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Abstract: The stochastic (2+1)-dimensional breaking soliton equation (SBSE) is considered in this
article, which is forced by the Wiener process. To attain the analytical stochastic solutions such as the
polynomials, hyperbolic and trigonometric functions of the SBSE, we use the tanh–coth method. The
results provided here extended earlier results. In addition, we utilize Matlab tools to plot 2D and 3D
graphs of analytical stochastic solutions derived here to show the effect of the Wiener process on the
solutions of the breaking soliton equation.

Keywords: stochastic breaking soliton equation; Wiener process; tanh-coth method

1. Introduction

Deterministic nonlinear evolution equations (NLEEs) were widely utilized to illustrate
some nonlinear phenomena in quantum mechanics, solid-state physics, fluid mechanics,
chemical kinematics, plasma physics, the heat flow, optical fibres, etc. Researchers have
attempted to find analytic solutions to understand the mechanisms of these phenomena.
Therefore, many effective analytical and numerical methods have been proposed by a
diverse group of physicists and mathematicians. The Hirota’s [1], Riccati–Bernoulli sub-
ODE [2], exp(−φ(ς))-expansion [3], perturbation [4–7], (G′/G)-expansion [8,9], Jacobi
elliptic function [10], sine–cosine [11,12], tanh–sech [13,14], etc, are some examples of
analytical methods. While, a few numerical methods for solving fractional stochastic partial
differential equations have been introduced including Galerkin finite element method [15],
the meshless method [16,17], finite element method [18], implicit Euler method [19,20], the
modified decomposition technique [21], and so on.

In recent years, the validity of including random effects in the study, prediction
and simulation of complex phenomena has gained widespread recognition in physics,
geophysics, climatic dynamics, biology, chemistry, and other fields. Under noise or random
effects, partial differential equations are perfect mathematical problems to represent the
complex systems.

It appears to be more crucial to study the NLEEs with some random force. Therefore,
we consider here the SBSE in this form [22]:

dϕx − [4ϕx ϕxy + 2ϕxx ϕy − ϕxxxy]dt = σϕxdβ, (1)

where ϕ is a real stochastic function, σ is the noise intensity, β is the Brownian motion in
one variable t, and ϕxdβ is the multiplicative noise in the itô sense.
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Many authors have obtained the analytical solutions of the deterministic breaking
soliton equation by various methods such as the three-wave [23], Hirota bilinear [24],
(G′

G )-expansion [25], generalized auxiliary equation [26], tanh–coth [27], improved (G′
G )-

expansion and extended tanh[28], Jacobi elliptic functions [29], and projective Riccati
equation expansion [30]. The solutions to stochastic breaking soliton equations have not
been obtained till now.

Our motivation for this work is to acquire the analytical stochastic solutions of the
SBSE (1), which has never been considered before in the presence of a stochastic term. To
achieve these solutions, we employ the tanh–coth method. Due to the relevance of this
equation, which is used to describe the hydrodynamic wave model of shallow-water waves,
plasma physics, and the leading flow of fluid, these analytical stochastic solutions are more
extensive and crucial in explaining numerous extremely sophisticated physical phenomena.
Moreover, the acquired analytical solutions of the SBSE (1) in this article expand several
earlier acquired results, such as the result mentioned in [27,28]. We also go over the effects
of Wiener process on the analytical solutions of the SBSE (1) via MATLAB tools to display
some graphical representations.

This article’s structure is as follows: To obtain the wave equation of the SBSE (1), we use
a suitable wave transformation in next section. In Section 3, we apply the tanh–coth method
to have the analytical stochastic solution of the SBSE (1). In Section 4, we demonstrate how
the Wiener process affects the analytical solutions of the SBSE (1). In Section 5, the physical
interpretation is presented. Finally, we provide the article’s conclusions.

