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Abstract.—Bayesian inference provides a powerful framework for integrating different sources of information (in particular,
molecules and fossils) to derive estimates of species divergence times. Indeed, it is currently the only framework that can
adequately account for uncertainties in fossil calibrations. We use 2 Bayesian Markov chain Monte Carlo programs, MULTI-
DIVTIME and MCMCTREE, to analyze 3 empirical data sets to estimate divergence times in amphibians, actinopterygians,
and felids. We evaluate the impact of various factors, including the priors on rates and times, fossil calibrations, substitution
model, the violation of the molecular clock and the rate-drift model, and the exact and approximate likelihood calculation.
Assuming the molecular clock caused seriously biased time estimates when the clock is violated, but 2 different rate-drift
models produced similar estimates. The prior on times, which incorporates fossil-calibration information, had the greatest
impact on posterior time estimation. In particular, the strategies used by the 2 programs to incorporate minimum- and
maximum-age bounds led to very different time priors and were responsible for large differences in posterior time esti-
mates in a previous study. The results highlight the critical importance of fossil calibrations to molecular dating and the
need for probabilistic modeling of fossil depositions, preservations, and sampling to provide statistical summaries of in-
formation in the fossil record concerning species divergence times. [Bayesian method; divergence time; fossil calibration;
molecular clock.]

The molecular clock (rate constancy among lineages)
(Zuckerkandl and Pauling 1965) provides a powerful
way for dating species divergences. Under the clock
assumption, the expected distance between sequences
grows linearly with the time of divergence between the
species. If the ages of one or more nodes in a phyloge-
netic tree can be fixed based on the fossil or geological
data, molecular branch lengths can be converted into
absolute geological times for all the remaining nodes in
the tree. Recent work has focused on relaxing the as-
sumption of a molecular clock through rate smoothing
(Sanderson 1997, 2002; Yang 2004; Aris-Brosou 2007),
likelihood local-clock models (Rambaut and Bromham
1998; Yoder and Yang 2000), or explicit modeling of the
rate-drift process (Thorne et al. 1998; Drummond et al.
2006; Rannala and Yang 2007). Most of the recent meth-
ods can analyze heterogeneous data from multiple gene
loci and accommodate multiple fossil calibrations.

Most early molecular dating studies assumed that
fossil calibrations provide known ages of nodes with
certainty (Graur and Martin 2004). Although it is now
well recognized that the fossil calibrations always un-
derestimate divergence dates, the uncertainties concern-
ing the degree to which fossil calibrations approximate
divergence dates are neither easy to codify nor to
accommodate. For example, considerable difficulty
exists in the use of the likelihood method to account
for uncertainties in fossil calibrations (Yang 2006, sec-
tion 7.3.5). Sanderson (1997) suggested the use of con-
strained optimization as a way of incorporating fossil
calibrations in the form of minimum- and maximum-
age bounds. However, this strategy of accounting for
uncertainties in fossil calibrations does not appear to be

valid as it creates a nonidentifiability problem if none
of the node ages is known with certainty (Yang 2006,
p. 235–236). Also the use of the nonparametric boot-
strap method to assess errors in the time estimates in
the penalized likelihood method fails to accommodate
uncertainties in fossil calibrations even though it ac-
counts for sampling errors due to finite sequence data
(Thorne and Kishino 2005).

The Bayesian method provides a natural framework
for integrating different sources of information, includ-
ing information about divergence times based on the
fossil record. Thorne et al. (1998) developed the first
Bayesian method for molecular dating that incorpo-
rates uncertainties in fossil calibrations by the use of
minimum and maximum bounds. Soft bounds or flex-
ible statistical distributions were introduced by Yang
and Rannala (2006) and Drummond et al. (2006). In
the Bayesian framework, priors are assigned on rates
and times and are combined with the likelihood on the
sequence data to generate posterior distributions, with
the computation achieved through Markov chain Monte
Carlo (MCMC) (Thorne et al. 1998). Fossil calibrations
are incorporated in the algorithm through the time prior.
This methodology has been implemented in MULTIDI-
VTIME of Thorne et al. (1998) and Kishino et al. (2001),
MCMCTREE of Yang and Rannala (2006) and Rannala
and Yang (2007), and BEAST of Drummond et al. (2006).
Those Bayesian algorithms involve many components,
and it is not obvious which of them have the greatest
impact on posterior time estimates. In an analysis of a
data set of modern cats, Rannala and Yang (2007) used
MCMCTREE to obtain time estimates that were about
1.43 times as old as estimates obtained from an earlier
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MULTIDIVTIME analysis of the same data. Our efforts
to understand such differences led us to the realization
that the different strategies for specifying fossil calibra-
tions used by the 2 programs can lead to very different
priors on times and thus very different posterior time
estimates, even though apparently the same fossil cali-
brations are used.

In this paper, we first provide a summary of differ-
ences between MCMCTREE and MULTIDIVTIME. We
then describe a theoretical analysis of a simple case of 4
species to understand the specification of the time prior
in the 2 programs under different schemes of fossil cali-
brations. This analysis motivated us to introduce a mod-
ification to the MCMCTREE specification of minimum
bounds. We describe 3 analyses of previously published
data sets concerning the divergences of Felidae (cats),
Amphibia (frogs and their relatives), and Actinoptery-
gians (fishes) to evaluate the impact of various factors
on time estimation.

Note that molecular systematists and paleontologists
use the terms “lower” and “upper” bounds in exactly
opposite ways. To avoid confusion, we use “minimum”
and “maximum” bounds in this paper. We also follow
the geological convention of using “Ma” to refer to dates
in millions of years before present and “Myr” to refer to
spans of time in millions of years without reference to a
datum.

MATERIALS AND METHODS

Differences Between MCMCTREE and MULTIDIVTIME

For the sake of later discussion, we provide here
a brief summary of the differences between the 2
programs.

(a) Prior on times and fossil calibrations. In MULTI-
DIVTIME, fossil calibration of a node takes the form of a
minimum bound, a maximum bound, or joint minimum
and maximum bounds. It is specified by identifying the
node number on the rooted tree for the ingroup species.
In MCMCTREE, fossil calibration on a node can take the
form of a minimum bound, a maximum bound, joint
minimum and maximum bounds or a gamma distribu-
tion (fig. 2 in Yang and Rannala 2006). It is specified as a
label on the node in the rooted tree. Bounds are hard in
MULTIDIVTIME and soft in MCMCTREE even though
MCMCTREE can emulate hard bounds. The 2 programs
differ in their implementation of minimum and maxi-
mum bounds and in the specification of the prior on the
ages of the noncalibration nodes. Those differences will
be analyzed in the next section.

Here, we note the differences in the use of constraints
on the age of the root based on fossils, or otherwise;
these differences may have a considerable impact on
posterior time estimates. MULTIDIVTIME requires a
gamma prior on the root age, specified using the mean
and standard deviation (rttime, rttimesd), as well as a
maximum-age bound (big time). Both the gamma prior
and the big-time constraint are applied whether or not
there are fossil calibrations on the root.

