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An important property associated with turbulence in plasmas and fluids is anomalous
transport. Plasma, being a good conductor, can in addition be affected by turbulence
causing an anomalous resistivity that can significantly exceed its classical counterpart.
While turbulent transport may be adequately described in configuration space, some
aspects of the anomalous resistivity are best accounted for in phase space. Kinetic
phenomena like electron and ion phase space vortices can thus act as obstacles for the
free flow of slow charged particles. Plasma instabilities and large amplitude plasma waves
are candidates for contributions to the anomalous resistivity by generating such structures.
Langmuir waves can be relevant, but also others, such as upper- as well as lower-hybrid
waves in magnetized plasmas. Often these anomalous resistivity effects can be small, but
due to the large spatial and temporal scales involved in space plasmas, planetary
ionosphere and magnetosphere in particular, even such moderate effects can be
important. This mini-review is discussing elements of the description of plasma
turbulence with particular attention to wave phenomena that contribute to anomalous
resistivity and diffusion. Turbulence effects can have relevance for space weather
phenomena as well, where ground based and airborne activities relying on for instance
Global Positioning and Global Navigation Satellite Systems are influenced by plasma
conditions in geospace.
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1 INTRODUCTION

Plasmas, magnetized plasmas in particular, can support a variety of wave phenomena, electromagnetic as
well as electrostatic. These waves can be excited in laboratory experiments, and are frequently found to be
generated by some instability mechanisms in naturally occurring plasmas, in the Earth’s ionosphere and
magnetosphere in particular, as described by, e.g., Shawhan (1979), Shawhan (1985). Informative
summary figures can be found in these works. Controlled laboratory plasma studies often assume
conditions where harmonic wave phenomena are excited, but these are rarely met in natural
environments where turbulent states are more likely to develop. For some conditions further
developed in this review, such turbulent stages can have similarities to classical hydrodynamic turbulence.

In neutral fluids and gases, ‘strongly’ turbulent states often develop, while in plasmas,
turbulence is often observed to be ‘weak’. For discussing this distinction, we consider a
nonlinear model wave equation (Dupree, 1969; Similon and Sudan, 1990; Galtier, 2009) in
the form
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zQℓ(k, t)
zt

+iω(k)Qℓ(k, t) � ∑
m,n

∑
k′

Mℓ,m,n(k, k′)Qm(k′, t)Qn(k − k′, t). (1)

The indices {ℓ,m, n} ∈ {x, y, z} label components of the
complex vector Q(k, t). The nonlinear term in the right hand
side contains the coupling coefficients Mℓ,m,n between
components for wavenumbers k and k′. Any quadratically
nonlinear partial differential equation with a first order time
derivative can be brought in the form of Eq. 1 by a Fourier series
representation of the variables in configuration space. One such
example is the Navier-Stokes equation (Kollmann, 2019) where
Qℓ represents the incompressible fluid velocity component uℓ ,
and iω(k)→ k2], where ] is the fluid kinematic viscosity. For
plasma waves, on the other hand, Qℓ can represent the electric
field component Eℓ , while ω(k) is a linear dispersion relation,
which may be complex for some wave vector ranges for linearly
unstable systems. We let M be a ‘representative’ value of Mℓ,m,n,
for the Navier-Stokes equation we have, MNS ∼ k. An effective
Reynolds number R can be constructed as R � MQ/ω(k)
i.e., the ratio of two time-scales, one originating from the
nonlinear part in the right hand side and the other
representing the linear part in the left hand side. When Eq. 1
represents the Navier-Stokes equation, we find RNS ≈ U/(K])
where U is a ‘representative’ velocity and K a ‘representative’
wavenumber. For a pipe flow, U would be the injected flow
velocity and K ∼ 1/D the inverse diameter of the pipe. When
U≫ ]/D, we expect nonlinearity to dominate and strong
turbulence to develop. For fluids and gases, where ] is
generally small, this condition is easily fulfilled and we can
anticipate that strongly turbulent states can be obtained. In the
limit where ω(k) is negligible, the dynamics of fluids or gases is
solely due to nonlinear effects. For the Navier-Stokes equation,
this is the case for the limit where k2] is negligible. For a plasma,
the situation is frequently the opposite (Dupree, 1969), the linear
part ω(k) is often large. For Langmuir waves ω(k) ≈ ωpe, the
electron plasma frequency. The corresponding plasma Reynolds
number is RP ≈ EMP/ω(K), with E being a representative
electrostatic electric field value, and K a representative
wavenumber to be determined by some externally imposed
parameters, e.g., the geometry. RP is often a small number,
resulting in a weakly turbulent state (Dupree, 1969; Pécseli,
2016). Models for weak turbulence have been developed for
plasma sciences (Kadomtsev, 1965; Nicholson, 1983; Horton,
1985; Kono and Škorić, 2010). Depending on the plasma
conditions, the magnetization for instance, both strongly and
weakly turbulent conditions can be found.

Diagnostic tools involving two-point measurements that can
distinguish strong and weak turbulence have been developed
(Iwama et al., 1979; Beall et al., 1982; Pécseli, 2015). In some cases,
the linear dispersion relation can be identified in the (ω, k)-space,
thus demonstrating the importance of the ω(k) term in Eq. 1,
while for strongly turbulent conditions a similar analysis shows
enhanced amplitudes for a wide range of wave vectors with no
discernible frequency-wavenumber relation.

