ith some care

in orde r to reach an inte rna tiona l s tandard. As a firs t s tep towards this,

one may res trict a tte ntion to systems o f type d la m bda ca lculi, s ince they

provide a compac t re pre s e ntation and meet de Br uijn ’s cr ite r ion o f having a

s imple proof- checker. In the ir s imple s t form, these systems can be described

in a unifo r m way as pure type systems (P T S’s) o f diffe re nt s tre ngth, see [8].

The P T S’s s hould be extended by a de finit ion me chanis m to be come DP T S’s

(PTS's with de finitions), see [104]. The DP T S s are good for describing

several var iants o f logic: many sorted predicate logic in its firs t, second or

highe r orde r vers ions . As s tated before , the de fault logic is intuit ionis t ic , but

can be made class ical by as s uming the excluded middle .

The next step cons is ts o f a dding inductive types (IT ’s) and the corre s pond

ing re duction re lations in orde r to capture pr imitive re curs ion. We suggest

that the r ight for ma l systems to be used for compute r mathe matics are the

»p, E 4x~ + 2x + 1

ßi 2a + 1

»ßi (x + 1)(-Y + 1),

T HE IMP ACT OF T HE LAMB DA C ALC U LU S IN L OGIC A N D C OMP U T E R S CIE NCE 209

type systems (T S), cons is ting o f DP T S ’s extended by IT ’s, as described e.g.,

in [91]. T S’s come with two parame te rs . The firs t is the specification A o f

the unde r lying PT S specifying its logical s trength, see [8]. T he second is B

the colle ction o f inductive types and the ir respective notions o f re duction

spe cifying its ma the matica l and c omputa t iona l s trength. In my opinion,

a system for proof- checking s hould be able to verify proof- objects writte n

in all the systems T S (A B) (for a ‘re as onable ’ choice s pe ctrum o f the pa

rame te rs). If some one wants to use it for only a subclass o f the choice o f

parame te rs — dictate d by tha t pe rs on’s founda tiona l views— then the proof-

checker will do its work anyway. I believe tha t this ge ne rality will no t be too

expensive in te rms o f the comple x ity o f the che cking.1̂

Illative lambda calculus. Cur ry and his s tudents continue d to look for a

way to represent func tions and logic into one ade quate formal system. Some

o f the propos e d systems turne d out to be incons is te nt, othe r ones turne d out

to be incomple te . Research in T S’s for the re pre se ntation o f logic has resulted

in an unexpected side effect. By m a king a modifica tion inspire d by the T S’s,

it became poss ible , afte r all, to give an extens ion o f the untype d la m bda

calculus , calle d Illativ e Lam bda Calculi (ILC; ‘illa tive ’ from the La t in word

infer re which me ans to infe r), such tha t firs t orde r logic can be fa ithfully and

comple te ly e mbe dde d into it. The me thod can be extended for an a rbitra ry

P T S16, so tha t highe r orde r logic can be represented too.

The re s ulting IL C ’s are in fact s imple r than the T S’s. But do ing compute r

mathe matics via IL C is probably no t very practica l, as it is no t clear how to

do proof- checking for these systems.

One nice thing about the ILC is tha t the old dre am o f Chur c h and Cur ry

came true , namely, there is one sys tem based on untype d la m bda calculus

(or combina tor s) on which logic, hence mathe matics , can be based. More

impor tantly there is a ‘c ombina tor y tr a ns for ma tion’ be tween the ordina ry

inte rpre ta tion o f logic and its propos itions- as - types inte rpre ta tion. Bas ically,

the s itua tion is as follows . T he inte rpre ta tion o f predicate logic in IL C is

such tha t

1-iogic A w ith p r o o f p Vr h LC [A]r[p]

<=> ^~\ Lc[A]\ [p]

« = ► h L C [A U p] = K [A][[p] = [A][,

'T t may be argue d tha t the fo llowing lis t o f features is so im p o r ta n t tha t they deserve to

be present in T S ’s as pr imitive s a nd be imple me nte d: quo t ie n t types (see [61]), s ubtype s (see

[4]) and type inc lus ion (see [80]). T his is an inte re s ting que s tion a nd e xpe r ime nts s hould be

done to de te rmine whe the r this is the case or whe the r these can be tr ans la te d in to the more

bas ic TS s in a sufficiently e fficient way (pos s ibly us ing s ome macros in the sys tem for C M).