MCMCTREE requires the root age to be constrained
loosely from above (using the control variable RootAge)
if no fossil calibration exists on the root or if the fossil is
a minimum bound. This loose constraint can be a max-
imum bound or joint minimum and maximum bounds,
and is not used if a fossil calibration exists on the root
in the form of a maximum bound, both minimum and
maximum bounds, or a gamma distribution.

(b) MULTIDIVTIME requires outgroup species to root
the ingroup tree, that is, to break the branch around the
root in the unrooted ingroup tree into 2 segments. This is
achieved by the ESTBRANCHES program in the pack-
age, which calculates the maximum likelihood estimates
(MLEs) of branch lengths and their variance–covariance
matrix (see Yang 2006, fig. 7.10a). The MCMC analysis
uses the rooted ingroup tree only, and the likelihood is
calculated using a normal approximation to the MLEs
of the branch lengths. In contrast, MCMCTREE does
not use outgroups and works with sequence data from
the ingroup species only. The likelihood is calculated ei-
ther exactly or approximately for nucleotide sequences,
whereas the normal approximation is always applied
for amino acid or codon sequences. In the approxima-
tion, the lengths of the branches around the root are
resolved through the assumed rate-drift model (see
Yang 2006, fig. 7.10b).

(c) Both programs use a gamma prior for the rate
at the root (rtrate, rtratesd in MULTIDIVTIME). As the
prior means of rates are the same for all nodes, the mean
root rate is also the overall rate for the whole tree. Both
programs also specify a gamma prior for the rate-drift
parameter (ν or brownmean and brownsd in MULTIDI-
VTIME or σ2 in MCMCTREE).

Gamma distributions are specified using the mean
(m) and standard deviation (s) in MULTIDIVTIME and
using the shape (α) and the scale (β) parameters in
MCMCTREE. They are related as m = α/β and s =√
α/β or α= (m/s)2 and β=m/s2.

Implementation of Fossil Calibrations in MCMCTREE and
MULTIDIVTIME

Here, we discuss the specification of the prior on
times, especially the implementation of fossil-based
minimum and maximum bounds. Given the root age,
MULTIDIVTIME specifies the distribution of other node
ages by assigning a Dirichlet density on the proportions
of the time segments on the path from the root to the tip
(Kishino et al. 2001). Minimum and maximum bounds
are then applied by truncating the joint density of times,
that is, by removing times that violate those bounds.
Truncation is achieved by proposing only feasible node
ages in the MCMC algorithm.

In MCMCTREE, the joint distribution of the ages for
the calibration nodes is generated by multiplying inde-
pendent densities (see fig. 2 in Yang and Rannala 2006),
followed by a truncation, which excludes node ages that
violate the intrinsic constraint that any ancestral node
should be older than any descendent node. Truncation
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FIGURE 1. A rooted tree of 4 species with node ages t1, t2, and t3.

is again achieved by proposing only feasible node ages
in the MCMC. The distribution of the ages of the non-
calibration nodes given the ages of the calibration nodes
is specified by the birth–death process with species sam-
pling (equation 3 in Yang and Rannala 2006).

We analyze the simple case of 4 species (Fig. 1), where
the rooted tree has 3 node ages t1, t2, and t3. A gamma
prior on the root age is always assumed: t1 ∼ G(α,β).
We use α=β=5, with the mean equal to 1, representing
100 Myr if 1 time unit is 100 Myr. A few simple cases,
which may place fossil bounds on t2 and t3, are analyzed
both theoretically and by running the 2 programs with-
out sequence data. We set the birth rate, death rate, and
sampling fraction to λ=μ=1 and ρ=0, so that the kernel
is a uniform distribution (see equation 7.28 in Yang
and Rannala 2006) to mimic the Dirichlet prior used in
MULTIDIVTIME. We study the joint time prior f (t1, t2,
t3) and the marginal prior density f (t1). The difference
between hard and soft bounds is not the concern here, so
we use hard bounds in both programs. In MCMCTREE,
this is achieved by using a small tail probability 10−300

instead of 0.025 in equations 16 and 17 and θ = 10100

in equation 15 of Yang and Rannala (2006). Numerical
results are shown in Table 1 and Figure 2.

Case 0: No Fossil Calibration. The root age t1 has the
gamma density

g(t1 ; α,β) =
1
Γ(α)

βαtα−1
1 e−βt1 , (1)

and there are no other constraints on the tree.
To derive the joint time prior f (t1,t2,t3) used in MUL-

TIDIVTIME, let the proportions of the 3 time segments
from the root to tip species a (Fig. 1) be y1, y2, y3, with
y1 +y2 +y3=1. The proportions y2 and y3 have a Dirichlet
distribution, with density

f (y2, y3) = 2, for y2, y3 > 0, y2 + y3 < 1. (2)

A transform of variables from t1, y2, y3 to t1, t2, t3 pro-
duces

f0(t1, t2, t3) = g(t1)× 2/t2
1, 0 < t3 < t2 < t1. (3)

It is easy to see that E(t2)=E(t1)×2/3 and E(t3)=E(t1)/3.
Also the marginal density of t1 is

∫ t1

0

∫ t2

0 f0(t1, t2, t3)
dt3 dt2 = g(t1).

TABLE 1. Prior means and 95% CIs for node ages in the tree of
Figure 1 implemented in the 2 programs

Calibration t1 t2 t3

Case 0, none
MULTIDIVTIME 1.000 (0.325, 2.055) 0.667 0.333
MCMCTREE v4.1 1.000 (0.325, 2.047) 0.667 0.333

Theory (Equation 1) 1.000 (0.325, 2.048)
Case 1, t2 > 0.5

MULTIDIVTIME 1.185 (0.607, 2.187) 0.894 0.449
Theory (equation 8) 1.186 (0.608, 2.185)

MCMCTREE
v4.1 1.374 (0.673, 2.485) 0.936 0.468
v4.1 theory (Equation 11) 1.374 (0.673, 2.483)
v4.2 L(tL, 0.1, 2) 1.309 (0.660, 2.339) 0.856 0.427
v4.2 L(tL, 0.1, 1) 1.256 (0.645, 2.269) 0.787 0.394
v4.2 L(tL, 0.1, 0.5) 1.202 (0.626, 2.195) 0.711 0.356
v4.2 L(tL, 0.1, 0.2) 1.147 (0.600, 2.137) 0.630 0.315

Case 2, t2 > 0.5, t3 > 0.3
MULTIDIVTIME 1.240 (0.628, 2.262) 0.954 0.627

Theory (Equation 14) 1.240 (0.628, 2.260)
MCMCTREE

v4.1 1.548 (0.752, 2.745) 1.153 0.726
v4.1 theory (Equation 17) 1.549 (0.751, 2.745)
v4.2 L(tL, 0.1, 2) 1.382 (0.702, 2.423) 0.954 0.573
v4.2 L(tL, 0.1, 1) 1.290 (0.667, 2.306) 0.836 0.496
v4.2 L(tL, 0.1, 0.5) 1.215 (0.630, 2.201) 0.731 0.432
v4.2 L(tL, 0.1, 0.2) 1.150 (0.601, 2.139) 0.633 0.378

Case 3, 0.3 < t2 < 0.5, 0.1 < t3 < 0.2
MULTIDIVTIME 0.758 (0.372, 1.546) 0.393 0.150

