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Abstract

Objective: This research is designed to examine the impact of varying patient population distribu-

tions on the in-control performance of the risk-adjusted Bernoulli CUSUM chart.

Design: The in-control performance of the chart is compared based on sampling the Parsonnet

scores with replacement from five realistic subsets of a given distribution.

Settings: Five patient mixes with different Parsonnet score distributions are created from a real

patient population.

Main Outcome Measures: The outcome measures for this research are the in-control average run

lengths (ARLs) given varying patient populations.

Results: Our simulation results show that the in-control ARLs of the risk-adjusted Bernoulli CUSUM

chart with fixed control limits and a given risk-adjustment equation vary significantly for different

patient population distributions, and the in-control ARLs decrease as the mean of the Parsonnet

scores increases.

Conclusions: The simulation results imply that the control limits should vary based on the particular

patient population of interest in order to control the in-control performance of the risk-adjusted

Bernoulli CUSUM method.

Key words: average run length (ARL), heterogeneous population distributions, in-control performance, Parsonnet score,
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Introduction

The risk-adjusted Bernoulli CUSUM chart was developed by Steiner
et al. [1], driven by the need for appropriately monitoring surgical per-
formance in the presence of risk differences from patient to patient.
With this chart, one adjusts for each patient’s preoperative risk of sur-
gical failure using a logistic regression model and then applies the like-
lihood ratio based scoring method to obtain the monitoring statistics.
It has been shown that the risk-adjusted CUSUM chart is suitable for
detecting improvement or deterioration in surgical performance when

there is a mix of patients with varying preoperative risks. A general
review of risk-adjusted charting was provided by Cook et al. [2]. If
patient risks do not vary significantly, one can use the Bernoulli
CUSUM chart employed by Lim et al. [3].

A number of practitioners and researchers have applied the
risk-adjusted Bernoulli CUSUM method for monitoring clinical out-
comes. Sherlaw-Johnson advised using the signal rule of the
risk-adjusted CUSUM chart in the background with the perhaps
more commonly used variable life-adjusted display (VLAD) [4]. This
is the approach advocated by the Clinical Practice Improvement
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Centre [5]. Sherlaw-Johnson et al. combined the risk-adjustedCUSUM
chart and the rocket tail chart based on the VLAD for monitoring by
developing a scheme in which CUSUM signals were superimposed
onto the rocket tail plots [6]. In another application, Harris et al. retro-
spectively applied the risk-adjusted CUSUMmethod to the analysis of
their medical center’s experience with ruptured abdominal aortic an-
eurysms (RAAAs) while adjusting for the variability in patients’ co-
morbidities and hemodynamic instability [7]. As another example,
Novick et al. compared risk-adjusted and non-risk-adjusted CUSUM
analyses of coronary artery bypass surgery outcomes and found out
that the risk-adjusted CUSUM method was advantageous over
non-risk-adjusted methods by not incorrectly signaling a deterioration
in performance when preoperative patient risk was high [8]. Moore
et al. used the risk-adjusted CUSUMmethod to assess shifts in the per-
formance of an RAAA program over time [9]. As a final example,
Coory et al. recommended use of the risk-adjusted CUSUM chart
for monitoring administrative hospital data [10].

Setting appropriate control limits to get a desired in-control aver-
age run length (usually denoted as in-control ARL) is the prerequisite
for evaluating the control chart performance. The run length is defined
in our case as the number of Bernoulli trials (i.e. patients) observed
until a signal is given by the control chart. The signal can be either a
false alarm or an indication of the occurrence of a real change in the
parameter of interest. Getting the same or very close in-control ARL
values is the prerequisite for comparing the out-of-control perform-
ance of competing control charts. The selection of the control limits
for various types of CUSUM schemes has been discussed by a number
of authors, including Woodall [11] and Gan [12]. In the cardiac sur-
gery example used by Steiner et al. [1], the control limits for the pro-
posed CUSUM charts were set at a specified level to give a relatively
large in-control ARL value given the patient population and the fitted
logistic regression model used for risk adjustment.

The impact of varying patient population distributions on the per-
formance of the risk-adjusted CUSUM chart has been recognized.
Steiner et al. [13] discussed the change in ARL performance when
changes occurred in the risk distribution by plotting the ARL versus
odds ratio curves based on two extremely different patient distribu-
tions. One population consisted only of the lowest risk patients and
the other consisted of only the highest risk patients. For these popula-
tions, the in-control ARLs varied from 100 to 1000. Rogers et al. [14]
simply stated that the in-control ARL performance would change if
the risk distribution changes over time. Loke and Gan [15] investi-
gated the sensitivity of the risk-adjusted CUSUM charts to changes
in the ‘predisposed risk distribution’ by using simulated beta distribu-
tions with different parameters to compare the in-control ARLs. For a
set of somewhat arbitrarily selected beta distributions, they showed
that the in-control ARL could be up to 13% lower than specified or
up to 31% higher. They proposed a joint scheme to monitor the clin-
ical failures and the risk distribution at the same time. In our study, we
investigated the impact of varying risk factor distributions on the in-
control performance of the risk-adjusted CUSUM chart based on
more realistic populations from a case study application.

