
RESEARCH Open Access

The impact of tumor profiling approaches
and genomic data strategies for cancer
precision medicine
Andrea Garofalo1,2, Lynette Sholl3, Brendan Reardon1,2, Amaro Taylor-Weiner2, Ali Amin-Mansour2, Diana Miao1,2,

David Liu1,2, Nelly Oliver1, Laura MacConaill1,3, Matthew Ducar3, Vanesa Rojas-Rudilla3, Marios Giannakis1,2,

Arezou Ghazani1, Stacy Gray1, Pasi Janne1, Judy Garber1, Steve Joffe4, Neal Lindeman3, Nikhil Wagle1,2,5,

Levi A. Garraway1,2,5*† and Eliezer M. Van Allen1,2,5*†

Abstract

Background: The diversity of clinical tumor profiling approaches (small panels to whole exomes with matched or

unmatched germline analysis) may engender uncertainty about their benefits and liabilities, particularly in light of

reported germline false positives in tumor-only profiling and use of global mutational and/or neoantigen data. The

goal of this study was to determine the impact of genomic analysis strategies on error rates and data interpretation

across contexts and ancestries.

Methods: We modeled common tumor profiling modalities—large (n = 300 genes), medium (n = 48 genes), and

small (n = 15 genes) panels—using clinical whole exomes (WES) from 157 patients with lung or colon adenocarcinoma.

We created a tumor-only analysis algorithm to assess germline false positive rates, the impact of patient ancestry on

tumor-only results, and neoantigen detection.

Results: After optimizing a germline filtering strategy, the germline false positive rate with tumor-only large panel

sequencing was 14 % (144/1012 variants). For patients whose tumor-only results underwent molecular pathologist

review (n = 91), 50/54 (93 %) false positives were correctly interpreted as uncertain variants. Increased germline false

positives were observed in tumor-only sequencing of non-European compared with European ancestry patients

(p < 0.001; Fisher’s exact) when basic germline filtering approaches were used; however, the ExAC database

(60,706 germline exomes) mitigated this disparity (p = 0.53). Matched and unmatched large panel mutational

load correlated with WES mutational load (r2 = 0.99 and 0.93, respectively; p < 0.001). Neoantigen load also

correlated (r2 = 0.80; p < 0.001), though WES identified a broader spectrum of neoantigens. Small panels did not

predict mutational or neoantigen load.

Conclusions: Large tumor-only targeted panels are sufficient for most somatic variant identification and

mutational load prediction if paired with expanded germline analysis strategies and molecular pathologist

review. Paired germline sequencing reduced overall false positive mutation calls and WES provided the most

neoantigens. Without patient-matched germline data, large germline databases are needed to minimize false

positive mutation calling and mitigate ethnic disparities.
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Background
The mapping of the human genome, together with the

advent of massively parallel sequencing, has accelerated

discovery of driver genetic alterations in cancer and the

development of drugs to target or otherwise exploit

these events [1]. Multiple tumor profiling approaches

that leverage these advances have entered the clinic.

Such assays often consist of targeted sequencing panels

that query a subset of typically 200–500 genes impli-

cated in cancer biology or clinical management [2–8].

Alternatively, panels that emphasize rapid turnaround

time by profiling smaller gene sets (n = 15–48 genes) have

also emerged [9, 10]. On the other end of the spectrum,

clinical whole-exome sequencing (WES; n ~ 20,000 genes)

of matched tumor and germline samples has been studied

through prospective sequencing efforts [11–13]. However,

the benefits and limitations of these different sequencing

strategies remain incompletely understood.

Understanding the differences in genomic results be-

tween different tumor profiling approaches will become

increasingly important as the cancer genome is lever-

aged to stratify patients for new therapeutic strategies.

For example, unlike targeted therapies linked to specific

genetic lesions (e.g., epidermal growth factor receptor

mutations and inhibitors), immune targeting strategies,

such as checkpoint blockade or personalized cancer

vaccines, may require large-scale ascertainment of muta-

tional and neoantigen loads and individual mutation-

associated neoantigens for personalized cancer vaccine

development [14–18]. One effort demonstrated the

ability of two large gene panels (315 or 573 genes) to

predict mutational load for immunotherapy response

in pilot patient cohorts [19], and another effort dem-

onstrated the ability of one large gene panel (341 genes) to

predict DNA mismatch repair protein deficient tumors

through mutational load [20], although a systematic

characterization of different tumor profiling strategies

for both mutation load and personal neoantigen iden-

tification should inform their relative utilities for

stratifying patients in emerging cancer precision medicine

frameworks.