Theory (Equation 20) 0.757 (0.371, 1.547)
MCMCTREE 1.040 (0.445, 2.068) 0.398 0.150

Theory (Equation 23) 1.040 (0.446, 2.066)
Case 4, t2 < 0.5

MULTIDIVTIME 0.711 (0.257, 1.519) 0.313 0.156
MCMCTREE 1.017 (0.374, 2.056) 0.246 0.123

Case 5, t2 < 0.5, t3 > 0.3
MULTIDIVTIME 0.782 (0.412, 1.564) 0.429 0.364
MCMCTREE v4.1 1.048 (0.471, 2.072) 0.427 0.356
MCMCTREE v4.2 L(tL, 0.1, 1) 1.050 (0.475, 2.069) 0.431 0.364

Case 6, t2 < 0.5, 0.3 < t3 < 0.5
MULTIDIVTIME 0.782 (0.412, 1.564) 0.429 0.364
MCMCTREE 1.050 (0.475, 2.068) 0.432 0.366

Case 7, 0.3 < t2 < 0.5
MULTIDIVTIME 0.761 (0.378, 1.547) 0.402 0.201
MCMCTREE 1.040 (0.446, 2.066) 0.398 0.199

Notes: The root age is assigned a gamma prior t1 ∼ G(5, 5), with mean
1, whereas fossil constraints exist on t2 and/or t3 in Cases 1–7. Hard
bounds are implemented in both programs. Cases 0–3 are studied the-
oretically, with results shown in italics. The calibration L(tL, 0.1, 1) is
used to analyze the 3 real data sets in this paper and are shown here
in bold.

In MCMCTREE, the density f (t2, t3|t1) is specified us-
ing the birth–death process with species sampling. With
λ= μ= 1 and ρ= 0, the kernel density is h(t) = 1/t1, 0 <
t < t1, so that

f (t2, t3|t1) = 2/t2
1, 0 < t3 < t2 < t1. (4)

Thus,

f (t1, t2, t3) = g(t1)× 2/t2
1, 0 < t3 < t2 < t1. (5)

This is the same as Equation 3. The 2 programs imple-
ment the same prior in this case. The gamma density
G(5, 5) is shown as curve a in Figure 2a,b, whereas the
mean ages of t2 and t3 are shown in Table 1, Case 0.
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FIGURE 2. The marginal prior density of root age t1 (Fig. 1) generated by a) MULTIDIVTIME and b) MCMCTREE 4.1. Curve a in both graphs
shows the gamma prior t1 ∼ G(5, 5). Curve b is for the minimum bound of Case 1 in Table 1: t2 > 0.5. Curve c is for 2 minimum bounds of Case
2: t2 > 0.5, t3 > 0.3, whereas curve d is for 2 joint bounds of Case 3: 0.3 < t2 < 0.5 and 0.1 < t3 < 0.2. The means and 95% intervals for t1 and
the means for t2 and t3 are listed in Table 1 for Cases 0–3, corresponding to curves a–d.

Case 1: Minimum Bound t2 > t2L.
In MULTIDIVTIME, the fossil bound is implemented

by truncating the density of Case 0 (Equation 3) so that
t2 > t2L. The resultant joint time prior is thus

fI(t1, t2, t3) =
1
JI

g(t1)× 2/t2
1, 0 < t3 < t2 < t1, t2 > t2L,

(6)
where the normalizing constant is

JI =

∫ ∞

t2L

∫ t1

t2L

∫ t2

0
f0(t1, t2, t3)dt3 dt2 dt1

=

∫ ∞

t2L

g(t1)× (1− t2
2L/t

2
1)dt1. (7)

The marginal density of t1 is

fI(t1) =

∫ t1

t2L

∫ t2

0
fI(t1, t2, t3)dt3 dt2

=
1
JI

g(t1)× (1− t2
2L/t

2
1), t1 > t2L. (8)

The mean and the 95% credibility interval (CI) for
t1 can be calculated numerically from this density.

MCMCTREE represents the minimum bound t2 > t2L
by the improper density f (t2) = 1, t2 > t2L (see equation
15 in Yang and Rannala 2006). This is multiplied with the
gamma density g(t1), followed by the truncation t1 > t2.
The resulting density f (t1,t2) is multiplied by fBD(t3|t1,
t2), the conditional density of t3 given t1 and t2, specified
by the birth–death process with species sampling (see
equation 12 in Yang and Rannala 2006), to give rise to
the joint time prior as

fI(t1, t2, t3) =
1
ZI

g(t1), 0 < t3 < t2 < t1, t2 > t2L, (9)

where the normalizing constant is

ZI =

∫ ∞

t2L

∫ t1

t2L

g(t1)dt2 dt1=

∫ ∞

t2L

g(t1)× (t1 − t2L)dt1. (10)

The marginal density of t1 is

fI(t1) =
1
ZI

g(t1)× (t1 − t2L), t1 > t2L. (11)

Figure 2a,b, curve b, shows the marginal densities for
t1 generated by the 2 programs (Equations 8 and 11) for
the minimum bound t2 > 0.5. The prior means for t1,
t2, and t3 are shown in Table 1, Case 1. The truncation
pushes the node ages upward, so that the mean of t1
becomes 1.186 in MULTIDIVTIME and 1.374 in MCM-
CTREE. The effect on the MCMCTREE implementation
is quite dramatic. The numerical results obtained from
running the 2 programs agree well with the theoretical
calculations.

Case 2. Two Minimum Bounds t2 > t2L and t3 > t3L.
In MULTIDIVTIME, the constraints are again imple-

mented by truncating the density of Case 0 (Equation 3).
The joint time prior is thus

fII(t1, t2, t3) =
1
JII

g(t1)× 2/t2
1, 0 < t3 < t2 < t1,

t2 > t2L, t3 > t3L, (12)

where

JII =

∫ ∞

t2L

∫ t1

t2L

∫ t2

t3L

f0(t1, t2, t3)dt3 dt2 dt1

=

∫ ∞

t2L

g(t1)× (t1 + t2L − 2t3L)(t1 − t2L)/t
2
1 dt1, (13)

and the marginal density of t1 is

fII(t1) =

∫ t1

t2L

∫ t2

t3L

fII(t1, t2, t3)dt3 dt2 =
1
JII

g(t1)

×(t1 + t2L − 2t3L)(t1 − t2L)/t
2
1, t1 > t2L. (14)

In MCMCTREE, the gamma density g(t1) and the 2
improper flat densities for t2 and t3 are multiplied, fol-
lowed by the truncation t3 < t2 < t1. The resulting joint
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time prior is

fII(t1, t2, t3) =
1

ZII
g(t1), 0 < t3 < t2 < t1, t2 > t2L,

t3 > t3L, (15)

where

ZII =

∫ ∞

t2L

∫ t1

t2L

∫ t2

t3L

g(t1)dt3 dt2 dt1

=

∫ ∞

t2L

g(t1)×
1
2
(t1 + t2L − 2t3L)(t1 − t2L)dt1. (16)

The marginal density of t1 is

fII(t1) =
1

ZII

∫ t1

t2L

∫ t2

t2L

g(t1)dt3 dt2 =
1

ZII
g(t1)

×
1
2
(t1 + t2L − 2t3L)(t1 − t2L), t1 < t2L. (17)

Numerical results are generated for the minimum
bounds t2 > 0.5 and t3 > 0.3. Figure 2a,b, curve c,
shows the marginal densities for t1 generated by the 2
programs (Equations 14 and 17). The prior means for t1,
t2, and t3 are shown in Table 1, Case 2. The prior mean
of t1 becomes 1.240 in MULTIDIVTIME and 1.549 in
MCMCTREE. It may appear surprising that given the
constraint t2 > 0.5, applying the additional constraint
t3 > 0.3 further increases the prior mean of t1.