Classical physics, and thus also plasma physics, used to rest on a
two-fold basis: theory and observations, the latter including results
from controlled laboratory experiments. With the development of

efficient high-speed computing, it has become possible to make
numerical simulations on a level competing with laboratory results.
Modern physics, also plasma physics, now rests on a basis of three
pillars, theory, experiment and numerical simulations (Post and
Votta, 2005; Hut, 2006). Use of advanced high performance
computing techniques allow massively parallel computations
involving tens of thousands of cores. Modern numerical
simulations can in many cases serve as a substitute for
experiments. Fine details in the variations of the magnetospheric
plasma can now be resolved in numerical simulations (von Alfthan
et al., 2014). Predictions of such details can be important for
instance for space weather phenomena (Morley, 2020) that can
have effects being important for activities on ground. Scintillations
in the plasma index of refraction affecting Global Positioning
Systems (GPS) and Global Navigation Satellite Systems (GNSS)
offer examples (Jin et al., 2020). The energy source for intense space
weather phenomena is often found in solar outbursts that give rise
to fluctuations in the Earth’s plasma environment (Sato et al.,
2019). Numerical simulations can also give support when
interpreting observations made by instrumented spacecraft. If
the simulations reproduce the observed data, it can be assumed
that the numerical results can be trusted also for information not
directly accessible for confirmation by measurements.

2 TURBULENT SPECTRA

2.1 Strong Turbulence in Neutral Fluids
Fully developed strong turbulence in incompressible neutral flows
develops a universal continuous power spectrum F(k) for the
velocity fluctuations. Ignoring intermittency effects, a spectrum
characterizing an inertial subrange for homogeneous and isotropic
conditions is found to follow a power law ∼CKϵ2/3k−5/3, the
Kolmogorov-Obukhov spectrum, where ϵ is the energy
dissipation rate per unit fluid mass, and CK the Kolmogorov
constant (Sreenivasan, 1995) which has to be determined
experimentally. For shorter wavelengths, Heisenberg (1948)
predicted the existence of a viscous spectral subrange following
a ∼k−7 power law (Heisenberg and Taylor, 1948; Beran, 1968).
Although some numerical and experimental studies seem to offer
support for this result, it is unlikely to be correct (Landahl and
Mollo-Christensen, 1992) since it predicts that, for instance, the
integral for spatial derivative spectrum (Bendat, 1958) ofmth order,
∫ ∞
0
k2mF(k) dk, diverges for m≥ 3. This would imply that the flow

develops singular third and higher order spatial derivatives. There
are no indications that the Navier-Stokes equation has this
property for three-dimensional turbulence with ‘smooth’
initial conditions (Sulem et al., 1983; Constantin, 1991), and
there is no natural wavenumber associated with the Navier-
Stokes equation to give an upper limit for a viscous subrange.
For turbulence confined to two-spatial dimensions, the
situation might be different. The classical Kolmogorov-
Obukhov result implicitly assumes the energy dissipation ϵ
to be a deterministic quantity. In reality, it is randomly
fluctuating so that the dissipation can take place in ‘hot
spots’ i.e., within intermittent spatial regions and time
periods (Novikov, 1990; Davidson, 2004; Kollmann, 2019).
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When additional energy is injected into a three-dimensional
turbulent field, classical turbulence models predicts the energy to
cascade toward smaller scales by a ‘vortex-stretching’mechanism
(Tennekes and Lumley, 1972). One feature of two-dimensional
turbulence is that energy can cascade toward larger scales.
Convincing observations of this process seems to be missing
in space plasmas, but it has been amply demonstrated by
numerical simulations. Turbulence models in two spatial
dimensions (Hasegawa and Mima, 1978; Kraichnan and
Montgomery, 1980; Gruzinov and Pogutse, 1986) are relevant
for low frequency phenomena confined to a plane ⊥B in
magnetized plasmas.

2.2 Strong Turbulence in Plasmas
One important parameter classifying plasma conditions is β, the
ratio of plasma to magnetic pressure. Note that β ≈ (Cs/VA)2, the
square ratio of the ion acoustic sound speed to the Alfvén velocity.
In the near Earth environment we usually have β≪ 1. For larger
β-values, as in the Solar wind, a coupling between transverse
electromagnetic perturbations and compressional modes can be
expected in magnetized plasmas.

There are no obvious reasons for turbulent spectra to follow a
power law, but it has been found to be the case sometimes also for
fully developed strong plasma turbulence. There are thus solid
evidences that fully developed strong resistive electrostatic drift-
wave turbulence in plasmas confined by strong magnetic fields
develops a ∼k−5 power-law spectral subrange for fluctuations in
the electrostatic potential (Tchen et al., 1980; Pécseli, 2015;
Pécseli, 2016). The continuation of this drift-wave spectrum to
wavelengths shorter than the ion Larmor radius remains poorly
understood.

The conditions in the Earth’s ionospheric E- and F-regions are
special due to the importance of collisions between charged and
neutral particles. It has been speculated that also some low-
frequency ionospheric waves in these regions can develop
strong turbulence with universal power law spectra (Ott and
Farley, 1974; Sudan and Keskinen, 1977; Sudan, 1983; Hassam
et al., 1986), but the conjecture has not been studied
systematically in any detail (Pécseli, 2016), although some
observations and numerical simulations seem to be consistent
with the hypothesis (Kelley, 1989). Studies of rocket data, in
particular, have shown power law spectra for both fluctuating
plasma density and electrostatic potential (Basu et al., 1988;
Krane et al., 2000; Dyrud et al., 2006) in reasonable agreement
also with laboratory results (Mikkelsen and Pécseli, 1980).
Intermittency is also found to be an issue for plasma
turbulence (Dyrud et al., 2008). Parts of it has to do with
coherent interactions of large amplitude waves in a
background of a low level of turbulence (Vladimirov and
Stenflo, 1997).