"’For firs t orde r logic, the e mbe dding is na tur a l, but e .g., for s e cond orde r logic this is less

so. It is an ope n que s t ion whe the r there exists a na tur a l re pre s e nta tion o f s e cond a nd highe r

orde r logic in ILC .

2 1 0 H E N K B ARE N DRE G T

where r ranges over untype d la mbda terms. Now if r = I, the n this trans

la tion is the propositions- as- types inte rpre ta tion; if, on the othe r hand, one

has r = K, the n the inte rpre ta tion becomes an is omorphic vers ion o f first

order logic de note d by [A][. See [13] and [39] for these results. A short in

t roduc tion to ILC (in its combina tory vers ion) can be found in [6 , Appe ndix

B].

R E F E R E N C E S

[1] S. Abrams ky, D. M. Gabbay, and T. S. E. Ma ib a u m (e ditors), Handbook o f logic

in computer science, Volume 2: Background: Computational structures , Ox ford Unive rs ity

Press, 1992.

[2] W. A c k e r m a n n , Zum Hilbertschen Aufbau der reellen Zahlen, Mathematische Annalen,

vol. 99 (1928), pp. 118- 133.

[3] A . W. A p p e l, Compiling with continuations , Ca mbr idge Unive rs ity Press, 1992.

[4] D . A s p i n a l l and A . C o m p a g n o n i, Subtyping dependent types, Proceedings o f the 11th

annual symposium on logic in computer science (Ne w Bruns wick, Ne w Jersey) (E. Clarke ,

e ditor), IE E E Com pute r Socie ty Press, July 1996, pp. 86- 97.

[5] J. W. B a c k u s , Can programming be liberatedfrom the von Neuman style?, Comm. A CM ,

vol. 21 (1978), pp. 613- 641.

[6] H. P. B a r e n d r e g t , The lambda calculus: its syntax and semantics , revised ed., Nor th-

Ho lla nd , Ams te r da m, 1984.

[7] , T heoretical pearls: Self- interpretation in lambda calculus , Journal o f Functional

Programming, vol. 1 (1991), no. 2, pp. 229- 233.

[8] , Lambda calculi with types, 1992, in [1], pp. 117- 309.

[9] , Discrim inating coded lambda terms, From universal morphisms to megabytes:

A Baayen space- odyssey (K. R. Ap t , A. A. Schrijve r , a nd N. M. T emme, e ditors), C W I,

Kr uis la a n 413, 1098 SJ Ams te r da m, 1994, pp. 141- 151.

[10] , Enumerators o f lambda terms are reducing constructively, Annals o f Pure and

Applied Logic , vol. 73 (1995), pp. 3- 9.

[11] — , The quest fo r correctness, Images o f S M C research, Stichting Ma the ma tis ch

Ce ntr um, P.O. Box 94079, 1090 GB Ams te r da m, 1996, pp. 39- 58.

[12] H. P. B a r e n d r e g t and E. B a r e n d s e n , Efficient computations in form al proofs , to

appe ar , 1997.

[13] H. P. B a r e n d r e g t , M. B u n d e r , a n d W. D e k k e r s , Systems o f illative combinatory

logic complete fo r first order propositional and predicate calculus, Journal o f Symbolic Logic,

vol. 58 (1993), no. 3, pp. 89- 108.

[14] E. B a r e n d s e n and J. E. W. S m e t s e r s , Conventional and uniqueness typing in graph

rewrite systems (extended abstract), 1993, in [105], pp. 41- 51.

[15] , Uniqueness typing fo r functional languages with graph rewriting semantics, to

appe ar in Mathem atical Structures in Computer Science , 1997.

[16] M. J. B e e s o n , Foundations o f constructive mathematics, Springer- Verlag, Be r lin, 1980.

[17] J. F. A. K. v a n B e n t h e m , Language in action: Categories, lambdas and dynamic logic,

Studies in Logic and the Founda t ions o f Mathe matics , vol. 130, Nor th - Ho lla nd , Ams te r da m,

1991.