Case 3: Two Joint Bounds t2L < t2 < t2U and t3L < t3 <
t3U,with t2L > t3U.

MULTIDIVTIME implements the bounds by truncat-
ing the joint density of Case 0 (Equation 3). The resulting
joint time prior is

fIII(t1, t2, t3) =
1

JIII
g(t1)× 2/t2

1, 0 < t3 < t2 < t1,

t2L < t2 < t2U, t3L < t3 < t3U, (18)

where

JIII =

∫ ∞

t2L

∫ min(t1,t2U)

t2L

∫ t3U

t3L

f0(t1, t2, t3)dt3 dt2 dt1

=

∫ t2U

t2L

g(t1)/t
2
1 × (t3U − t3L)(t1 − t2L)dt1

+
∫ ∞

t2U

g(t1)/t
2
1 × (t3U − t3L)(t2U − t2L)dt1. (19)

The marginal density of t1 is

fIII(t1) =
1

JIII
g(t1)/t

2
1 × (t3U − t3L)(min(t1, t2U)− t2L)

t1 > t2L. (20)

In MCMCTREE, the 2 fossil calibrations are repre-
sented by uniform distributions t2 ∼ U(t2L, t2U) and

t3 ∼ U(t3L, t3U). These densities are multiplied with
the gamma density for t1, followed by the truncation
t3 < t2 < t1 to generate the joint time prior

fIII(t1, t2, t3) =
1

ZIII
g(t1), 0 < t3 < t2 < t1, t2L < t2

< t2U, t3L < t3 < t3U, (21)

where

ZIII =

∫ ∞

t2L

∫ min(t1,t2U)

t2L

∫ t3U

t3L

g(t1)dt3 dt2 dt1

=

∫ t2U

t2L

g(t1)× (t3U − t3L)(t1 − t2L)dt1

+
∫ ∞

t2U

g(t1)× (t3U − t3L)(t2U − t2L)dt1. (22)

The marginal density of t1 is

fIII(t1) =
1

ZIII
g(t1)× (t3U − t3L)(min(t1, t2U)− t2L),

t1 < t2L. (23)

Numerical results are generated for the bounds 0.3 <
t2 < 0.5 and 0.1 < t3 < 0.2. Figure 2a,b, curve d, shows
the marginal densities for t1 generated by the 2 pro-
grams (Equations 20 and 23). The prior means for t1,
t2, and t3 are shown in Table 1, Case 3. In this case, the
prior mean of t1 is 1.040 for MCMCTREE, almost iden-
tical to the mean from the gamma g(t1), but is 0.757 for
MULTIDIVTIME, much smaller than 1.

A few additional cases (Cases 4–7 in Table 1) are ex-
amined by running the programs, without the theoreti-
cal analysis. Application of maximum bounds (e.g., t2 <
0.5 in Case 4) leads to reduction of the prior mean for t1
(e.g., from 1 to 0.711) in MULTIDIVTIME, whereas it has
little impact in MCMCTREE. Note also that in Case 6,
the bound t3 < 0.5 should be uninformative given that
t2 < 0.5 (as we know t3 < t2). However, its use affects
the prior in MCMCTREE, although not in MULTIDIV-
TIME (cf. Cases 5 and 6 in Table 1).

The differences discussed here do not indicate a su-
periority of one program over the other. In theory, each
program allows the user to change the fossil specifica-
tions as well as the root age constraint until the joint time
prior is a good summary of our knowledge of the di-
vergence times among those species based on relevant
fossil data. Nevertheless, specifying multidimensional
priors is notoriously difficult, and prior solicitation may
be made easier if the prior densities specified by the user
(before the truncation) are close to those actually imple-
mented (after the truncation). It is important to note that
these two can be very different. For example, the prior
on t1 actually implemented in Case 1 is not the gamma
in either program (see Equations 8 and 11). In this sense,
the effects of minimum bounds in MCMCTREE and of
maximum and joint bounds in MULTIDIVTIME on the
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prior of root age may be disconcerting. To address this
issue, we have introduced a modification to the imple-
mentation of the minimum bound in MCMCTREE.

Modification to the MCMCTREE Implementation of
Minimum Bound

A number of authors have discussed statistical dis-
tributions of lineage divergence times that may serve
as a suitable summary of fossil evidence (Hedges and
Kumar 2004; Barnett et al. 2005; Yang and Rannala 2006;
Ho 2007). A well-recognized feature of the fossil data
is that they should provide hard or nearly hard mini-
mum bounds but soft maximum bounds (Benton and
Donoghue 2007). The most probable time of divergence
should be older than the fossil minimum because the
acquisition of fossilizable apomorphies reflecting diver-
gence of descendent lineages will significantly postdate
the actual divergence (Smith and Peterson 2002; Steiper
and Young 2008). Thus, the probability density should
increase with increasing age from the minimum, peak at
the most probable time, and decay at a rate commensu-
rate with the strength of evidence supporting the peak
value. The most likely time could be informed by phy-
logenetic bracketing (Reisz and Muller 2004; Marshall
2008) or knowledge of the gaps in the rock record, which
underpin the gaps in the fossil record.

With the aim of better reflecting the nature of fos-
sil minima in establishing probability distributions of
divergence times, we used a truncated Cauchy distri-
bution to represent the minimum bound, in place of
the improper distribution of equation 15 in Yang and
Rannala (2006). The Cauchy distribution with location
parameter t0 and scale parameter s has the density

f (t; t0, s) =
1

πs
[
1 +
( t−t0

s

)2
] , −∞ < t <∞, (24)

and the cumulative distribution function

F(t; t0, s) =
1
π
tan−1

(
t− t0

s

)

+
1
2
, −∞ < t <∞. (25)

This is Student’s t distribution with df = 1. The den-
sity is symmetrical around t0, the mode and median, and
is very heavy tailed. We expect the true node age to be
close to the minimum bound tL, but the distance may
depend on the quality of the fossil data. Thus, we place
the mode at t0 = tL(1 + p), where the offset proportion p
should be small (say 0.1) if the fossil estimate is a good
approximation to the true divergence time, whereas p
should be large (say 0.5) if the fossil estimate is a poor
estimate of the true age. The scale parameter is specified
as s= ctL, where a smaller c means that the density drops
off more rapidly away from the mode. We then trun-
cate the distribution so that t > tL. To make the bound
soft, we assign a small probability left of tL, represented
by a rapid power decay, as in Yang and Rannala (2006).
The minimum bound t > tL is thus represented by the
following density, specified by parameters p and c:

f (t; tL, p, c) =






0.975× 1

AπctL

[
1+
(

t−tL(1+p)
ctL

)2
] , if t > tL,

0.025× θ
tL

(
t
tL

)θ−1
, if 0 < t 6 tL,

(26)
where the normalizing constant due to the truncation
of the Cauchy distribution is A = 1 − F(tL, t0, s) = 1