Fully developed strong plasma turbulence with a large
β-value is mostly found in the solar wind as summarized by
e.g., Bruno and Carbone (2005), where conditions are well
described by magnetohydrodynamics (MHD). Turbulent
plasma energy spectra (i.e., the sum of kinetic and magnetic
energy), in the form ∼(ϵVA)1/2k−3/2, have been predicted by
Iroshnikov (1964) and Kraichnan (1965). It has been found

that large scale cavities can form in the Earth’s magnetosphere
(Fritz et al., 2003) where the magnetic field strength is small,
thus creating large regions with relatively large β-value where
the Iroshnikov-Kraichnan results are also relevant. A
worthwhile investigation would be to analyze the energy
spectra for these conditions.

2.2.1 Plasma Turbulence as a ‘Soliton Gas’
Turbulence is associated with many degrees of freedom being
excited. An intermediate scenario has been suggested, where a
nonlinear evolution of waves saturate in an ensemble of solitons
(Kingsep et al., 1973; Dysthe et al., 1986). Once excited, these
solitons will collide but recover their original form after collisions
(Drazin and Johnson, 1989). Each of these nonlinear structures
are described by a wide band of phase coherent Fourier
components, so that each soliton can be described by a
reduced number of parameters, such as amplitude, width,
position and velocity, where some of these parameters can be
interrelated as for instance for Korteweg-de Vries solitons
(Drazin and Johnson, 1989). This turbulence model can seem
unrealistic since most soliton studies refer to spatially one
dimensional problems. Several observations can, however, be
discussed in terms of this framework. In these cases the wave
field can be accounted for by a random distribution of slowly
evolving semi-coherent structures, possibly in a background of
random noise. A simple spectral analysis does not account for
coherent phase relations and the diagnostic methods have to be
supplemented by, for instance, triple correlations or bispectral
methods (Kim and Powers, 1978). Large coherent structures are
best identified by conditional sampling of the data (Johnsen et al.,
1987), possibly supplemented by filtering methods, matched
filters for instance (Teliban et al., 2007; Fredriksen et al., 2008).

2.3 Taylor’s Hypothesis
Measurements of wavenumber power spectra require a
minimum of ‘two-point’ measurements with movable
probes. Often, this is not possible, and only time series
obtained at one probe position are available. An almost
universally used approximation, the Taylor’s hypothesis or
frozen turbulence approximation, is relates measured
frequencies to wavenumbers (Taylor, 1938; Shkarofsky,
1969; Wyngaard and Clifford, 1977). Here it is implicitly
argued that the wave field is swept rapidly past the
observation point (onboard e.g., an instrumented rocket or
a spacecraft), so that the time variation observed is actually due
to a moving spatial variation i.e., ω ≈ k · U ≡ k‖U , where ω is
the detected frequency, and U the relative velocity between the
turbulent medium and the observer. Since the frequency ω is
only related to the wave vector component k‖ along U ,
application of Taylor’s hypothesis may need to be combined
with assumptions of homogeneity and isotropy in two or three
dimensional space. Both scalar and vector spectra can be
defined so that the total power is e.g., 〈ϕ2〉 � ∫ ∞

0
F(k) dk, or

alternatively 〈ϕ2〉 � ∭G(k) d3k. The physical dimension of
the spectra F and G are different, and care should be taken not
to confuse them, in particular when comparing theoretical and
experimental results (Mikkelsen and Pécseli, 1980). The
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distinction of spectral definition is relevant also for power
spectra in two spatial dimensions, e.g., in a plane ⊥B.

3 TURBULENT TRANSPORT

One of the most important properties associated with
turbulence is anomalous transport. This is particularly true
for confinement of fusion plasmas physic and in many
industrial applications. In space, the anomalous transport of
plasma across magnetic field lines is important for the spatial
distribution of plasma (Horton, 1990). To illustrate this
problem, we take a low-β plasma confined by a
homogeneous magnetic field B. The transport is often due
to electrostatic fields, E � −∇ϕ, with frequencies well below the
ion cyclotron frequency Ωci. The ion fluid velocity E × B/B2 +
Ω−1

ci (B2zE/zt + (E × B) · ∇⊥E)/B3 is taken to be perpendicular
to the magnetic field. Nonlinearities enter through the ion
polarization drifts, being the second bracketed term in the ion
flow velocity. Finite ion Larmor radius effects (Knorr et al.,
1988; Hansen et al., 1989; Chen, 2016) are usually not
accounted for. Allowing for a slight deviation from strictly
B-normal wave propagation, the electrons can flow along the
magnetic field lines to obtain an isothermal Boltzmann
equilibrium, ne � n0(r⊥)exp(eϕ/Te) where Te is the electron
temperature and n0(r⊥) is a reference density allowed to vary
across magnetic flux tubes (Chen, 2016) i.e., r⊥⊥B. In the
quasi-neutral limit, ne ≈ ni ≡ n, keeping only the terms up to
second order, the Hasegawa-Mima (HM) equation (Hasegawa
and Mima, 1978; Gruzinov and Pogutse, 1986; Albert et al.,
1990) is readily derived. It has been widely applied to study
weakly nonlinear electrostatic drift waves in low-β plasmas.
Also this equation can be expressed (Albert et al., 1990) in the
form of Eq. 1. The HM-equation has linearly stable solutions,
but it accounts for the interaction of many modes excited by a
source. Linearly unstable resistive electrostatic drift waves are
described by the Hasegawa-Wakatani (HW) set of equations
(Hasegawa and Wakatani, 1983), which extend the HM-
equation. Numerical solutions of the HW-equation have
been found to evolve into a strongly turbulent state with a
continuous power spectrum as summarized elsewhere (Pécseli,
2015). When the magnetic field is weaker, β ∼ me/mi, the
electron motion can couple to Alfvén waves and the
equations have to be modified, but the possibility for a
strongly turbulent state remains.