[18] L. S. v a n B e n t h e m J u t t i n g , Checking Landau's “Grundlagen" in the AUT O MA T H

system, Ph.D. thesis, Eindhove n Unive rs ity o f T echnology, 1977.

[19] A. B e r a r d u c c i a nd C. B o h m , A self- interpreter o f lambda calculus having a normal

form , Lecture Notes in Computer Science, vol. 702 (1993), pp. 85- 99.

T HE IMP ACT OF T HE LAMB DA C ALCU LU S IN LOGIC A N D C OMP U T E R S CIE NCE 21 1

[20] M. Bezem and J. F. Gr oote (e ditors), Typed lambda calculi and applications, T LCA'93,

Lecture Note s in Com pute r Science, vol. 664, Be r lin and Ne w York, Springer- Verlag, 1993.

[21] C. B o h m , The CUCH as a form al and description language, Annual review in automatic

programming (Ric ha r d Go o d m a n , e ditor), vol. 3, Pe rgamon Press, Oxford, 1963, pp. 179—

197.

[22] C. B o h m a n d A. B e r a r d u c c i , Automatic synthesis o f typed A- programs on term alge

bras, T heoretical Computer Science, vol. 39 (1985), pp. 135- 154.

[23] C. B o h m and W. G r o s s , Introduction to the CUCH, Automata theory (E. R. Ca ianie llo ,

e ditor), Acade mic Press, Ne w York, 1966, pp. 35- 65.

[24] C. B o h m , A. P ip e r n o , and S. G u e r r in i , Lambda- definition of function(al)s by normal

form s, Esop'94 (Be r lin) (D. Sane lla , e ditor), vol. 788, Springer- Verlag, 1994, pp. 135- 154.

[25] R. B. Bra ithwaite (e ditor), F. P. Ramsay: The foundations o f mathematics and other

logical essays, Routle dge & Ke gan Paul, Lo nd o n , 1960.

[26] N. G. d e B r u i jn , The mathematical language A UT OMA T H, its usage and some o f

its extensions, Symposium on automatic demonstration (Be r lin and Ne w York) (M. Laude t,

D. Lacombe , and M. Schue tzenbe rge r , e ditors), Lecture Note s in Mathe matics , vol. 125,

Springer- Verlag, 1970, pp. 29- 61, also in [88], pp. 73- 100.

[27] , Reflections on Automath, Eindhove n Unive rs ity o f T echnology, 1990, also in

[88], pp. 201- 228.

[28] A. C h u r c h , An unsolvable problem o f elementary number theory, American Journal o f

Mathematics , vol. 58 (1936), pp. 354- 363.

[29] , A formulation o f the simple theory o f types, Journal o f Symbolic Logic, vol. 5

(1940), pp. 56- 68.'

[30] , The calculi o f lambda conversion, Pr ince ton Unive rs ity Press, 1941.

[31] A. C h u r c h and J. B. R o s s e r , Some properties o f conversion, Transactions o f the

American Mathem atical Society, vol. 39 (1936), pp. 472- 482.

[32] W. Clinge r and J. Rees (e ditors), Revised report on the algorithmic language Scheme,

vol. IV, LIS P Pointe rs , no. 3, 1991.

[33] T. C o q u a n d and G. H u e t , The calculus o f constructions, Information and Computa

tion, vol. 76 (1988), no. 2 /3 , pp. 95- 120.

[34] G. C o u s in e a u , P.- L. C u r ie n , a nd M . M a u n y , The categorical abstract machine,

Science o f Computer Programming, vol. 8 (1987), no. 2, pp. 173- 202.

[35] P.- L. C u r ie n , Categorical combinators, sequential algorithms, and functional program

ming, Research Note s in T he ore tical Com pute r Science, P itma n, Lo ndo n , 1986.

[36] H. B. C u r r y , Grundlagen der kombinatorischen Logik , American Journal o f Mathe

matics, vol. 52 (1930), pp. 509- 536, 789- 834, in Ge r ma n.

[37] , Functionality in combinatory logic, Proceedings o f the N ational Academy o f

Science o f the USA, vol. 20 (1934), pp. 584- 590.

[38] , Modified basic functionality in combinatory logic, Dialectica, vol. 23 (1969),

pp. 83- 92.