In our study, we examined the effect of varying patient population
distributions on the in-control performance of the risk-adjusted
CUSUM chart. The distribution of risk factors can vary significantly
depending on the surgeon, the patient mix corresponding to various
facilities, and even the same surgeon and facility over time. Given
the risk model fitted during the preliminary Phase I and fixed control
limits determined for a given population of patients, wewould hope to
have similar in-control performance in the on-going monitoring of
Phase II for different patient mix distributions.

The remainder of our short paper is organized as follows. The
risk-adjusted Bernoulli CUSUMprocedure is introduced, and the various
patient population risk factor distributions we consider are illustrated.
Then we compare the in-control performance of the risk-adjusted
CUSUM charts for different patient population distributions. Finally,
our conclusions and a future research topic are discussed.

Methods

Risk-adjusted Bernoulli CUSUM chart

Due to the fact that the preoperative risk of mortality varies consider-
ably from patient to patient in most surgical settings, Steiner et al. de-
veloped a monitoring approach in which one can adjust for each
patient’s preoperative risk of surgical failure [1]. It is thus referred to
as the risk-adjusted Bernoulli CUSUM chart, where the CUSUM sta-
tistics for the tth patient can be written as follows:

Cþ
t ¼ maxð0;Cþ

t�1 þWþ
t Þ; t ¼ 1;2; 3; : : :; ð1Þ

C�
t ¼ minð0;C�

t�1 �W�
t Þ; t ¼ 1;2; 3; : : :; ð2Þ

where Cþ
0 ¼ C�

0 ¼ 0, andWþ
t andW�

t are the weights assigned to the
tth patient which are determined based on a log-likelihood ratio de-
pending on the observed surgical outcome. The surgical failure prob-
ability for each patient is estimated by evaluating the preoperative risk
of each patient using a method such as a logistic regression model
based on Parsonnet scores. (See Parsonnet et al. [16].)

LetR denote the odds ratio corresponding to surgical failure and Pt

denote the probability of patient death within a 30-day period after the
surgery determined from the risk-adjustment model. Then for patient
t, the odds of failure are RPt: (1 − Pt) and the probability of failure
is correspondinglyRPt=ð1� Pt þ RPtÞ. The risk-adjusted CUSUM
chart is designed to monitor for a change from R0 to Ra, where R0

is usually set to 1 to reflect current surgical performance,Ra toRa>R0

for detecting performance deterioration, and to Ra <R0 to detect pro-
cess improvement. Thus, the risk-adjusted CUSUM chart weights can
be written as follows,

Wt ¼
log

1� Pt þ R0Pt

1� Pt þ RaPt

� �
if yt ¼ 0;

log
ð1� Pt þ R0PtÞRa

ð1� Pt þ RaPtÞR0

� �
if yt ¼ 1:

8>><
>>:

ð3Þ

where yt = 1 if the patient t dies within the 30-day period following the
surgery, and yt = 0 otherwise. When Ra > 1, Equation (3) yields values
ofWþ

t in Equation (1). WhenRa < 0, Equation (3) yields values ofW�
t

in Equation (2). The chart signals when Cþ
t � hþ or C�

t � h� which
indicates that there has been either deterioration or improvement in
the surgical performance, respectively. The control limits h+ and h−

are set to yield suitably large ARLs when there are no changes in
the odds ratio of failure R0.

Varying patient populations

It is expected that the patient risk will vary due to the differences in
personal characteristics such as age and the presence or absence of
health risk factors such as hypertension or diabetes. As Steiner et al.
[1] and many others have pointed out, risk adjustment is often neces-
sary in health-care applications. In our work, we want to study how
much the in-control performance of the risk-adjusted Bernoulli
CUSUM chart depends on realistic patient populations. Before dis-
cussing the results of the simulation, we first introduce how the patient
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distribution was varied using a dataset from a UK center for cardiac
surgery (used in Steiner et al. [1]).

The dataset contains information on 6994 patients collected over a
7-year period from 1992 to 1998. For each patient, some surgeon in-
formation, the binary surgical outcome and a Parsonnet score are re-
corded. The first 2 years of data were used to fit the logistic regression
model based on the Parsonnet score, which was determined based on
the personal and health characteristics of each patient [1].