The space-time variations of low frequency, large spatial scale
electromagnetic fluctuations in high-β plasmas is well described
by the MHD equations, and strongly turbulent states can develop
(Goedbloed and Poedts, 2004; Bruno and Carbone, 2005; Galtier,
2009). Relevant space observations relates, for instance, to clouds
in the interstellar medium composed of ionized hydrogen atoms
(H II regions), regions with neutral atomic hydrogen (H I) and to
diffuse nebula or emission nebula (Cox, 2005). On astronomical
scales, we find H I and H II regions to be clearly separated. This
can be seen as a paradox since on such large scales relevant for
interstellar media we could expect correspondingly large
Reynolds numbers. Such a turbulent state should result in a

strong mixing smearing out boundaries between the H I and H II
regions in contradiction with observations. A possible
explanation for the lack of turbulent mixing could be that
there is not sufficient free energy available to drive a
substantial high-β MHD-turbulence on those scales.

Anomalous transport can be particularly important for the
plasma at the boundaries between the solar wind and the
magnetosphere i.e., the polar cusps and the magnetopause.
The cusps offer a particularly easy access between the two
regions (D’Angelo, 1977; Fritz et al., 2000). Solar wind plasma
particles can thus get direct access to the Earth’s ionosphere
through the northern and southern cusp points. The shear flow at
the interface between open and closed magnetic field lines can
give fluid-like Kelvin-Helmholtz (KH) instabilities that can
mediate anomalous transport between the two regions. The
nonlinear saturated stage of the KH instability plays a critical
role for the solar wind interaction with the Earth’s magnetosphere
(Johnson et al., 2014; Ma et al., 2017).

The solar wind, supersonic and superalfvenic at 1 AU, is an
important source of free energy driving turbulence on large
spatial scales in the Earth’s magnetosphere. The coupling
between the solar wind and the plasma of the Earth
magnetosphere can involve magnetic field reconnection, and
the efficiency of these processes depends critically on the
polarity of the interplanetary magnetic field (IMF) with
respect to the Earth’s magnetic field. The process will depend
on the solar activity as evidenced by its correlation with the
distribution and intensity of ionospheric plasma irregularities (Jin
et al., 2020). The coupling process itself can be accounted by
resistiveMHD, but resistivity due to classical collisions is found to
be insufficient for the relevant plasma parameters. Anomalous
resistivity has been suggested as a remedy for explaining
enhanced reconnection rates. Lower hybrid wave turbulence
can be one source of such anomalous resistivity (Huba et al.,
1977), and this wavetype is indeed observed near the Earth’s
magnetopause (Graham et al., 2017). There is, however,
seemingly no consensus on the detailed nature of the relevant
anomalous resistivity, nor agreement concerning the origin of the
free energy driving the necessary plasma instabilities (Biskamp,
1997).

The discussion of turbulent transport, so far, dealt with
‘absolute turbulent diffusion’, a phenomenon that is
adequately accounted by considering a single representative
particle moving with respect to its origin of release.
Alternatively a problem of ‘relative diffusion’ can be
formulated, which can be described by the relative motion of
two particles (Misguich et al., 1987). The two problems are
substantially different: the first case refers to motion in a
fixed frame, the later to the center of mass frame moving
randomly itself. Relative motion is important for discussing
the expansion of a cloud of contaminants instantly released.
This could be a barium cloud released in a controlled
experiment described by e.g., Haerendel (2019), or micro
meteorites evaporating in the ionosphere. In a magnetized
plasma the problems of anomalous transport are strongly
anisotropic regarding the directions along and across
magnetic field lines.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org January 2021 | Volume 7 | Article 5737464

Guio and Pécseli Turbulence in Space Plasmas

https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


4 ANOMALOUS RESISTIVITY

Since plasma in space is a highly conductive medium, its
dynamics is particularly sensitive to changes in current
distributions, and the electric and magnetic fields being
induced. In a magnetized plasma under normal conditions, the
ions dominate the B-transverse current, while the electrons
usually carry the current along the magnetic field lines.
Obstacles to the free electron flow can be caused by fluid or
by kinetic effects (Dupree, 1970; Papadopoulos, 1977; Büchner
and Elkina, 2006). These obstacles can be generated by nonlinear
wave phenomena (Davidson and Gladd, 1975; Guio and Forme,
2006). While classical resistivity is caused by particle collisions
with known collision frequency, we can find an equivalent
nonlinear source induced by kinetic wave-particle interactions
giving rise to an anomalous collision frequency affecting the
electron as well as the ion dynamics.

Together with other sources, the interaction between the solar
wind flow and the Earth’s magnetosphere can impose large scale
steady state electric fields perpendicular to the magnetic field
(Kelley, 1989). This electric field drives the equatorial and the
auroral electrojets, predominantly in the ionospheric E-region.
The classical resistivity is too small to give any significant energy
deposition by this electric field. Low frequency plasma sound
waves can, however, be excited in the collisional ionospheric
E-region due to a modified two-stream instability, the Farley-
Buneman (FB) instability found by Farley (1963) and Buneman
(1963) independently. It can also develop into a turbulent
spectrum (Mikkelsen and Pécseli, 1980; Krane et al., 2000;
Pécseli, 2015; Young et al., 2020). An enhanced anomalous
collision frequency induced by these fluctuations can give rise
to a bulk heating of the plasma while saturating the instability
(Schlegel and St.-Maurice, 1981; Primdahl, 1986; Oppenheim
et al., 1996). It was anticipated (Pécseli, 2015) that the turbulence
generated by the FB instability have similarities with the current
driven ion sound instability (Kadomtsev, 1965; Machalek and
Nielsen, 1973; Horton, 1985). The stability conditions in the
ionospheric E- and F-regions are complicated by the possibility
for two instabilities being present at the same time (Sudan, 1983),
a gradient instability and the two-stream FB-instability
mentioned before.