2 +
1
π
tan−1

( p
c

)
, and where θ = 0.975

0.025 ×
1

πAc[1+(p/c)2] is chosen
to make the density continuous at tL. The distribution
has mode at tL(1 + p), and the 2.5% and 97.5% limits at tL

and tL
[
1 + p + c tan

(
π
(

1
2 −

0.025A
0.975

))]
. Both the mean and

the variance are infinite.
The new minimum bound is implemented in the

MCMCTREE program in PAML version 4.2, using
the format L(tL, p, c). In this paper, we will refer to
the old and new implementations as MCMCTREE 4.1
and MCMCTREE 4.2. Figure 3a,b shows the calibra-
tion t > tL = 1 for different values of parameters p (0.1
or 0.5) and c (0.2, 0.5, 1, or 2). The 2.5% limit is at 1,
whereas the 97.5% limits for those values of c are 5.8,
12.8, 24.4, and 47.8, respectively, when p = 0.1, and are
6.2, 13.2, 24.8, and 48.2, when p = 0.5. If 1 time unit
is 100 Myr, then L(1, 0.1, 1) implements the constraint

FIGURE 3. The minimum-bound density L(tL, p, c) implemented in MCMCTREE 4.2. For each value of p (0.1 or 0.5), the 4 curves from top
to bottom correspond to c= 0.2, 0.5, 1, and 2. The node is at 1.1 for p= 0.1 and at 1.5 for p= 0.5.
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t > 100 Ma by the 95% interval (100 Ma, 2440 Ma). Thus,
although the distribution bounds the node age from
above, the bound is very weak. Although both large p
and large c push up the node ages, c has a far greater
impact. When c = ∞, the density should converge to
that implemented in version 4.1. We used p = 0.1 and
c= 0.2, 0.5, 1, and 2 to implement the minimum bounds
for the 4-species example, with the results shown in
Table 1.

We do not apply the truncated Cauchy density
(Equation 26) for calibration at the root. If a fossil
minimum bound is used for the root, we insist that a
maximum bound is specified as well (using the control
variable RootAge in the control file) in which case the
joint bound (fig. 2c in Yang and Rannala 2006) is used.

We also tested a few distributions to represent the
maximum bound t < tU, alternative to the soft uniform
distribution over (0, tU) implemented in MCMCTREE
4.1 (Yang and Rannala 2006; Fig. 2c), but we decided
not to change this distribution. Although we expect
that the true age is more likely to be intermediate of
0 and tU (rather than equally likely to be anywhere in
the interval), it is unclear what intermediate ages are
mostly likely to be true, making it difficult to construct
a reasonable prior. Furthermore, maximum bounds are
uncommon (because they are difficult to justify on the
basis of fossil data), and minimal bounds often exist on
daughter nodes on the tree, so that the uniform distribu-
tion U(0, tU) is automatically truncated from below. This
is particularly the case for the loose maximum bound
applied to the root.

For fixed values of p and c, the prior density (Equation
26) implies larger absolute errors for older calibrations.
We do not imply, however, that the quality of fossils de-
teriorates proportionally with divergence time. Indeed,
the degree to which fossil estimates approximate diver-
gence times may not differ materially for events that
differ in age by an order of magnitude. We stress, there-
fore, that in real data analysis, different values of p and
c should be used for each minimum-bound calibration
based on a careful assessment of the fossil and geologi-
cal data on which the bound is based. However, we do
not make such an attempt in this study.

Sequence Data sets

Three previously published data sets were analyzed
to estimate divergence times, representing different time
scales and different scenarios of fossil calibrations. Gen-
Bank accession numbers for the sequences can be found
in the original publications.

The first data set consists of the nuclear RAG1 genes
from 52 amphibian species, originally analyzed by San
Mauro et al. (2005). The alignment included 1368 sites.
The rooted ingroup tree is shown in Figures 4 and 5,
from San Mauro et al. Two maximum and 8 minimum
bounds were used as calibrations (Table 2). In the MUL-
TIDIVTIME analysis, a coelacanth, Latimeria chalumnae,
was used as the outgroup.

The second data set consists of the mitochondrial
genomes from 28 actinopterygian bony fishes and 2
coelacanths, analyzed previously by Inoue et al. (2005).
The rooted tree is shown in Figure 6. As in Inoue
et al., 2 maximum and 12 minimum bounds were used
(Table 2). The alignment has 10,327 sites, including the
first and second codon positions of 12 protein-coding
genes encoded by the same strand of the genome, 22
transfer RNA genes, and 2 ribosomal RNA genes. These
were analyzed as 4 partitions in both programs, with
independent rates and substitution parameters esti-
mated for each partition. For the MULTIDIVTIME anal-
ysis, the catshark, Scyliorhinus canicula, was used as the
outgroup.

The third data set consists of nuclear genes from 38
species of modern cats (family Felidae), analyzed by
Johnson et al. (2006) and Rannala and Yang (2007). For
the MULTIDIVTIME analysis, the banded linsang, Pri-
onodon linsang, was used as the outgroup. The rooted
ingroup species tree is shown in Figure 7, extracted
from the phylogeny of Johnson et al. We used 1 max-
imum and 11 minimum bounds as fossil calibrations
according to Johnson et al. (Table 2). However, 2 mini-
mum calibrations, 5 Ma for the Leopardus geoffroyi—Felis
catus split and 1 Ma for the Puma concolor—F. catus split
(nodes 4 and 6 in Johnson et al. 2006) are redundant and
not used. The alignment included 19,984 sites, from 30
nuclear genes (19 autosomal, 5 X-linked, and 6 Y-linked
genes), all of which were analyzed as one partition, as
in previous studies.

MCMCTREE 4.1 and 4.2 and MULTIDIVTIME were
used in the analysis, with the settings chosen to be as
similar as possible. In both programs, the likelihood is
calculated using a normal approximation of the MLEs
of branch lengths, obtained using the BASEML program
under the F84 + Γ5 substitution model (Yang 1994) (see
Yang 2006, p. 246–247, for details). The gamma priors
for the overall rate and for the rate-drift parameter (ν or
σ2) are summarized in Table 3. The prior mean for the
overall rate (rtrate) is set to a rough estimate obtained
by fitting a molecular clock to the sequence data, us-
ing point calibrations. A gamma prior is also specified
on the root age for MULTIDIVTIME (rttime), whereas
it is specified for MCMCTREE for the amphibian data
set only, which does not have fossil calibrations on the
root. Other prior parameters in MULTIDIVTIME were
fixed as follows: rttmsd = rttm/2, rtratesd = rtrate, and
brownmean = brownsd = 1/rttm, and the same were
applied in MCMCTREE.

In MCMCTREE, the auto-correlated rates model
(clock = 3) was used to specify the prior of rates, as
in MULTIDIVTIME. The parameters of the birth–death
process with species sampling were fixed at λ = μ = 1
and ρ = 0, so that the prior is similar to that used in
MULTIDIVTIME. A loose maximum bound for the root
age of 1000 Ma is used for MULTIDIVTIME.