The histograms corresponding to the Parsonnet scores of all pa-
tients in the first 2 years, the lower 50% of these scores, the higher
50% of these scores, and the scores of the patients corresponding to
the first and sixth surgeon are provided in Fig. 1. These distributions
of risk factors vary considerably, which makes the distributions of the
death rates of the patients (Pt’s) vary significantly as well, as illustrated
in Fig. 2. We used these five distributions as our populations in our
simulation study. We note that Jones and Steiner [17] sampled from

Figure 1 Parsonnet score histograms for five populations.
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subsets of this dataset in a similar manner to study the effect of estima-
tion error of the parameters of the risk-adjustment model on chart
performance.

The mean values for the Parsonnet scores in each population are
given in Table 1. One can see that the average Parsonnet score varies
considerably. Based on the five patient populations we have described,
we performed in-control performance comparisons based on the

model estimated from all the surgeries in years 1992 and 1993,
which Steiner et al. [1] found to be

logitðPtÞ ¼ �3:68þ 0:077Xt ; ð4Þ

where Xt represents the Parsonnet score of patient t, and Pt is the
probability of death within 30 days following surgery for this patient.

Figure 2 Histograms of probability of death within 30 days following the surgery for five populations.
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(Note that due to a typographical error, Steiner et al. [1] reported the
coefficient as 0.77 instead of 0.077.)

To check the effect of the patient risk distribution on the perform-
ance of the risk-adjusted CUSUM chart proposed in Steiner et al. [1],
scores were randomly sampled with replacement from the five distri-
butions. The probabilities of death after the surgery were determined
using Equation (4) based on the sampled scores. Then, the CUSUM
statistics for both upper and lower CUSUM charts were obtained
using Equations (1) and (2) based on Equation (3) with Ra = 2 for the
upper CUSUM and Ra = 0.5 for the lower CUSUM after generating
Bernoulli random variables with the probabilities from Equation (4).

Results

If the varying Parsonnet score distributions have no significant impact
on the chart performance, comparable in-control ARLs should be ob-
tained for the varying distributions for the same control limits,
h+ = 4.5 and h− = −4.0, which were determined by Steiner et al. [1]
to yield in-control ARLs of roughly 9600 for each of the upper and
lower charts. In our study, 10 000 run lengths were obtained by re-
peatedly sampling from each of the different populations with replace-
ment, and the in-control ARLs were estimated. The results are
summarized in Table 1. The values in the parentheses are the standard
errors of the estimated ARLs.

First, we noted that the in-control ARL values based on all of the
scores did not match the results of Steiner et al. [1]. According to Stei-
ner (2013, personal communication), this was due to the limited num-
ber of states used in their Markov chain calculations. Increasing the
number of states to 1000 led him to values of 7322.9 and 6242.7
for the upper and lower CUSUM charts, respectively, which are com-
parable with the corresponding values in Table 1. It can be seen that
the in-control performance varies significantly with different distribu-
tions of the patient risk factor. In addition, there is an obvious decreas-
ing trend in the in-control ARLs as the mean of the Parsonnet scores
increases, as illustrated in Fig. 3. Furthermore, there is a somewhat
constant difference between the ARLs of the upper and lower risk-
adjusted CUSUM charts.

The decreasing trend in the in-control ARL as the average Parson-
net score increases indicates an increase in false alarm rates when the
mean of the Parsonnet scores gets higher. Since we assumed in our si-
mulations that the model held exactly, the trend cannot be due to any
lack-of-fit in the risk-adjustment model, but due to the change of the

risk factor distribution. The control chart limits could be changed to
remove the relatively constant gap between the ARLs of the upper and
lower CUSUM charts, if this is desired.

Discussion

In our paper, we examined the effect of varying patient risk factor dis-
tributions on the performance of the risk-adjusted CUSUM chart pro-
posed by Steiner et al. [1]. With sampling only from subsets of the
Phase I dataset with replacement, significantly different in-control
ARLs were obtained. Also, the in-control ARLs decrease as the
mean of the Parsonnet scores increases. The implication of our results
is that even if the risk-adjustment method is accurate, one cannot con-
trol the in-control performance of the risk-adjusted Bernoulli CUSUM
method without determining the control limits based on the particular
assumed patient population of interest. We showed that the in-control
ARL can vary by more than a factor of two under realistic scenarios.

One possible solution to this problem, which we plan to investi-
gate, is to adjust the control limits over time, conditioning on the par-
ticular sequence of risk factors observed for the patients. Shen et al.
applied this approach in a computationally intensive way to success-
fully monitor Poisson data with varying in-control mean values [18].
The primary idea is to maintain the conditional probability of a false
alarm as a constant value given there is no false alarm for previous ob-
servations. One uses simulated observations on-line to set a dynamic
probability control limit (DPCL) for each patient. By applying the
DPCLs to the risk-adjusted Bernoulli CUSUM chart, one can obtain
the desired in-control run length distribution regardless of the distribu-
tion of patient risks.
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