The nature of the obstacles inhibiting the free electron flow can
be kinetic, while others can adequately be described by a simpler
fluid model. Their excitation requires free energy and they can
form as a result of a plasma instability, such as current driven
instabilities (Büchner and Elkina, 2006), where the nonlinear
saturated stage is often found to form phase space vortices, an
ubiquitous nonlinear kinetic plasma phenomenon (Bernstein
et al., 1957; Morse and Nielson, 1969; Lynov et al., 1979; Saeki
et al., 1979; Pécseli et al., 1984; Schamel, 1986; Drake et al., 2003).
These vortices are found also as three dimensional forms in
magnetized plasmas (Børve et al., 2001; Daldorff et al., 2001),
while they appear to be unstable for unmagnetized conditions in
two or three spatial dimensions as observed in numerical
simulations by Morse and Nielson (1969). Phase space
structures are observed in space plasmas (Ergun et al., 1998;
Tong et al., 2018; Wang et al., 2020), albeit often with relatively

small spatial scales. Laboratory experiments and particle
simulations (Morse and Nielson, 1969; Saeki et al., 1979;
Pécseli et al., 1984; Guio et al., 2003) demonstrate the
existence of structures also at large spatial scales in units of
the Debye length. Current driven instabilities can indirectly cause
localized potential variations by, in a first step, exciting plasma
waves, Langmuir waves for instance. By their nonlinear evolution
these structures form localized coherent electrostatic structures.
Vortices in ion as well as electron phase space can also be formed
by particle beams, or particle bursts (Morse and Nielson, 1969;
Sakanaka, 1972; Børve et al., 2001; Guio et al., 2003; Wang et al.,
2020). Such beams can have their origin in electrostatic double
layers (Sato et al., 1981; Jovanović et al., 1982; Schamel, 1986)
separating high and low potential regions connected by magnetic
field lines. Such regions are observed as ‘inverted V-events’ by
instrumented space craft (Partamies et al., 2008). Significant
plasma wave amplitudes can also be excited during
ionospheric heating experiments (Hanssen et al., 1992; Dubois
et al., 1993). Here we give a brief discussion of some wave types
that can play a role in the nonlinear plasma dynamics.

4.1 Electron Plasma Waves
For unmagnetized plasmas the only high frequency electrostatic
waves are the Langmuir waves. In magnetized plasmas, the wave
dispersion relation includes upper-hybrid waves propagating at
large angles to the magnetic field. The nonlinear features of these
electron waves have been studied intensively (Thornhill and ter
Haar, 1978; Briand, 2015) with particular attention to the wave-
collapse phenomenon, where an initial spatial wave distribution
collapses to a singularity in a finite time (Zakharov, 1972;
Rasmussen and Rypdal, 1986; Robinson, 1997; Kono and
Škorić, 2010). It has been amply demonstrated that Langmuir
waves collapse as a physical phenomenon is realizable, but so far
there seems to be no evidence that it plays any significant role in
nature. In its classical form, the collapse phenomenon refers to an
initial value problem where a localized large amplitude wave-field
is excited. One element in the phenomenon, cavitation of
Langmuir waves, is believed to be important under ‘driven’
conditions where a continuous external energy source is
present. This can be in the form of naturally occurring particle
beams (Forme, 1999; Guio and Forme, 2006; Isham et al., 2012;
Akbari et al., 2016) or perturbations induced from the ground
through ionospheric heating experiments (Hanssen et al., 1992;
Dubois et al., 1993). Wave cavities can be described by a random
distribution of slowly evolving and weakly interacting structures
resembling wave-filled plasma density depletions.

4.2 Lower-Hybrid Waves
In magnetized plasmas, the lower-hybrid waves play a particular
role by having an approximately equal distribution of the wave
energy between the electron and the ion components. The
nonlinear space-time evolution has been studied analytically
(Musher and Sturman, 1975; Sotnikov et al., 1978; Shapiro
et al., 1993) for these wave types. Such waves have indeed
been observed in nature with solid indications of a nonlinear
evolution (Kjus et al., 1998; Høymork et al., 2000; Schuck et al.,
2003; Schuck et al., 2004), but it remains questionable whether
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this evolution can be attributed to wave-collapse phenomena (Pécseli
et al., 1996; Pécseli and Trulsen, 2006). The scales of the local wave
packets in the B-transverse direction are well known from satellite
observations, but the magnetic field aligned length scales have not
been studied in space. All we know is that these scale lengths are very
large, probably limited by collisional mean free paths (Pécseli et al.,
1996), and this makes also numerical simulations challenging.
Lower-hybrid drift waves excited at steep plasma density
gradients can also contribute to anomalous transport and plasma
heating as suggested by Davidson and Gladd (1975). Lower-hybrid
drift waves have been observed in space (Huba et al., 1978; Bale et al.,
2002; Walker et al., 2008; Graham et al., 2017) but the associated
transport properties have not been fully documented.

The soliton turbulence model described in Section 2.1 can
seem unrealistic, but observations (Pécseli et al., 1997) of an
ensemble of saturated lower-hybrid wave structures show
examples that can be interpreted by such a model. The
properties of such individual structures have been studied as
well, with results summarized by Schuck et al. (2003).