[39] W. D e k k e r s , M. B u n d e r , and H. P. B a r e n d r e g t , Completeness o f the propositions-

as- types interpretation o f intuitionis tic logic into illative combinatory logic, Journal o f Symbolic

Logic (1997), to appear .

[40] M. C. J. D. v a n E e k e le n and M. J. P la s m e ije r , Functional programming and paralle l

graph rewriting, Addison- Wes ley, Re ading, Mas s achus e tts , 1993.

[41] H. E lb e r s , Personal communication, 1996.

[42] E u c l i d , The elements, 325 B.C. Englis h tr ans la t ion in [55], 1956.

[43] S. F e f e r m a n , A language and ax ioms fo r explicit mathematics, Proof theory symposium

(Be r lin) (J. H. Dille r and G. H. Mulle r , e ditors), Le cture Note s in Mathe matic s , vol. 500,

Springer- Verlag, 1975, pp. 87- 139.

2 1 2 H E N K B ARE N DRE G T

[44] , Definedness, Erkentniss, vol. 43 (1995), pp. 295- 320.

[45] L. T. F. G a m u t , Logic, language and meaning, Chicago Unive rs ity Press, Chicago,

1992.

[46] R. O. G a n d y , Church's Thesis and principles for mechanisms , The Kleene symposium,

Nor th- Ho lla nd P ublis hing Company , Ams te r da m, 1980, pp. 123- 148.

[47] G . G e n t z e n , Investigations into logical deduction, in [111], 1969.

[48] , Untersuchungen iiber das logische Schliessen, Mathematische Zeitschrift, vol.

39 (1935), pp. 176- 210, 405- 431, also available in [111], pp 68- 131.

[49] J.- Y. G i r a r d , Interpretation fonctionelle et élimination des coupures de l'arithmétique

d'ordre supérieur, Ph.D. thesis, Unive rs ité Paris V II, 1972.

[50] , Linear logic: its syntax and semantics , Advances in linear logic (J.- Y. Gir a r d ,

Y. La font , and L. Re gnie r , e ditors), Lo nd o n Ma the ma t ic a l Socie ty Lecture Note Series,

Ca mbr idge Unive rs ity Press, 1995, available by anonymous ftp from lmd.univ- mrs .fr as

/ pub / g ir a r d / Sy ns e m .ps .Z.

[51] J- Y. G i r a r d , Y. G . A. L a f o n t , and P. T a y lo r , Proofs and types, Ca mbr idge Tracts in

T he ore tical Co m pute r Science, vol. 7, Ca mbr idge Unive rs ity Press, 1989.

[52] A. D. G o r d o n , Functional programming and Input/Output, Dis t inguis he d Dis s e r ta

t ions in Co m pute r Science, Ca mbr idge Unive rs ity Press, 1994.

[53] K. G r u e , Map theory, T heoretical Computer Science (1992), pp. 1- 133.

[54] C. A. G u n t e r and D. S. S c o t t , Semantic domains, Handbook o f theoretical computer

science, vol. B, in [78], 1990, pp. 633- 674.

[55] T. L. H e a t h , The thirteen books o f Euclid's elements, Dove r Publica tions , Inc ., Ne w

York, 1956.

[56] J. van He ije noor t (e ditor), From Frege to Gödel: A source book in mathematical logic,

/ 879- 1931, Ha r va r d Unive rs ity Press, Ca mbr idge , Mas s achus e tts , 1967.

[57] P. H e n d e r s o n , Functional programming: Application and implementation, Prentice-

H a ll, Engle wood Cliffs , Ne w Jersey, 1980.

[58] D. H i l b e r t a nd W. A c k e r m a n n , Grundziige der theoretischen logik, firs t ed., Die

Gr undle hr e n de r Ma the ma tis che n Wis s e ns chafte n in Einze ldar s te llunge n, Ba nd XXV II,

Springer- Verlag, Be r lin and Ne w York, 1928.

[59] R. H in d le y , The principal type- scheme o f an object in combinatory logic, Transactions

o f the American Mathem atical Society, vol. 146 (1969), pp. 29- 60.