2. The Wave Equation of the SBSE

To obtain the wave equation of the SBSE, we employ the next wave transformation:

ϕ(x, y, t) = χ(θ)e(σβ(t)− σ2
2 t), θ = θ1x + θ2y + θ3t, (2)

where χ is a real function, θi for all i = 1, 2, 3 are constants. We note that:

ϕx = θ1χ′e(σβ(t)− σ2
2 t),

dϕx = (θ1θ3χ′′ +
1
2

σ2θ1χ′ − 1
2

σ2θ1χ′)e(σβ(t)− σ2
2 t)dt + (σθ1χ′dβ)e(σβ(t)− σ2

2 t),

dϕ

dy
= θ2χ′e(σβ(t)− σ2

2 t),
d2 ϕ

dxdy
= θ1θ2χ′′e(σβ(t)− σ2

2 t),

d2 ϕ

dx2 = θ2
1χ′′e(σβ(t)− σ2

2 t),
d4 ϕ

dx3dy
= θ3

1θ2χ′′′′e(σβ(t)− σ2
2 t), (3)

where 1
2 σ2dt is the Itô correction term. Substituting Equations (2) into (1) and using (3), we

obtain the next ordinary differential equation:

θ3χ′′ − 6θ1θ2χ′χ′′e(σβ(t)− σ2
2 t) + θ2

1θ2χ′′′′ = 0. (4)

Recalling that χ is the deterministic function and taking expectation on both sides of
(4), we obtain:

θ3χ′′ − 6θ1θ2χ′χ′′e−
σ2
2 tE(eσβ(t)) + θ2

1θ2χ′′′′ = 0. (5)

We note for every standard Gaussian process Z that:

E(eγZ) = e
γ2
2 t (6)

where γ is a real number. The identity (6) comes from the fact σβ(t) is distributed like
σ
√

tZ. Hence, Equation (5) has the following form:

θ3χ′′ − 6θ1θ2χ′χ′′ + θ2
1θ2χ′′′′ = 0. (7)
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Integrating Equation (7) once in terms of θ, we obtain:

θ3χ′ − 3θ1θ2[χ
′]2 + θ2

1θ2χ′′′ = γ,

where γ is the integration constant. For simplicity, we put γ = 0 to obtain:

θ2
1θ2χ′′′ + θ3χ′ − 3θ1θ2[χ

′]2 = 0. (8)

Putting
χ′ = u, (9)

in Equation (8), we obtain:
u′′ + `1u− `2u2 = 0, (10)

where
`1 =

θ3

θ2
1θ2

and `2 =
3
θ1

.

3. Tanh–Coth Method

To find the analytical stochastic solutions of the SBSE (1), we employ here the tanh–coth
method [14]. Let us define the solution u of (10) as follows:

u(θ) =
M

∑
j=0

akY j (11)

where Y = coth(ρθ) or Y = tanh(ρθ). Balancing u′′ with u2 to calculate the parameter M,
we obtain:

M = 2.

Rewriting Equation (11) as follows:

u(θ) = a0 + a1Y + a2Y2. (12)

Differentiating Equation (12) twice, we have:

u′ = ρa1 + 2ρa2Y− a1ρY2 − 2a2ρY3,

u′′ = 2ρ2a2 − 2a1ρ2Y− 8a2ρ2Y2 + 2a1ρ2Y3 + 6a2ρ2Y4. (13)

Substituting Equations (12) and (13) into Equation (10), we obtain:

(6a2ρ2 − a2
2`2)Y4 + (2a1ρ2 − 2a2a1`2)Y3

−(8a2ρ2 + a2
1`2 + 2a0a2`2 − a2`1)Y2

−(2a1ρ2 + 2a0a1`2 − a1`1)Y + (2ρ2a2 + a0`1 − `2a2
0) = 0.

Equating each coefficient of Y j to zero for j = 0, 1, 2, 3, 4 , we have:

(2ρ2a2 + a0`1 − `2a2
0) = 0,

(2a1ρ2 + 2a0a1`2 − a1`1) = 0,

(8a2ρ2 + a2
1`2 + 2a0a2`2 − a2`1) = 0,

2a1ρ2 − 2a2a1`2 = 0,

and
(6a2ρ2 − a2

2`2) = 0.

Solving these equations, we have the next three groups of solutions:
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a0 =
3`1

2`2
, a1 = 0, a2 =

−3`1

2`2
, ρ =

1
2

√
−`1, (14)

a0 =
−`1

2`2
, a1 = 0, a2 =

3`1

2`2
, and ρ =

1
2

√
`1, (15)

and
a0 =

`1

`2
, a1 = 0, a2 = 0, and ρ = ρ. (16)

For the solutions of Equation (10), the first set (14) provides the following two cases:
Case 1-1: Let `1 < 0; then, Equation (10) has the following solutions:

u(θ) =
3`1

2`2
[1− tanh2(

1
2

√
−`1θ)] =

3`1

2`2
sech2(

1
2

√
−`1θ), (17)

or
u(θ) =

3`1

2`2
[1− coth2(

1
2

√
−`1θ)] =

−3`1

2`2
csch2(

1
2

√
−`1θ). (18)