4.3 Whistlers
Electromagnetic waves, whistlers, with frequencies below the
electron cyclotron resonance frequency can propagate in
magnetized plasmas (Stenzel, 2016). In a limited frequency range,
Ωci ≪ω≪ωce, whistler waves can be seen as electron equivalents to
MHDwaves (Kingsep et al., 1990; Biskamp et al., 1999; Stenzel, 1999;
Galtier, 2009; Lyutikov, 2013). Such waves are frequently observed in
the ionosphere (Yeh and Liu, 1972). Often whistlers appear in form
of wide band electromagnetic modes, Chorus (Shawhan, 1985; Li
et al., 2019; Aryan et al., 2020), or as Hiss in plasmaspheric plumes
(Zhang et al., 2019). Seemingly, whistlers are often observed at
modest amplitudes, but evidence for weakly nonlinear effects in form
of self-ducting (Karpman et al., 1974, 1990) have been reported by
Bell (1985). The basic features of whistlers are well explained by fluid
models (Yeh and Liu, 1972) but details in the wave energy
distributions need kinetic models to account for nonlinear wave-
particle couplings (Dysthe, 1971; Nakamura et al., 2018). The
evolution of wide band whistler wave spectra have been studied
by fluid models (Biskamp et al., 1999; Cho and Lazarian, 2009)
indicating that universal energy power spectral subranges with a
∼k−7/3 wavenumber scaling can develop.

5 DISCUSSION

Weakly nonlinear wave phenomena include parametric decay and
modulational instabilities, usually described in terms of three and four
wave phenomena. Most studies refer to the stability of processes
involving modulated plane waves. In nature this condition is unlikely
to be found, broad band wave spectra are much more often observed.
Simple physical arguments (Alber, 1978; Pécseli, 2014) give that a
wave-decay or amodulational instability involving wavelengths longer
than the correlation length (i.e., the inverse wavenumber spectral
width) associated with the spectrum are stable (Alber, 1978; Pécseli,
2014), although details will differ for decay and modulational
instabilities. For ocean waves this argument seems to hold promise
(Alber, 1978; Dysthe et al., 2003). Heuristic arguments then implie

that, due to nonlinear effects, the wavenumber spectra should broaden
until some quasi stationary conditions are established. Analytical
studies of electron plasma waves in magnetized as well as
unmagnetized plasmas (Bhakta and Majumder, 1983; Pécseli, 2014;
Kono and Pécseli, 2016; Kono and Pécseli, 2017a; Kono and Pécseli,
2017b) demonstrated that with the given assumptions a wide band
spectrumwas indeed less unstable than a narrow band. The results did
not, however, predict complete modulation- or parametric decay-
stabilizations for wide band wavenumber spectra: this could be due to
a simplifying quasi-normal (sometimes termed quasi-Gaussian)
assumption (Leslie, 1973; Alber, 1978) made in the analysis. The
scenario outlined here has not been systematically analyzed
experimentally nor numerically for plasma media. For numerical
tests it is possible that one dimensional simulations can suffice. The
low frequency decay products of modulational as well as oscillating
two-stream instabilities do not obey any dispersion relation (Thornhill
and terHaar, 1978; Kono and Škorić, 2010; Pécseli, 2014). This feature
is common to BGK-type phase space structures (Bernstein et al.,
1957), such as phase space vortices, making it difficult to distinguish
the phenomena by remote sensing, e.g., radio wave scattering
(Vierinen et al., 2017).

6 CONCLUSION

Turbulence in fluids and plasmas have been studied for over a
century but is still considered to represent one of the major
unresolved problems in nonlinear physics. Elements in the theory
of classical fluid turbulence, intermittency in particular, are not fully
understood, but the available understanding suffices to allow
adequate predictions for central problems such as turbulent
transport also under inhomogeneous conditions. The
understanding of plasma turbulence, for magnetized plasmas in
particular, has not reached the same level, although convincing
agreement between analytical results and observations have been
achieved for a number of specific questions. Theories for weak
turbulence in plasmas are well established and tested, in particular
for the special case of ‘quasi linear theory’ (Kadomtsev, 1965) which
accounts for the spreading in velocity space of an electron beam
exciting electron plasma waves (Kontar, 2001; Ratcliffe et al., 2014).
Generalizations and extensions of the analysis have been suggested
(Orszag and Kraichnan, 1967; Horton, 1985; Similon and Sudan,
1990), but it is not known how well these models perform in
comparison with observations, or realistic numerical simulation
results of plasma turbulence.
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(2019). Solar radio burst events on 6 September 2017 and its impact on
GNSS signal frequencies. Space Weather. 17, 816–826. doi:10.1029/
2019SW002198

Sato, N., Hatakeyama, R., Iizuka, S., Mieno, T., Saeki, K., Rasmussen, J. J., et al.
(1981). Ultrastrong stationary double layers in a nondischarge
magnetoplasma. Phys. Rev. Lett. 46, 1330–1333. doi:10.1103/
PhysRevLett.46.1330

Schamel, H. (1986). Electron holes, ion holes and double layers. Phys. Rep. 140,
161–191. doi:10.1016/0370-1573(86)90043-8

Schlegel, K., and St.-Maurice, J. P. (1981). Anomalous heating of the polar E region
by unstable plasma waves 1. Observations. J. Geophys. Res. 86, 1447–1452.
doi:10.1029/JA086iA03p01447

Schuck, P. W., Bonnell, J. W., and Kintner, P. M. (2003). A review of lower hybrid
solitary structures. IEEE Trans. Plasma Sci. 31, 1125–1177. doi:10.1109/TPS.
2003.822043