Moreover, although sequencing of paired normal

blood or tissue samples is standard practice for

research-oriented WES applications, many targeted

panel approaches do not include matched normal

samples [2, 3, 9, 21, 22]. Together with the limited

ancestral diversity in many existing germline data-

bases, this absence of paired normals has raised concerns

for the potential of increased false positive somatic muta-

tion calls that are actually germline [23, 24].

To investigate these issues, we analyzed clinical se-

quencing data from 157 patients with advanced lung and

colon adenocarcinoma to ascertain the relative merits of

distinct tumor profiling approaches.

Methods
Patients and tumor specimens

All patients consented to an institutional review

board-approved protocol that allows comprehensive

genetic analysis of tumor and germline samples

(Dana-Farber Cancer Institute #12-078). Ancestry sta-

tus was self-reported. Samples were selected from

pathology archives by a board-certified anatomic

pathologist based on sample size, tumor purity, and

timing relative to date of study enrollment and ana-

lyzed by the Center for Advanced Molecular Diagnostics

(CAMD) at Brigham and Women’s Hospital (BWH),

a Clinical Laboratory Improvements Amendments

(CLIA)-certified laboratory. Tumor content was esti-

mated by an anatomic pathologist from correspond-

ing stained slides and only samples with at least 20 %

malignant cells were analyzed. DNA was isolated

with a commercial kit (QIAamp DNA Mini Kit,

Qiagen, Valencia, CA, USA) following the manufac-

turer’s instructions. DNA was quantified (PicoGreen,

ThermoFisher Scientific, Waltham, MA, USA) and

samples with at least 50 ng/μL of DNA proceeded to

library preparation.

Whole exome sequencing

WES from formalin-fixed, paraffin embedded (FFPE)

samples was performed as described previously [12].

Whole-exome capture libraries were constructed from

tumor and normal DNA after sample shearing, end re-

pair, phosphorylation, and ligation to barcoded sequen-

cing adaptors. DNA was then subjected to solution-

phase hybrid capture using Agilent baits. The samples

were multiplexed and sequenced using Illumina HiSeq

technology. All BAM files were deposited in dbGap

phs001075.v1.p1.

Genomic analysis

Sequence data processing and quality control

WES data were processed using established analytical pipe-

lines at the Broad Institute [12]. A BAM file was produced

using the Picard pipeline (http://broadinstitute.github.io/

picard/), which aligns tumor and normal sequences to the

hg19 human genome build from raw Illumina reads using

the BWA aligner (version 0.5.9-tpx [0.5.9 with an internal

patch to support threading]). BAM files were uploaded into

the Firehose pipeline (http://www.broadinstitute.org/

cancer/cga/Firehose), which manages input and out-

put files to be executed by GenePattern [25]. Quality

control modules within Firehose were applied to all

sequencing data for comparison of the origin for tumor

and normal genotypes and to assess fingerprinting con-

cordance. Cross-contamination of samples was estimated

using ContEst [26]; those with >5 % contamination were

excluded from subsequent analysis.
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Somatic alterations and downsampling

MuTect (version 1.1.6) [27] was applied to identify som-

atic single-nucleotide variants. Artifacts introduced by

DNA oxidation during sequencing or from FFPE were

computationally removed using a filter-based method

[28]. Annotation of identified variants was done using

Oncotator (version 1.2.7.0) [29]. Representative large

(n = 300) [3], medium (n = 48), and small (n = 15) [9]

gene sets were defined through review of literature

(Additional file 1: Table S1; Additional file 2: Table S2;

Additional file 3: Table S3). The aggregate mutation data

across the whole exome were collected in two files, one

containing all tumor-germline matched calls (Additional

file 4: Table S4) and a second containing tumor-only calls

(Additional file 5: Table S5). “Downsampling” was per-

formed on the aggregate somatic mutation alteration data

files to derive subsets of WES data for gene sets repre-

sented by the large, medium, and small gene lists defined

by the respective panels. For example, to model the 300

gene panel, the set of mutations from the entire WES data

was restricted to only consider events in those 300 genes.

The analyses were performed using the R statistical

software.