Integrating Equations (17) and (18) once with respect to θ, we obtain:

χ1,1 =
3
√
−`1

`2
tanh(

1
2

√
−`1θ) + C, (19)

or

χ1,2 =
3
√
−`1

`2
coth(

1
2

√
−`1θ) + C, (20)

where C is the integral constant. Hence, the analytical stochastic solutions of the SBSE (1) are:

ϕ1,1(x, y, t) = [
3
√
−`1

`2
tanh(

1
2

√
−`1(θ1x + θ2y + θ3t)) + C]e(−σβ(t)− σ2

2 t), (21)

or

ϕ1,2(x, y, t) = [
3
√
−`1

`2
coth(

1
2

√
−`1(θ1x + θ2y + θ3t)) + C]e(−σβ(t)− σ2

2 t), (22)

Case 1-2: Let `1 > 0, then Equation (10) has the following solutions:

u(θ) =
3`1

2`2
[1 + tan2(

1
2

√
`1θ)] =

3`1

2`2
sec2(

1
2

√
`1θ), (23)

or
u(θ) =

3`1

2`2
[1 + cot2(

1
2

√
`1θ)] =

3`1

2`2
csc2(

1
2

√
`1θ). (24)

Integrating Equations (23) and (24) once with respect to θ, we obtain:

χ1,3 =
3
√
`1

`2
tan(

1
2

√
`1θ) + C, (25)

or

χ1,4 =
−3
√
`1

`2
cot(

1
2

√
`1θ) + C. (26)

Therefore, the analytical stochastic solutions of the SBSE (1) are:

ϕ1,3(x, y, t) = [
3
√
`1

`2
tan(

1
2

√
`1(θ1x + θ2y + θ3t)) + C]e(σβ(t)− σ2

2 t), (27)

or

ϕ1,4(x, y, t) = [
−3
√
`1

`2
cot(

1
2

√
`1(θ1x + θ2y + θ3t)) + C]e(σβ(t)− σ2

2 t). (28)

The second set (15) provides also two cases as follows:
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Case 2-1: Let `1 < 0, then Equation (10) has the following solutions:

u(θ) =
`1

2`2
[−1 + 3 tan2(

1
2

√
−`1θ)] =

`1

2`2
[−4 + 3 sec2(

1
2

√
−`1θ)], (29)

or
u(θ) =

`1

2`2
[−1 + 3 cot2(

1
2

√
−`1θ)] =

`1

2`2
[−4 + 3 csc2(

1
2

√
−`1θ)], (30)

where tanh(ix) = i tan(x) and coth(ix) = −i cot(x).
Integrating Equations (29) and (30) once with respect to θ, we obtain:

χ2,1(θ) =
`1

`2
[−2θ +

3√
−`1

tan(
1
2

√
−`1θ)] + C, (31)

or
χ2,2(θ) =

−`1

`2
[2θ − 3√

−`1
cot(

1
2

√
−`1θ)] + C. (32)

Therefore, the analytical stochastic solutions of the SBSE (1) are

ϕ2,1(x, y, t) = [
`1

`2
{−2θ +

3√
−`1

tan(
√
−`1

2
θ)}+ C]e(σβ(t)− σ2

2 t), (33)

and

ϕ2,2(x, y, t) =
[−`1

`2
{2θ − 3√

−`1
cot(
√
−`1

2
θ)}+ C]e(σβ(t)− σ2

2 t), (34)

where θ = θ1x + θ2y + θ3t.
Case 2-2: Let `1 > 0, then Equation (10) has the following solutions:

u(θ) =
`1

2`2
[−1 + 3 tanh2(

1
2

√
`1θ)] =

`1

2`2
[2 + 3sech2(

1
2

√
`1θ)], (35)

or
u(θ) =

`1

2`2
[−1 + 3 coth2(

1
2

√
`1θ)] =

`1

2`2
[2 + 3csch2(

1
2

√
`1θ)]. (36)

Integrating Equations (17) and (18) once with respect to θ, we obtain:

χ2,3 =
`1

`2
[θ +

3√
`1

tanh(
1
2

√
`1θ)] + C, (37)

or
χ2,4 =

`1

`2
[θ − 3√

`1
coth(

1
2

√
`1θ)] + C. (38)