Schuck, P. W., Bonnell, J. W., and Pinçon, J.-L. (2004). Properties of lower hybrid
solitary structures: a comparison between space observations, a
laboratory experiment, and the cold homogeneous plasma dispersion
relation. J. Geophys. Res. Space Phys. 109, A01310. doi:10.1029/
2002JA009673

Shapiro, V. D., Shevchenko, V. I., Solov’ev, G. I., Kalinin, V. P., Bingham, R.,
Sagdeev, R. Z., et al. (1993). Wave collapse at the lower-hybrid resonance. Phys.
Fluids, Plasma Phys. 5, 3148–3162. doi:10.1063/1.860652

Shawhan, S. D. (1979). “Magnetospheric plasma waves,” in Solar system plasma
physics. Amsterdam: North-Holland Publishing Company, Chap. III.1.6, Vol.
54, 213–270.

Shawhan, S. D. (1985). The menagerie of geospace plasma waves. Space Sci. Rev. 42,
257–274. doi:10.1007/BF00218235

Shkarofsky, I. P. (1969). “Analytic forms for decaying turbulence functions,” in
Turbulence in fluids and plasmas. Microwave research institute symposia
series. Brooklyn, N. Y., USA: Polytechnic Press, Chap. 21, Vol. XVIII,
289–301.

Similon, P. L., and Sudan, R. N. (1990). Plasma turbulence. Annu. Rev. Fluid Mech.
22, 317–347. doi:10.1146/annurev.fl.22.010190.001533

Sotnikov, V. I., Shapiro, V. D., and Shevchenko, V. I. (1978). Macroscopic
consequences of collapse at the lower hybrid resonance. Sov. J. Plasma Phys.
4, 252–257.

Sreenivasan, K. R. (1995). On the universality of the Kolmogorov constant. Phys.
Fluids. 7, 2778–2784. doi:10.1063/1.868656

Stenzel, R. L. (1999). Whistler waves in space and laboratory plasmas. J. Geophys.
Res. 104, 14379–14395. doi:10.1029/1998JA900120

Stenzel, R. L. (2016). Whistler waves with angular momentum in space and
laboratory plasmas and their counterparts in free space. Adv. Phys. X. 1,
687–710. doi:10.1080/23746149.2016.1240017

Sudan, R. N. (1983). Unified theory of Type I and Type II irregularities in the
equatorial electrojet. J. Geophys. Res. 88, 4853–4860. doi:10.1029/
JA088iA06p04853

Sudan, R. N., and Keskinen, M. (1977). Theory of strongly turbulent two-
dimensional convection of low-pressure plasma. Phys. Rev. Lett. 38,
966–970. doi:10.1103/PhysRevLett.38.966

Sulem, C., Sulem, P.-L., and Frisch, H. (1983). Tracing complex singularities with
spectral methods. J. Comput. Phys. 50, 138–161. doi:10.1016/0021-9991(83)
90045-1

Taylor, G. I. (1938). The spectrum of turbulence. Proc. R. Soc. A. 164, 476–490.
doi:10.1098/rspa.1938.0032

Tchen, C. M., Pécseli, H. L., and Larsen, S. E. (1980). Strong turbulence in low-β
plasmas. Plasma Phys. 22, 817–829. doi:10.1088/0032-1028/22/8/005

Teliban, I., Block, D., Piel, A., and Greiner, F. (2007). Improved conditional
averaging technique for plasma fluctuation diagnostics. Plasma Phys. Contr.
Fusion. 49, 485–497. doi:10.1088/0741-3335/49/4/011

Tennekes, H., and Lumley, J. L. (1972). A first course in turbulence. Cambridge,
Massachusetts: MIT Press.

Thornhill, S. G., and ter Haar, D. (1978). Langmuir turbulence and modulational
instability. Phys. Rep. 43, 43–99. doi:10.1016/0370-1573(78)90142-4

Tong, Y., Vasko, I., Mozer, F. S., Bale, S. D., Roth, I., Artemyev, A., et al. (2018).
Simultaneous multispacecraft probing of electron phase space holes. Geophys.
Res. Lett. 45, 11513–11519. doi:10.1029/2018GL079044

Vierinen, J., Gustavsson, B., Hysell, D. L., Sulzer, M. P., Perillat, P., and Kudeki, E.
(2017). Radar observations of thermal plasma oscillations in the
ionosphere. Geophys. Res. Lett. 44, 5301–5307. doi:10.1002/
2017GL073141

Vladimirov, S. V., and Stenflo, L. (1997). Three-wave processes in a turbulent
nonstationary plasma. Phys. Plasmas. 4, 1249–1256. doi:10.1063/1.
872297

von Alfthan, S., Pokhotelov, D., Kempf, Y., Hoilijoki, S., Honkonen, I., Sandroos,
A., et al. (2014). Vlasiator: first global hybrid-Vlasov simulations of Earth’s

Frontiers in Astronomy and Space Sciences | www.frontiersin.org January 2021 | Volume 7 | Article 5737469