[60] A. H o d g e s , The enigma o f intelligence, Unw in pape rbacks , Lo n d o n , 1983.

[61] M . H o f m a n n , A simple modelfor quotient types, Typed lambda calculi and applications

(Be r lin and Ne w Yor k), Le cture Note s in Co m pute r Science, Springer- Verlag, 1977, pp. 216—

234.

[62] P. H u d a k e t a l. , Report on the programming language Haskell: A non- strict, purely

functional language (Version 1.2), A CM S IGPLA N Notices, v o l. 27 (1992), n o . 5, pp. Ri- Rx ,

R1 - R163 .

[63] R. J. M. H u g h e s , The design and implementation o f programming languages , Ph.D.

thesis, Unive r s ity o f Ox for d , 1984.

[64] , Why functional programming matters, The Computer Journal, vol. 32 (1989),

no. 2, pp. 98- 107.

[65] K. E. Iv e r s o n , A programming language, Wile y, Ne w York, 1962.

[66] T. J o h n s s o n , Efficient compilation o f lazy evaluation, S IGPL A N Notices, vol. 19

(1984), no. 6, pp. 58- 69.

[67] S. C. K le e n e , Lamb da- definability and recursiveness, Duke Mathem atical Journal,

vol. 2 (1936), pp. 340- 353.

[68] , Introduction to metamathematics, T he Unive r s ity Series in Highe r Ma th e

matics , D. Van Nos tr a nd Co m p., Ne w York, T oronto, 1952.

T HE IMP ACT OF T HE LAMB DA C ALCU LU S IN LOGIC A N D C OMP U T E R S CIE NCE 213

[69] , Reminiscences o f logicians , Algebra and logic (Fourteenth summer res. inst.,

Austral. Math. Soc., Monash Univ., Clayton, 1974) (J. N. Cross ley, e ditor), Le cture Note s in

Ma the ma tic s , vol. 450, Springer- Verlag, Be r lin and Ne w York, 1975, pp. 1- 62.

[70] , Origins o f recursive function theory , Annals o f the History o f Computing,

vol. 3 (1981), no. 1, pp. 52- 67.

[71] S. C. K le e n e and J. B. R o s s e r , The inconsistency o f certain form al logics , Annals o f

Mathematics , vol. 36 (1935), pp. 630- 636.

[72] C. P. J. K o y m a n s , Models o f the lambda calculus , Information and Control, vol. 52

(1982), no. 3, pp. 306- 323.

[73] G. K r e is e l , Church's thesis: A k ind o f reducibility ax iom for constructive mathematics,
in [86], pp. 121- 150.

[74] , The formalist- positivist doctrine o f mathematical precision in the light o f

experience, L ’age de la Science , vol. 3 (1970), pp. 17- 46.

[75] J. K u p e r , An ax iomatic theory for partial functions, Information and Computation
(1993), pp. 104- 150.

[76] E. L a n d a u , Grundlagen der analysis, third ed., Che ls e a P ublis hing Company , 1960.

[77] P. J. L a n d in , The mechanical evaluation o f expressions, The Computer Journal, vol. 6

(1964), no. 4, pp. 308- 320.

[78] J. van Le e uwe n (e ditor), Handbook o f theoretical computer science, vol. A, B, Nor th-

Ho lla nd , MIT- Press , 1990.

[79] D. L e iv a n t , Reasoning about functional programs and complexity classes associated

with type disciplines , 24th annual symposium on foundations o f computer science, IE E E , 1983,

pp. 460- 469.

[80] Z. Lu o and R . P o l l a c k , The LEGO proof development system: A user's m anual,

Technical Report ECS- LF CS- 92- 2I1, Unive rs ity o f Edinbur gh, may 1992.

[81] P. M a r t in - L ö f , Intuitionis tic type theory, Studie s in P r oof Theory, Bibliopolis ,

Na p o li, 1984.

[82] Yu.V. M a t ija s e v iC , On recursive unsolvability o f hilbert’s tenth problem, Fourth inter

national congress for logic, methodology and philosophy o f science, Studie s in Logic a nd the

Founda t ions o f Mathe ma tic s , vol. 74, Nor th- Ho lla nd , Ams te r da m, 1971, pp. 89- 110.