The number of iterations, the burn-in, and the sam-
pling frequency were determined in pilot runs of the
programs. Every analysis was conducted at least twice
to ensure consistency between runs.
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FIGURE 4. The rooted tree for the amphibian data set, showing fossil calibrations. The branches are drawn to show the estimates of diver-
gence times in San Mauro et al. (2005).

RESULTS

The Implementation of Minimum-Bound Calibration

We evaluated the impact of parameters p and c in
the minimum-bound distribution (Equation 26) on the
prior and posterior of divergence times. We analyzed
the 3 data sets with 2 different values for p (0.1 and 0.5)
and 4 different values for c (0.2, 0.5, 1, and 2). The re-
sults, shown in supplementary Figures S1–S3 (available
from http://sysbio.oxfordjournals.org/), match closely
the patterns for the 4-species case of Table 1. For ex-
ample, increasing either p or c made node ages older,
with c having a larger effect. Importantly, the effect was
present in the posterior as well as in the prior. The only
exception is that in the amphibian data set, the posterior
did not seem to be sensitive to the values of p and c. The
reason for this exception is not known.

Based on those tests and on the results for the 4-
species example, we used p = 0.1 and c = 1 as default
values for the analysis of the 3 data sets in this paper.
At those values, MCMCTREE 4.2 typically produce an

older age for the root but younger ages for the young
nodes compared with MULTIDIVTIME.

The Amphibian Data set

The priors and posteriors of divergence times ob-
tained from the analysis using MULTIDIVTIME as well
as versions 4.1 and 4.2 of MCMCTREE are shown in the
chronograms of Figure 5 in which the branch lengths
represent the prior/posterior means of the node ages.
The 95% CIs were shown for the root node only. Several
nodes are connected by lines across the analyses for
easy comparison.

The 2 versions of MCMCTREE produced more dif-
fuse priors and wider prior intervals than MULTIDIV-
TIME. The prior means of node ages from MCMCTREE
4.1 were much older than those from MULTIDIVTIME,
whereas those from MCMCTREE 4.2 were more simi-
lar. Compared with MULTIDIVTIME, MCMCTREE 4.2
produced older age estimates for 3 basal nodes (Nodes
36, 43, and 51 [the root]) but younger age estimates for
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FIGURE 5. The amphibian tree showing the prior or posterior means of node ages estimated using MCMCTREE and MULTIDIVTIME.

other nodes (such as 4 key nodes within the Anura). The
pattern is very similar to that seen in the analysis of the
4-species case (Table 1), where the root age t1 was older
in MCMCTREE 4.2 than in MULTIDIVTIME, whereas

ages t2 and t3 were younger. However, those differences
did not persist in the posterior.

The posterior time estimates obtained from MC-
MCTREE 4.1 were slightly older than those from
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TABLE 2. Fossil constraints used in the 3 data sets (Myr)

Node Bounds
Amphibian data set (San Mauro et al. 2005)

50 Oryctolagus–Struthio <338
>288

37 Gegeneophis–Geotrypetes >130
36 Lyciasalamandra–Agalychnis >230
33 Andrias–Onychodactylus >161
24 Leiopelma–Agalychnis >140
21 Pipa–Hymenochirus >86

7 Mantidactylus wittei–Mantidactylus sp. <15
5 Lechriodus–Caudiverbera >53
1 Litoria–Agalychnis >42

Actinopterygian data set (Inoue et al. 2005)
27 Latimeria–Pagrus (root) <528

>411
25 Polypterus–Pagrus <450
21 Atractosteus–Amia >155
20 Scaphirhynchus–Atractosteus >141
19 Polyodon–Scaphirhynchus >89
15 Hiodon–Pantodon >155
14 Osteoglossum–Pantodon >112
13 Anguilla–Pagrus >97
12 Notacanthus–Anguilla >90
10 Conger–Anguilla >50

7 Engraulis–Sardinops >57
6 Cyprinus–Crossostoma >50
1 Polymixia–Pagrus >90

Felid data set (Johnson et al. 2006)
37 Panthera–Felis catus (root) <16
36 Neofelis nebulosa–Panthera >3.8
34 Panthera uncia–P. tigris >1
27 Caracal serval–C. caracal >3.8
24 Leopardus pardalis–L. geoffroyi <5
22 Leopardus jacobita–L. geoffroyi >1
18 Lynx pardinus–Felis catus >5.3
17 Lynx rufus–L. pardinus >2.5
13 Acinonyx jubatus–Puma Concolor >3.8
12 Puma yagouaroundi–P. Concolor >1.8
11 Prionailurus bengalensis–Felis catus >4.2
10 Otocolobus manul–Prionailurus bengalensis >1

1 Felis silvestris–F. catus >1

Note: The node numbers refer to those in the trees of Figures 4
(amphibian), 6 (actinopterygian), and 7 (felid).

MULTIDIVTIME. The MCMCTREE 4.2 estimates were
even more similar. The posterior distributions of the
times produced by MCMCTREE were more diffuse
than those generated by MULTIDIVTIME, as indicated
by the wider CI for the root age. Overall, the CIs over-
lap substantially between the analyses. As the gamma
prior on the root age is not based on any fossil data,
we removed it in an MCMCTREE 4.2 analysis to assess
its impact. This analysis produced very similar time
estimates (see supplementary Fig. S4).

Our time estimates using MULTIDIVTIME were
slightly older than those obtained by San Mauro et al.
(2005) using the same program. For example, Node
43 (Gymnophiona/Anura) was dated to 380 Ma with
95% CI (334, 443) in our analysis, whereas San Mauro
et al. obtained 367 Ma (328, 417). The time of divergence
of salamanders (Caudata) and frogs (Anura) (Node
36) was 367 Ma (324, 427) in our analysis but 357 Ma
(317, 405) by San Mauro et al. Although the CIs overlap
between the 2 analyses, the differences are systematic
and appear to be due to the use of different priors on the

rate-drift parameter (ν). We used 0.24 for both brown-
mean and brownsd (Table 3), whereas San Mauro et al.
used 0.01 for both values. All these clock estimates are in
substantial discord with fossil minima because the ear-
liest records of crown-lissamphibians and batrachians
are latest Permian-early Triassic (ca. 251 Ma, Marjanovic
and Laurin 2007; Ruta and Coates 2007).

The Actinopterygian Data set

The prior and posterior means of divergence times
obtained using MULTIDIVTIME, and MCMCTREE 4.1
and 4.2 are shown in the trees of Figure 6. Compared
with MULTIDIVTIME, MCMCTREE 4.1 produced much
older prior mean ages, whereas MCMCTREE 4.2 pro-
duced older root age but younger ages for other nodes,
similar to the analysis of the amphibian data set. Similar
differences are visible in the posterior, but the posteri-
ors were even more similar among the 3 analyses. The
MULTIDIVTIME estimates are almost identical between
this study and Inoue et al. (2005).