Tumor-only and germline analysis

Tumor-normal paired mutation data were taken to be

the set of all true somatic mutations for each patient. To

ensure only high-confidence mutation calls were consid-

ered, only mutations with an allelic fraction ≥5 % and se-

quencing or FFPE artifact filtering strategies described

above were considered. Tumor-only mutation calling

was performed by using MuTect and pairing the tumor

WES with an FFPE germline whole exome from another

patient to reduce false positive calls introduced by ar-

tifacts from the sequencing process, as described pre-

viously [23]. Variants were removed if they were

present in combinations of dbSNP (build 134) [30]

and 1000 Genomes (phase 1, version 3) [31] using

the Oncotator annotation algorithm [29], along with

the ExAC (version 0.3) [32] databases. Mutations were

rescued if listed as somatic in COSMIC (version 74)

at least one, three, five, or ten times, for increasing

stringency [33]. Positive predictive values for each filter

were calculated by dividing the number of true somatic

mutations in the post-filtering mutation data by the total

number of unfiltered mutations. Sensitivity was calculated

by dividing the number of true somatic mutations in the

tumor-only post-filtering data by the total number of

known somatic mutations in the paired mutation data. To

obtain the set of known germline variants, the GATK

HaplotypeCaller (version 3.1.1) [34, 35] was applied to

germline sequence BAMs to identify germline single-

nucleotide polymorphisms (SNPs) using WES data from

each patient. Unfiltered germline variants in tumor-only

targeted panel data after application of various database

filters were identified by comparison with exome germline

SNP data.

Orthogonal large panel molecular pathology review

A subset of cases (n = 91) underwent separate testing

with an academic lab large gene panel (“OncoPanel”),

followed by molecular pathology review [3]. Specifically,

after variants were identified by computational ap-

proaches, an individual molecular pathologist reviewed

each variant and assigned a tier based on clinical action-

ability and to determine whether the variant was likely

somatic or germline and whether there were any clinical

actions for the variant. The four tiers in this system are:

Tier 1 The alteration has well-established published

evidence confirming clinical utility in this tumor

type in at least one of the following contexts:

predicting response to treatment with a US

Food and Drug Administration (FDA)-approved

therapy; assessing prognosis; establishing a

definitive diagnosis; or conferring an inherited

increased risk of cancer to this patient and

family.

Tier 2 The alteration may have clinical utility in at

least one of the following contexts: selection of

an investigational therapy in clinical trials for

this cancer type; limited evidence of prognostic

association; supportive of a specific diagnosis;

proven association of response to treatment

with an FDA-approved therapy in a different

type of cancer; or similar to a different mutation

with a proven association with response to

treatment with an FDA-approved therapy in

this type of cancer.

Tier 3 The alteration is of uncertain clinical utility but

may have a role as suggested by at least one of

the following: demonstration of association with

response to treatment in this cancer type in

preclinical studies (e.g., in vitro studies or

animal models); alteration in a biochemical

pathway that has other known, therapeutically

targetable alterations; alteration in a highly

conserved region of the protein predicted, in

silico, to alter protein function; or selection of

an investigational therapy for a different cancer

type.

Tier 4 The alteration is novel or its significance has not

been studied in cancer.

Mutation rates and neoantigens

The mutation rate for each sample was calculated by

dividing the number of bona fide mutation calls post-

filtering by the total genomic territory sequenced (in
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megabases). Germline exome data from each patient

were used to genotype human leukocyte antigen (HLA)

loci with POLYSOLVER [36]. Patient HLA genotypes

and matched exome mutation data were used as inputs

for NetMHCPan [37] to generate predicted binding af-

finities of somatic mutations linked to specific MHC

class I molecules. Predicted mutation-associated neoan-

tigens were defined as all 9- and 10-amino-acid peptides

resulting from tumor-specific mutations with predicted

HLA binding affinities <500 nM using NetMHCpan

(v2.4). Downsampled panel data were queried for exome

neoantigens to determine the fraction of putative neoan-

tigens observed in WES that were recoverable from

panel mutation calls.

Statistical tests

The sample size was based on available material, and

thus there was not an a priori power calculation. Com-

parisons of germline false positive rates between ancestry

groups was performed with two-sided Fisher’s Exact test.

Pearson correlation tests were performed for mutational

and neoantigen load comparisons in the three panel

settings.