Guio and Pécseli Turbulence in Space Plasmas

https://doi.org/10.1029/2018JA025803
https://doi.org/10.1063/1.857629
https://doi.org/10.1029/96JA01403
https://doi.org/10.1063/1.1762351
https://doi.org/10.1029/JA079i016p02469
https://doi.org/10.1029/RG015i001p00113
https://doi.org/10.5194/angeo-26-1439-2008
https://doi.org/10.5194/angeo-26-1439-2008
https://doi.org/10.1017/S002237781400035X
https://doi.org/10.5194/angeo-33-875-2015
https://doi.org/10.5194/angeo-33-875-2015
https://doi.org/10.1029/95JA03127
https://doi.org/10.1088/0741-3335/39/5A/021
https://doi.org/10.1088/0031-8949/29/3/010
https://doi.org/10.1063/1.1881898
https://doi.org/10.1088/0031-8949/33/2/017
https://doi.org/10.1088/0031-8949/33/6/001
https://doi.org/10.1088/0031-8949/33/6/001
https://doi.org/10.1063/1.4904065
https://doi.org/10.1103/RevModPhys.69.507
https://doi.org/10.1103/PhysRevLett.42.501
https://doi.org/10.1103/PhysRevLett.42.501
https://doi.org/10.1063/1.1694084
https://doi.org/10.1029/2019SW002198
https://doi.org/10.1029/2019SW002198
https://doi.org/10.1103/PhysRevLett.46.1330
https://doi.org/10.1103/PhysRevLett.46.1330
https://doi.org/10.1016/0370-1573(86)90043-8
https://doi.org/10.1029/JA086iA03p01447
https://doi.org/10.1109/TPS.2003.822043
https://doi.org/10.1109/TPS.2003.822043
https://doi.org/10.1029/2002JA009673
https://doi.org/10.1029/2002JA009673
https://doi.org/10.1063/1.860652
https://doi.org/10.1007/BF00218235
https://doi.org/10.1146/annurev.fl.22.010190.001533
https://doi.org/10.1063/1.868656
https://doi.org/10.1029/1998JA900120
https://doi.org/10.1080/23746149.2016.1240017
https://doi.org/10.1029/JA088iA06p04853
https://doi.org/10.1029/JA088iA06p04853
https://doi.org/10.1103/PhysRevLett.38.966
https://doi.org/10.1016/0021-9991(83)90045-1
https://doi.org/10.1016/0021-9991(83)90045-1
https://doi.org/10.1098/rspa.1938.0032
https://doi.org/10.1088/0032-1028/22/8/005
https://doi.org/10.1088/0741-3335/49/4/011
https://doi.org/10.1016/0370-1573(78)90142-4
https://doi.org/10.1029/2018GL079044
https://doi.org/10.1002/2017GL073141
https://doi.org/10.1002/2017GL073141
https://doi.org/10.1063/1.872297
https://doi.org/10.1063/1.872297
https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


foreshock and magnetosheath. J. Atmos. Sol. Terr. Phys. 120, 24–35. doi:10.
1016/j.jastp.2014.08.012

Walker, S. N., Balikhin, M. A., Alleyne, H. S. C. K., Hobara, Y., André, M., and
Dunlop, M. W. (2008). Lower hybrid waves at the shock front: a reassessment.
Ann. Geophys. 26, 699–707. doi:10.5194/angeo-26-699-2008

Wang, R., Vasko, I. Y., Mozer, F. S., Bale, S. D., Artemyev, A. V., Bonnell, J. W., et al.
(2020). Electrostatic turbulence and Debye-scale structures in collisionless
shocks. Acta Pathol. Jpn. 889, L9. doi:10.3847/2041-8213/ab6582

Wyngaard, J. C., and Clifford, S. F. (1977). Taylor’s hypothesis and high-frequency
turbulence spectra. J. Atmos. Sci. 34, 922–929. doi:10.1175/1520-0469(1977)034<0922:
THAHTS>2.0.CO;2

Yeh, K. C., and Liu, C. H. (1972). Theory of ionospheric waves. International
geophysics series. New York, London: Academic Press, Vol. 17.

Young, M. A., Oppenheim, M. M., and Dimant, Y. S. (2020). The Farley-Buneman
spectrum in 2-D and 3-D particle-in-cell simulations. J. Geophys. Res. Space
Phys. 125, e2019JA027326. doi:10.1029/2019JA027326

Zakharov, V. E. (1972). Collapse of Langmuir waves. Sov. Phys.-JETP., 35, 908–914.
Zhang, W., Ni, B., Huang, H., Summers, D., Fu, S., Xiang, Z., et al. (2019). Statistical

properties of hiss in plasmaspheric plumes and associated scattering losses of radiation
belt electrons. Geophys. Res. Lett. 46, 5670–5680. doi:10.1029/2018GL081863

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Guio and Pécseli. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org January 2021 | Volume 7 | Article 57374610

Guio and Pécseli Turbulence in Space Plasmas

https://doi.org/10.1016/j.jastp.2014.08.012
https://doi.org/10.1016/j.jastp.2014.08.012
https://doi.org/10.5194/angeo-26-699-2008
https://doi.org/10.3847/2041-8213/ab6582
https://doi.org/10.1175/1520-0469(1977)034<0922:THAHTS>2.0.CO;2
https://doi.org/10.1175/1520-0469(1977)034<0922:THAHTS>2.0.CO;2
https://doi.org/10.1029/2019JA027326
https://doi.org/10.1029/2018GL081863
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/astronomy-and-space-sciences
www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles

	The Impact of Turbulence on the Ionosphere and Magnetosphere
	1 Introduction
	2 Turbulent Spectra
	2.1 Strong Turbulence in Neutral Fluids
	2.2 Strong Turbulence in Plasmas
	2.2.1 Plasma Turbulence as a ‘Soliton Gas’

	2.3 Taylor’s Hypothesis

	3 Turbulent Transport
	4 Anomalous Resistivity
	4.1 Electron Plasma Waves
	4.2 Lower-Hybrid Waves
	4.3 Whistlers

	5 Discussion
	6 Conclusion
	Author Contributions
	Acknowledgments
	References