MCMCTREE 4.2 dated the basal actinopteran (Node
22) to 334 Ma (280, 383) and the basal teleostean (Node
16) to 296 Ma (248, 341). The MULTIDIVTIME estimates
were older, at 376 Ma (336, 413) and 333 Ma (295, 371),
respectively (see also Inoue et al. 2005). Recently, Hurley
et al. (2007) reported a stem-amiid, †Brachydegma, from
the Early Permian (>276 Ma). The age of †Brachydegma
aligned closely with the MCMCTREE 4.2 estimate for
the Lepisosteidae/Amia divergence (Node 21), at 333
Ma (279, 382). Our estimate for the date of divergence of
stem-teleosts from Amiidae (and other members of the
“Ancient fish clade”) suggests a Triassic divergence (ca.
300 Ma) contrasting sharply with the oldest fossil record
of stem-teleosts (Late Jurassic, >155 Ma; Arratia and
Schultze 1999). The early fossil record of neopterygians
and stem-teleosts has not been actively investigated and
so this may go some way to explain the disparity in date
estimates (Hurley et al. 2007). However, the topology
of our tree—specifically with regard to the relationship
between teleosts and the nonteleost actinoptergians,
is not compatible with the scheme followed by most
morphologists (Hurley et al. 2007), and this impacts
materially upon the interpretation of the fossil min-
imum bounds. Furthermore, mitochondrial data sets
have been shown to support much older divergence
dates for Actinopteri and Teleostei than do nuclear data
sets (Hurley et al. 2007).

The Felid Data set

The prior and posterior means obtained in different
analyses of the felid data set are shown in the trees
of Figure 7. MCMCTREE 4.1 produced much older
(and nearly proportionally older) prior node ages than
MULTIDIVTIME. MCMCTREE 4.2 is more similar to
MULTIDIVTIME, with old nodes to be older and young
nodes to be slightly younger in MCMCTREE 4.2 than
in MULTIDIVTIME. The patterns are similar to those
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FIGURE 6. The rooted tree for the actinopterygian data set, showing fossil calibrations, and the prior and posterior means of node ages
estimated using MCMCTREE and MULTIDIVTIME.
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FIGURE 7. The rooted tree for the felid data set, showing fossil calibrations, and the priors and posterior means of node ages estimated using
MCMCTREE and MULTIDIVTIME.
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TABLE 3. Gamma priors used in analysis of the 3 data sets (1 time unit = 100 Myr)

Variable Frog Fish Cat
MULTIDIVTIME MCMCTREE MULTIDIVTIME MCMCTREE MULTIDIVTIME MCMCTREE

Root age (rttime, rttimesd) 4.2, 2.1 G(4, 0.95) 4.5, 2.25 None 0.1, 0.05 None
Substitution rate of the root node

(rtrate, rtratesd) or rgene gamma
0.068, 0.068 G(1, 14.7) 0.05, 0.05 G(1, 20) 0.126, 0.126 G(1, 7.94)

Rate-drift parameter ν or σ2 (brown-
mean, brownsd) or sigma2 gamma

0.24, 0.24 G(1, 4.17) 0.22, 0.22 G(1, 4.5) 9.28, 9.28 G(1, 0.11)

Notes: MULTIDIVTIME specifies the gamma prior by the mean (m) and standard deviation (s), whereas MCMCTREE uses the shape (α) and
scale (β) parameters, that is, G(α,β). These are related as follows: α = (m/s)2, β = m/s2. Whenever possible, the same gamma priors are used
in the 2 programs. MULTIDIVTIME always requires a gamma prior on the root age, whereas MCMCTREE can use it only if no fossil calibration
exists on the root. For the fish and felid data sets, a gamma prior is used for the root age in MULTIDIVTIME but not in MCMCTREE as there
are fossil calibrations on the root.

noted in the other 2 data sets and in the analysis of the
4-species example.

The huge differences in the prior between MCMC-
TREE 4.1 and MULTIDIVTIME persisted in the pos-
terior, so that the posterior mean ages estimated by
MCMCTREE 4.1 were nearly proportionally older than
those from MULTIDIVTIME, as noted in the analysis
of Rannala and Yang (2007). Posterior time estimates
from MCMCTREE 4.2 were very similar to those from
MULTIDIVTIME. The root age is the most different,
with posterior means to be 11.0 Ma (8.4, 14.8) and 11.6
Ma (8.5, 15.6) from the 2 programs, although the 95%
CIs were wide and overlapped considerably. It is in-
teresting to note that the prior mean of root age from
MCMCTREE 4.2 was older but the posterior mean was
younger than corresponding means from MULTIDIV-
TIME.

It may be noted that our approximate likelihood cal-
culation using MCMCTREE 4.1 produced similar time
estimates to those obtained using the exact calculation
(Rannala and Yang 2007). Those and other results (not
shown) suggest that the normal approximation is quite
reliable, at least for such large data sets.

The MCMCTREE 4.2 estimates were slightly older
than those obtained by Johnson et al. (2006) using MUL-
TIDIVTIME. For example, the divergence of Panthera
from the other felids (Node 37) was dated to 11.0 Ma
(8.4, 14.8) in our analysis and to 10.8 Ma (8.4, 14.5) by
Johnson et al. The separation between leopard and do-
mestic cat (Node 11) was dated to 6.6 Myr (5.1, 8.9) in
our analysis and to 6.2 Ma (4.8, 8.6) by Johnson et al.
These authors suggested that modern felid arose in Asia
with the divergence of the Panthera lineage (Eurasia) at
10.8 Ma (8.4, 14.5) (Node 37) and the divergence of the
Bay Cat lineage (Eurasia) at 9.4 Ma (7.4, 12.8) (Node 31).
Based on the estimated time of the Ocelot lineage at 8.1
Ma (6.3, 11.0) (Node 25), they suggested that the com-
mon ancestor to 5 felid lineages: Ocelot (America), Lynx
(America), Puma (America), Leopard Cat (Eurasia), and
Domestic Cat (Eurasia), crossed the Bering land bridge
to North America for the first time, at 8.5–8.0 Ma. Our
time estimation for the separation for the Ocelot lineage
was 8.7 Ma (6.7, 11.6), older than the geology-based
time estimate for the Bering land bridge but the 95% CIs
overlap.

The felid data set showed larger differences in poste-
rior time estimates among methods than the other 2 data
sets. This appears to reflect the imprecise fossil calibra-
tions in the felid data set, as revealed by the infinite-sites
plots (see below).

Infinite-Sites Plots

The “infinite-sites” theory developed by Yang and
Rannala (2006) predicts that when the amount of se-
quence data approaches infinity, the posterior means of
times and the 95% CIs for different nodes will fall on a
straight line. The theory is general and applies to all cur-
rent methods of Bayesian divergence time estimation,
including that of Thorne et al. (1998). Figure 8 shows the
infinite-sites plots for the 3 data sets in which the 95%
CI widths of node ages are plotted against the posterior
means.

The amphibian data set is the smallest among the 3
data sets analyzed. The weak correlation (R2 = 0.52 by
MCMCTREE and 0.33 by MULTIDIVTIME) indicates
that the sequence data are far from saturation (Figure
8a,a’). The slope of 0.44 (or 0.40 by MULTIDIVTIME)
is a measure of fossil precision and means that every 1
Myr of divergence time adds 0.44 Myr of uncertainty in
the posterior estimate (or adds 0.40 Myr to the 95% CI
interval). The outlier in the plots corresponds to Node
50 in the tree of Figure 4, which has joint fossil bounds,
leading to a much narrower posterior CI than for other
nodes.