[83] J. M c C a r t h y e t a l . , Lisp 1.5 programmer’s m anual, M IT Press, Ca mbr idge , Ma s

s achuse tts , 1962.

[84] R . M i l n e r , A theory o f type polymorphism in programming, Journal o f Computer and

System Sciences, vol. 17 (1978), pp. 348- 375.

[85] T .^E. M o g e n s e n , T heoretical pearls: Efficient self- interpretation in lambda calculus ,

Journal o f Functional Programming, vol. 2 (1992), no. 3, pp. 345- 364.

[86] J. My h ill, R. E. Vesley, a nd A. Kin o (e ditors), Intuitionism and proof theory , Studie s

in Logic a nd the Founda t ions o f Ma the ma tic s , Nor th - Ho lla nd , Ams te r da m, 1970.

[87] G. N a d a t h u r and D. M i l l e r , An overview o f XProlog, Logic programming: Pro

ceedings o f the fif th international conference and symposium, Volume 1 (Ca mbr idge , Ma s

s achuse tts) (Robe r t A. Kowals ki a nd Ke nne th A. Bowe n, e ditors), M IT Press, Augus t 1988,

pp. 810- 827.

[88] R. P. Ne de rpe lt , J. H. Ge uve rs , a nd R. C. de Vrije r (e ditors), Selected papers on

automath, Studie s in Logic a nd the F ounda t ions o f Ma the matic s , vol. 133, Nor th - Ho lla nd ,

Ams te r dam, 1994.

[89] J. v o n N e u m a n n , Eine ax iomatisierung der mengenlehre, Journal f iir die Reine und

Angewandte Mathe m atik , vol. 154 (1925), pp. 219- 240.

[90] M. OosTDiJK, Proof by calculation, Mas te r’s thesis, 385, Unive rs ita ir e School voor

Infor ma tica , Ca tho lic Unive rs ity Nijme ge n, 1996.

[91] C. P a u l in - M o h r in g , Inductive definitions in the system Coq; rules and properties,

214 HE N K B ARE N DRE GT

1993, in [20], pp. 328- 345.

[92] S. L. P e y t o n Jo n e s and P. W a d l e r , Imperative functional programming, Conference

record o f the twentieth annual A CM SIGPLA N- S IGA CT symposium on principles o f pro

gramming languages, Charleston, South Carolina, January 10- 13, 1992, AC M Press, 1993,

pp. 71- 84 (Englis h).

[93] G. D. P l o t k i n , Call- by- name, call- by- value and the /- calculus, T heoretical Computer

Science, vol. 1 (1975), pp. 125- 159.

[94] H. P o in c a r e , La science et Vhypo these, F la m m a r io n , Paris , 1902.

[95] F. P. Ra m s e y , The foundations o f mathematics, Proceedings o f the London Mathemat

ical Society, Series 2, vol. 25 (1925), pp. 338- 384, trans late d in [25].

[96] J. C. R e y n o ld s , Definitional interpreters fo r higher- order programming languages,

Proceedings o f 25th A CM national conference (Bos ton, Mas s achus e tts), 1972, pp. 717- 740.

[97] , The discoveries o f continuations, L IS P and Symbolic Computation, vol. 6

(1993), no. 3 /4 , pp. 233- 247.

[98] R. M. R o b in s o n , The theory o f classes— a modification o f von Neumanns system ,

Journal o f Symbolic Logic , vol. 2 (1937), pp. 29- 36.

[99] J. B. R o s s e r , Highlights o f the history o f lambda- calculus, A CM symposium on Lisp

and functional programming (Pe nnys ylvania), A C M Press, Augus t 1982, pp. 216- 225.

[100] B. A. W. R u s s e l l and A. N. W h it e h e a d , Principia mathematica, vol. 1 and 2,

Cambr idge Unive rs ity Press, 1910- 13.

[101] H. S c h w ic h t e n b e r g , Definierbare Funktionen im /.- Kalkül mit Typen, Archie f Jur

Mathematische Logik, vol. 25 (1976), pp. 113- 114.

[102] D. S. S c o t t , Constructive validity , Symposium on automated demonstration (D. La-

combe M. Laude t and M. Schue tzenberge r , e ditors), Lecture Note s in Mathe matic s , vol.