Results
Reducing false-positive germline variants in tumor-only

analysis

The study included 157 patients, who underwent clinical

sequencing: 75 with colorectal adenocarcinoma and 82

with lung adenocarcinoma. Clinical tumor and germline

WES [12] produced a mean coverage of 154× and 133×

in tumor and normal DNA, respectively (Additional file 6:

Table S6). The combination of sequencing depth and

tumor purity (“Methods”) enabled mutation detection in

these cases. Large (n = 300) [3], medium (n = 48), and

small (n = 15) [9] gene panel data were produced by

creating subsets of the whole exome mutation data

(“downsampling”) to simultaneously model the different

gene sets captured in multiple representative academic

and commercial efforts. Matched tumor–germline se-

quencing revealed a median of 75 (interquartile range of

first and third quartiles [IQR] = 55–134), 4 (IQR = 3–6), 2

(IQR = 1–3), and 1 (IQR = 1–2) mutations per patient for

WES, large, medium, and small panels, respectively. Un-

matched tumor-only sequencing produced a median of

445 (IQR = 404–531), 10 (IQR = 8–13), 3 (IQR = 2–5), and

2 (IQR = 1–2) mutations per patient. Thus, the proportion

of putative somatic variants was increased in tumor-only

sequencing data under all conditions.

For all targeted panel options, both sensitivity and

positive predictive value (PPV) could be optimized by

using an analytical pipeline that consisted of an un-

matched germline sample, the largest publically available

germline WES database (ExAC) [32], and recovery of

somatic mutations with COSMIC at the highest fre-

quency threshold (n ≥ 10 events) to recover mutational

hotspots [38] (Fig. 1a, b; “Methods”; Additional file 7:

Table S7). For large tumor-only targeted panels, this fil-

tering led to 14 % (144/1012 variants) of putative som-

atic mutations that were actually germline false positive

variants (Fig 1c). For unmatched WES, the germline

false positive rate with this approach was even higher

(18 %; 5282/29,738 variants).

A subset of these cases (n = 91) underwent orthogonal

molecular pathologist review of variants (“Methods”).

The addition of pathologist review after in silico analysis

resulted in 50/54 (93 %) false positives interpreted as un-

known variants (tier 4) that may be germline false posi-

tives rather than somatic alterations (Fig. 1c, d). Of the

four remaining germline false positive results, three

(RB1 K874Q, MSH6 S405C, BRCA2 splice site mutation

at the junction of exons 2 and 3 (g.32890665G > A))

were classified as uncertain clinical utility and only one,

a known pathogenic variant associated with hereditary

cancer syndromes (TP53 R248Q), was classified as hav-

ing potential clinical utility based on negative prognostic

implications (Fig. 1d).

The impact of ancestry on germline false positives in

tumor-only analysis

The use of germline databases is a critical component

for removing false positive germline calls in tumor-only

panel sequencing (“Methods”); however, the representa-

tion of non-European ancestry in these databases is in-

complete [39]. Therefore, we next sought to measure the

variation in false positive rates in populations with dif-

ferent self-reported ancestries. When the dbSNP data-

base was used as a filter in large panel tumor profiling

analysis [30], germline false positives were significantly

increased in tumor-only sequencing of non-European

compared with European ancestry patients (odds ratio

[OR] = 2.52, p < 0.001; Fisher’s exact; Fig. 2a). While the

median number of false positives among the two popula-

tions was the same (n = 2), 32 % (6/19) of non-white

patients had more than five false positives, whereas 5 %

(7/132) of white patients had more than five germline

false positives.. A similar relationship was observed with

the use of 1000 Genomes (OR = 1.83, p < 0.001; Fisher’s

exact; Fig. 2b). However, use of ExAC [32], a public

database of 60,706 germline exomes that represents

an order-of-magnitude increase in germline variant

data compared with other databases, mitigated this

disparity (OR = 1.19, p = 0.53; Fig. 2c). Therefore,

tumor-only mutational profiles require the use of

germline databases with sufficiently broad representa-

tion to minimize the elevations in false positives that

might otherwise be seen in patients with diverse eth-

nic backgrounds.
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Impact of gene panel size on mutational load and

neoantigen prediction

Given the potential utility for immuno-oncology patient

stratification, we next investigated the extent to which

various tumor profiling platforms might inform genome-

wide properties. First, we explored whether mutational

loads measured directly (using paired WES data) corre-

lated with mutational loads inferred from targeted panel

data (e.g., <2 % of the genomic territory covered by

WES). To test this, we divided the number of mutations

observed in the panel by the genomic territory covered

(in megabases) by that panel (“Methods”). Consistent

with previous reports [19], we found that large-panel

mutational loads correlated strongly with WES-based

mutational load regardless of whether tumor-only or

paired data were used (r2 = 0.99 for matched and 0.93

a

c

b

d

Fig. 1 Germline false positives in tumor-only clinical sequencing. Sensitivity and positive predictive value (PPV) curves for multiple germline filtering

strategies identifies optimal approaches for unmatched large targeted panel testing (a) and whole-exome sequencing (b). For 91 patients, germline

exome data were used to identify false positives post-filtering. Subsequent molecular pathologist review of variants was performed on individual cases

to further classify putative germline variants. With molecular pathology review, 50/54 false positive variants were correctly classified as unknown