In the larger actinopterygian data set, which con-
sists of almost the whole mitochondrial genome, the
correlation (R2 = 0.75 by MCMCTREE or 0.66 by MUL-
TIDIVTIME) is much stronger (Fig. 8b,b’). The smaller
slope (0.34 by MCMCTREE or 0.26 by MULTIDIVTIME)
means that the fossils are slightly more informative
than in the amphibian data set, with every 1 Myr of
divergence adding only 0.34 Myr of uncertainty in the
posterior CI. The scatter plot indicates that old nodes
were estimated more precisely relatively than young
nodes because the only 2 maximum bounds are on old
nodes (Node 27 [the root] and Node 25) and the only
joint bounds are at the root (Fig. 6).

In the felid data set, the linear regression is nearly
perfect, with R2 = 0.98 by both programs (Fig. 8c,c’),
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FIGURE 8. The infinite-sites plot for the 3 data sets. Each point corresponds to one internal node on the tree. The x-axis is the posterior mean
of the node age, whereas the y-axis is the 95% posterior CI width, that is, the difference of the 97.5% and 2.5% limits. The time unit is 100 Myr.
The posterior means of the node ages were used to draw the trees in Figures 5, 6, and 7.

indicating that the amount of sequence data (at ∼20
Kb) had nearly reached saturation, and adding more
sequence data are unlikely to improve the precision
of posterior time estimates. The fossil calibrations are
the most imprecise among the 3 data sets, indicated
by the large slopes (0.61 by MCMCTREE or 0.66 by
MULTIDIVTIME).

DISCUSSION

Factors Affecting Molecular Dating

We analyzed the 3 data sets to evaluate the impact of
several other factors, such as the approximate and ex-
act likelihood calculations, the substitution model, the

amount of rate variation among lineages assumed in the
prior, and so forth. For each data set, we changed only
one aspect of the major analysis. Some of the results
of this sensitivity analysis are shown in supplemen-
tary Figures S4–S6 for the 3 data sets, respectively. For
example, we ran the analysis using the JC69 model
(Jukes and Cantor 1969) instead of F84+Γ5. The posterior
estimates were very similar between the 2 models. This
appears to be due to the use of multiple fossil cali-
brations in the analysis. It was previously noted that
with the use of one single calibration, nonproportional
underestimation of sequence distances by simplistic
models can lead to systematically biased time estimates
(e.g., Yang 1996).
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We then examined the impact of the prior on the
rate-drift parameter σ2 (Rannala and Yang 2007), by
multiplying parameter α in the prior G(α,β) by 0.1 or
10, so that both the mean and the variance of the prior
distribution are reduced or increased by 10. In all 3
data sets, increasing the mean σ2 in the prior (so that
the prior assumes more variable rates among lineages)
led to younger node ages. The effect is particularly
dramatic for the actinopterygian data set, presumably
because the large σ2 allowed large changes in the rate
across branches. Reducing the mean σ2 by 10-fold had
minimal impact in the 3 data sets (see supplementary
Figs. S4–S6).

In sum, in our analysis of the 3 data sets, the exact
and approximate likelihood calculation, the substitution
model, and the 2 models of rate drift (results not shown)
had minimal impact on the posterior time estimation.
The prior on the rate-drift parameter σ2 was more im-
portant. By far the most important factor in our analysis
was the fossil calibrations or the different ways of repre-
senting them.

The Importance of Fossil Calibrations

We found the impact of the strategy for incorpo-
rating the same minimum and maximum bounds in
the 2 programs to be surprising. It is important to
note that the uncertainties in the posterior and the
impact of the prior will not disappear with the addi-
tion of sequence data. The infinite-sites theory (Yang
and Rannala 2006; Rannala and Yang 2007) predicts
that when the sequence length approaches infinity,
the posterior distribution will become 1D, so that the
posterior means (and other quantities such as the stan-
dard deviations or the 95% limits) of node ages will
become proportional across nodes on the tree, but
the absolute times have to be resolved by the prior.
The fossil record can provide only uncertain calibra-
tions with no node age known with certainty, so that
the posterior time estimates will always involve un-
certainties. The consistency of Bayesian estimation in
the conventional setting does not apply to the dating
problem. Because of the importance of the prior, we
recommend that all molecular dating analyses should
carefully assess and report the priors on times and
rates.

The sensitivity of the posterior time estimates to
different strategies for representing minimum and
maximum fossil bounds underscores the critical im-
portance of fossil calibrations to molecular dating and
highlights an urgent need for research into ways of
summarizing the fossil data to provide useful calibra-
tions. Currently, most bounds derived from the fossil
record are minimum bounds, but these alone are insuf-
ficient for effective calibration. Confidence intervals on
fossil distribution data have been advocated as a means
of determining the true time of origin of a species in
question (Marshall 1990, 2008). However, they suffer
from the difficulty of distinguishing the earliest mem-

bers of divergent lineages from members of the an-
cestral lineage before the split (Donoghue and Benton
2007).

In this paper, we implement a more flexible and
potentially more realistic distribution to represent min-
imum bounds based on a soft-truncated Cauchy distri-
bution with 2 parameters p and c. We used the values
p = 0.1 and c = 1 in the analysis of the 3 data sets.
However, we stress that those values are very unlikely
to represent all fossil minimum bounds well. Ideally,
different values for p and c should be used for differ-
ent minimum bounds, chosen to reflect the differing
confidence in the degree to which paleontological min-
ima reflect lineage divergence times. This will require
researchers to revisit the fossil data on which the calibra-
tions are based. For example, variation in the amount
of sediments representative of different physical and
biotic environments through geological time has been
identified as the principal bias in the record of fossil
biodiversity (Raup 1972; Smith and McGowan 2007).
Terrestrial sediments are essentially unrepresented in
the Ordovician System (McGowan and Smith 2008), so
it is no surprise that the earliest unequivocal records
of terrestrial animals and plants are from the ensuing
Silurian System (Labandeira 2005). Consideration of
such large biases in the fossil record may provide a
means for constructing probabilistic descriptions of
clade divergence times. We leave such work to future
research. Nevertheless, the method implemented here
allows one to use flexible distributions to represent the
information in the fossil record.

Our main objectives in this paper have been to assess
the impact of the prior and other factors on Bayesian es-
timation of divergence times. In a recent study, Lepage
et al. (2007) used the Bayes factor to compare the fit to
the sequence data of different models for generating pri-
ors on times and rates. Their analysis did not use any
calibrations, so that it is unclear how relevant the results
are to practical dating analysis. Dating species diver-
gences without any calibration does not appear to be a
very meaningful exercise. We suggest that the sensitivity
of time estimation to the prior is a more important ques-
tion than the fit of the prior to the sequence data. We also
suggest that the appropriateness of the time prior and
of the fossil calibrations should ideally be assessed by a
careful appraisal of previous data, especially the fossil
record, rather than by the fit of the prior to the sequence
data being analyzed.

SUPPLEMENTARY MATERIAL

Supplementary material can be found at http://www.
sysbio.oxfordjournals.org/.
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