Therefore, the analytical stochastic solutions of the SBSE (1) are:

ϕ2,3(x, y, t) = [
`1

`2
{θ + 3√

`1
tanh(

1
2

√
`1θ)}+ C]e(σβ(t)− σ2

2 t), (39)

and
ϕ2,4(x, y, t) = [

`1

`2
{θ − 3√

`1
coth(

1
2

√
`1θ)}+ C]e(σβ(t)− σ2

2 t), (40)

where θ = θ1x + θ2y + θ3t.
Meanwhile, the third set (16) gives the solution of Equation (10) as follows:

u(θ) =
`1

`2
. (41)

Integrating Equation (35) once with respect to θ, we obtain:
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χ3(θ) =
`1

`2
θ + C. (42)

Therefore, the exact stochastic solutions of the SBSE (1) is

ϕ3(x, y, t) = [
`1

`2
(θ1x + θ2y + θ3t) + C]e(σβ(t)− σ2

2 t). (43)

Remark 1. If we insert σ = 0, θ1 = θ2 = 1 and θ3 = −4 in Equations (21) and (22), then we obtain
the same solutions stated in [27] (see Equations (3.10) and (3.11)) and [28] (see, Equation (60)).

Remark 2. If we insert σ = 0, θ1 = θ2 = 1 and θ3 = 4 in Equations (27) and (28), then we obtain
the same solutions stated in [28] (see Equations (40) and (61)).

4. The Impact of Wiener Process on the Solutions of SBSE

We demonstrate here the impact of the Wiener process on the analytical solutions of
the SBSE (1). The following are some graphs of the behavior of these solutions. We plot the
solutions (27), (33) and (39) for various (noise intensity) and fixed parameters θ1 = θ2 = 1
and θ3 = −4 (or θ3 = 4) by using the MATLAB package, y = 1, for x ∈ [−5, 5] and
t ∈ [0, 5], as follows:

In the Figures 1–3 below, when we look at the surface at σ = 0, we can see that there
is some fluctuation and that it is not perfectly flat. However, when the noise is included
and its strength increases σ = 0.5, 1, 2, the surface becomes much more planar after small
transit patterns. This shows that the Wiener process affects and stabilizes the solutions.

σ = 0 σ = 0.5

σ = 1 σ = 2

Figure 1. 3D plot of the obtained solution ϕ1,3(x, 1, t) of Equation (27).
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σ = 0 σ = 0.5

σ = 1 σ = 2

Figure 2. 3D plot of the obtained solution ϕ2,1(x, 1, t) of Equation (33).

σ = 0 σ = 0.5

σ = 1 σ = 2

Figure 3. 3D plot of the obtained solution ϕ2,3(x, 1, t) of Equation (39).

Finally, in Figure 4, we display a 2D graph of the solution of Equations (27) and (39)
with various σ = 0, 0.5, 1, 2 to indicate the impact of the Wiener process on these
solutions. We note from Figure 4 that the solution of Equation (1) goes to zero as the
noise intensity increases.
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Figure 4. Two-dimensional plot of the solution of Equations (27) and (39) for different σ = 0, 0.5, 1, 2.

5. Physical Interpretation

The deterministic breaking soliton equation (i.e., (1) with σ = 0) is utilized to explain
the hydrodynamic problem of shallow-water waves, the wave of leading flow of fluid, and
plasma physics. The behavior of these waves changes when some external effect (random
fluctuations) is considered in (1) as shown in Figures 1–3 with σ = 0. As we explained
before, the external influence has an impact on the waves and makes them stable as shown
in Figures 1–3 with σ 6= 0.

6. Conclusions

In this paper, we got the analytical stochastic solutions including the hyperbolic func-
tions, trigonometric functions, and polynomials for the SBSE (1) via the tanh–coth method.
Some previously obtained results were reported in [27,28]. Due to the importance of this
equation, which is used to describe the wave of leading fluid flow, plasma physics and the
hydrodynamic equation of shallow-water waves, these analytical stochastic solutions are
more comprehensive and vital in describing various highly intricate physical phenomena.
In the end, we applied the Matlab tools to display the impact of the Wiener process on
the obtained solutions of the SBSE, and we deduced that multiplicative Wiener process,
in the itô sense, stabilizes the solutions of SBSE. In future studies, we can look at the
breaking soliton equation with an additive Wiener process or with a higher dimensional
Wiener process.
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