(“tier 4”), with the remaining variants classified as having uncertain (n = 3; “tier 3”) or potential (n = 1; “tier 2”) clinical utility (c, d). Please see

“Methods” for detailed descriptions of the four-tier classification schema
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Fig. 2 Ancestry and germline false positives using different analysis strategies. a The use of dbSNP as the primary germline filtration

strategy results in a significant increase in false positives among non-white patients (p < 0.001). b A similar increase was observed with

the use of 1000 Genomes (p < 0.001). c With larger germline databases such as ExAC, this disparity is mitigated
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for unmatched; p < 0.001), with median nonsynon-

ymous mutation rates of 2.3/Mb (IQR = 1.7–4.2) and

5.5/Mb (IQR = 4.1–8.2) in WES and panels, respect-

ively (Fig. 3a, b). The ability of medium gene panels

to predict the WES mutational load was somewhat re-

duced (r2 = 0.84 and 0.71, respectively). Small panels were

poor predictors of overall mutational load (0.4 < r2 ≤ 0.6

for all conditions). When analyzed separately, the lung

and colon cancer subsets achieved comparable results

across the three settings (Additional file 8: Figure S1;

Additional file 9: Figure S2). Thus, large matched or

unmatched panels successfully recapitulated the WES

mutational load.

Given the potential importance of identifying patient-

specific neoantigens—novel protein sequences absent

from the normal human genome that arise from somatic

mutations [40]—for immuno-oncology applications

[16–18, 41], we sought to identify neoantigens derived

from the different panels and WES. To do this, we

integrated patient human leukocyte antigen (HLA)

typing [42] with the set of all potential neoantigens to

identify those with predicted high affinities to the pa-

tient’s MHC class I alleles (“Methods”). The median

neoantigen load across all patients as determined by

WES data was 38 neoantigens per exome, while the

median number of those called by large panel targeted se-

quencing was one neoantigen per panel (Fig. 4a). The me-

dian number of neoantigens called in both small and

medium panels was zero. No correlation was discovered

between small/medium panel neoantigen calls and exome

neoantigen calls (r2 = 0.24 and r2 = 0.62, respectively);

however, we did observe a correlation between large panel

neoantigen and exome neoantigens (r2 = 0.81) (Fig. 4b–d).

In the WES data, 5511 neoantigens with binding affinities

of <500 nM were identified across the 157 patient

samples. Of these, 229 (4.1 %) were observed through

matched targeted panel sequencing data (Fig. 4a). Thus,

while large panels were able to recapitulate mutation and

predicted neoantigen loads, most potentially immuno-

genic neoantigens occurred in genes that were not repre-

sented in these cancer panels and would not be

observable for cancer vaccine strategies.

a

b

Fig. 3 Mutational load predictions with different panel tests. Comparison of mutational load predictions using WES or either matched (a) or

unmatched (b) large panel tests (n = 300 genes) demonstrates both can reliably predict the mutational load. The linear regression line is shown in

black with 95 % confidence bands shaded in grey. The identity line (dashed) is shown for comparison. With medium sized panels (n = 48 genes),

this ability decreases in both the matched and unmatched setting and is not possible with small (n = 15) gene panels
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Discussion
As precision medicine efforts proliferate in clinical on-

cology settings, a spectrum of tumor gene profiling

strategies—from individual variant testing to compre-

hensive WES—are being utilized. We sought to assess

the relative merits of each by analyzing genomic data

from 157 lung and colon adenocarcinoma cases,

followed by in silico modeling of different forms of tar-

geted panel testing to determine their analytical

strengths and weaknesses.

One priority was to determine best practices for germ-

line filtering in the setting of tumor-only profiling. While

our results identified a consistent (albeit lower) rate of

germline false positive findings when leveraging large,

publically available germline variant data sets, we found

that the addition of molecular pathologist review was

highly effective in reducing false positive errors germane

to unmatched sequencing. This observation may be in-

formative in centers where assembling a molecular

tumor board may not be practically feasible but individ-

ual molecular pathologists can act as reviewers.