125, Springer- Verlag, Be r lin, 1970, pp. 237- 275.

[103] , Continuous lattices , Toposes, algebraic geometry, and logic (F. W. Lawvere ,

e ditor), Lecture Note s in Mathe matics , vol. 274, Springer- Verlag, Be rlin and Ne w York,

1972, pp. 97- 136.

[104] P. S e v e r i a nd E. P o l l , Pure type systems with definitions, Proceedings o f LFCS'94

(Be r lin and Ne w York) (A. Ne rode and Yu.V. Matijas e vic , e ditors), Lecture Note s in C o m

pute r Science, vol. 813, LF C S ’94, St. Pe te rsburg, Springer- Verlag, 1994, pp. 316- 328.

[105] R. K. Shyamas undar (e ditor), Proceedings o f the 13th conference on foundations o f

software technology and theoretical computer science, Lecture Note s in Com pute r Science,

vol. 761, Be rlin and Ne w York, Bombay, Ind ia , Springer- Verlag, 1993.

[106] T. S k o le m , Begründung der elementaren Arithmetik durch die rekurrierende

Denkweise ohne Anwendung scheinbarer Verenderlichen mit unendlichem Ausdehnungsbere

ich, Videnskapsselskapets skrifter, I. Matematisk- naturvidenskabelig klasse, vol. 6 (1923),

Englis h tr ans la tion in [56], pp. 302- 333.

[107] M. B. S m y t h a nd G. D. P l o t k i n , The category- theoretic solution o f recursive domain

equations, S IA M Journal on Computing, vol. 11 (1982), no. 4, pp. 761- 783.

[108] R . S t a t m a n , The typed lambda calculus is not elementary recursive, Theoretical

Computer Science, vol. 9 (1979), pp. 73- 81.

[109] G u y L. S t e e le J r . , Rabbit: A compiler for Scheme, Technical Report AI- T R- 474,

Artific ia l Inte llige nce Labora tory, Mas s achus e tts Ins t itute o f Technology, Cambr idge , Ma s

sachuse tts , Ma y 1978.

[110] , Common Lisp: The language , Dig ita l Press, 1984.

[111] M. E. Szabo (e ditor), The collected papers o f Gerhard Gentzen, Nor th- Holla nd ,

Ams te r dam, 1969.

[112] A. S. Troe ls tra (e ditor), Metamathematical investigation o f intuitionis tic arithmetic

and analysis, Lecture Note s in Mathe matics , vol. 344, Springer- Verlag, Be rlin and Ne w York,

T HE IMP ACT OF T HE LAMB DA C ALCU LU S IN LOGIC A N D C OMP U T E R S CIE NCE 215

1973.

[113] A. M. T u r in g , On computable numbers with an application to the Entscheidungsprob-

lem , Proceeding o f the London Mathem atical Society. Second Series., vol. 42 (1936), pp. 230-

265.

[114] , Computability and lambda de finability , Journal o f Symbolic Logic, vol. 2

(1937), pp. 153- 163.

[115] D. A. T u r n e r , The S A S L language manual, 1976.

[116] , A new implementation technique fo r applicative languages , Software—

Practice and Experience, vol. 9 (1979), pp. 31- 49.

[117] , The semantic elegance o f functional languages, Proceedings o f the

A C M /M IT conference on functional languages and computer architecture, A C M Press, Pe nn

s ylvania, 1981, pp. 85- 92.

[118] , Miranda— a non- strict functional language with polymorphic types, Func

tional programming languages and computer architectures (Be r lin a nd Ne w York) (J. P. Jouan-

na ud , e ditor), Le cture Note s in Com pute r Science, vol. 201, Springer- Verlag, 1985, pp. 1- 16.

[119] C. W a d s w o r t h , Semantics and pragmatics o f the lamb da- calculus, D. Phil thesis,

Unive rs ity o f Ox ford, P r ogr amming Research Gr o up , Ox ford, U .K., 1971.

C O M P U T IN G S C IE N C E IN S T IT U T E

N IJM E G E N U N IV E RS IT Y

T HE N E T H E RL A N D S

E- mail', he nk@cs .kun.nl

mailto:henk@cs.kun.nl