Even so, the higher false positive germline variants in

non-white ancestries highlights the limitations of utiliz-

ing germline genomic databases for such filtering, as

these cohorts may not represent the clinical population

being tested. Tumor-only analytical pipelines that do not

anticipate diverse ancestry could unwittingly produce a

higher rate of germline false positives in some ancestral

backgrounds. Expansion of germline databases to repre-

sent the diversity of patients tested is necessary to miti-

gate this source of false positives, and this strategy may

contribute to the improvement of precision medicine

health disparities resulting from analytical features of the

human genome. Indeed, as clinical genomic profiling

becomes increasingly expansive technologically, with

whole-genome and whole-transcriptome sequencing be-

ing performed in clinical settings, the need to capture a

diverse set of patients is especially relevant.

Furthermore, because of the emerging therapeutic ave-

nues associated with tumor neoantigens and mutational

load, we sought to analyze the ability of targeted panels

to identify patients who might benefit from such

a

b c d

Fig. 4 Neoantigen predictions in panels. a The proportion of neoantigens called in large panel targeted sequencing data demonstrates an

inability to identify as a broad spectrum of neoantigens compared to WES. b Nonetheless, there is a linear relationship between large panel

neoantigens recovered from exome and germline-matched large panel data. This linear relationship no longer holds when considering neoantigen

data from medium (c) and small (d) targeted panels
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treatments. Indeed, targeted large panel mutation rate

approximated the WES mutation rate well for most

samples, whether the targeted panel was matched or un-

matched. This suggests that large targeted panels may be

useful for flagging patients with exceptionally high muta-

tion rates for specific clinical investigations. Yet, targeted

panel sequencing results failed to recapitulate the neoan-

tigen load estimated from WES data, which may be as

relevant as mutational load data when combined with

immunohistochemistry markers (i.e., PD-L1 staining) to

stratify patients for immunotherapies [43].

In addition, since only a small fraction of total neoan-

tigens fell within the genomic regions covered by the

targeted panel (average tumor sample had less than

three neoantigens called in the targeted sequencing

data), it is likely impossible to stratify patients based on

relative neoantigen loads from targeted sequencing data

alone. Also, the targeted panel does not call most of the

patient-specific neoantigens themselves, which may be-

come increasingly relevant as personalized cancer vaccine

strategies requiring knowledge of specific neoantigens ex-

pand across many clinical settings [44–47].

The main limitation of this study is that, due to the

rapidly expanding diversity of panel-based sequencing

approaches offered in commercial and academic labs, it

was not possible to directly and comprehensively com-

pare outputs of all available approaches with these clin-

ical samples. As a result, certain components of the

workflow could not be examined in this context, such as

the impact of higher sequencing depth on variant detec-

tion sensitivity [8] or the differences in germline false

positive results from different lab analysis processes.

Indeed, since not all labs report specific details about

analysis methods, such as how exactly germline variants

are filtered, we could not confirm whether the approach

outlined in this effort is consistent across vendors. This

highlights the importance of encouraging transparency

in analytical efforts given how widely variable results

may seem depending on which approach is used. Since

germline variants may also have immediate clinical im-

plications for assigning cancer risk [48] and therapeutic

strategies [49], distinguishing somatic and germline

events is especially relevant in this context. Furthermore,

this study highlights certain benefits of WES, although

WES compared with panel testing has additional costs

(i.e., financial, interpretive) beyond analytical.

Conclusions

Broadly, our work highlights the relative advantages and

disadvantages of WES and targeted panel sequencing for

clinical precision oncology. Targeted panel sequencing

maintains an advantage over WES for variant identifica-

tion in a small set of known clinically informative cancer

genes and utilization of germline enhances somatic

mutation identification. Additionally, prior studies have

demonstrated that targeted panels enable more sequen-

cing depth compared with WES. Since the WES ob-

tained for this study was considered sufficient to enable

the subsequent analyses, this technical component of

targeted panels did not require further exploration to

enable the studies described herein.

Even so, the breadth and adaptability of WES may ul-

timately offer advantages over targeted panels for certain

immunotherapy regimens. As treatment paradigms shift

and require detailed assessments of global genomic

changes for immunotherapy purposes, as well as deep

clonal architecture of tumors feasibly enabled through

deeper targeted sequencing, a combination of these

strategies may prove most effective for genomic analysis

in the clinic. When paired with up-to-date bioinformat-

ics and database filtering, along with molecular path-

ology assessment, this strategy may inform wider

analytical standardization for genomic analysis.
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