
The Impact of Virtualization on Network

Performance of Amazon EC2 Data Center

Guohui Wang T. S. Eugene Ng

Dept. of Computer Science, Rice University

Abstract—Cloud computing services allow users to lease com-
puting resources from large scale data centers operated by service
providers. Using cloud services, users can deploy a wide variety
of applications dynamically and on-demand. Most cloud service
providers use machine virtualization to provide flexible and cost-
effective resource sharing. However, few studies have investigated
the impact of machine virtualization in the cloud on networking
performance.

In this paper, we present a measurement study to characterize
the impact of virtualization on the networking performance of the
Amazon Elastic Cloud Computing (EC2) data center. We measure
the processor sharing, packet delay, TCP/UDP throughput and
packet loss among Amazon EC2 virtual machines. Our results
show that even though the data center network is lightly utilized,
virtualization can still cause significant throughput instability and
abnormal delay variations. We discuss the implications of our
findings on several classes of applications.

Index Terms—Measurement, cloud service, virtualization, net-
working performance

I. INTRODUCTION

Cloud service allows enterprise class and individual users

to acquire computing resources from large scale data centers

of service providers. Users can rent machine instances with

different capabilities as needed and pay at a certain per

machine hour billing rate. Despite concerns about security

and privacy, cloud service attracts much attention from both

users and service providers. Recently, many companies, such

as Amazon, Google and Microsoft, have launched their cloud

service businesses.

Most cloud service providers use machine virtualization

techniques to provide flexible and cost-effective resource shar-

ing among users. For example, both Amazon EC2 [1] and

GoGrid [11] use Xen virtualization [3] to support multiple

virtual machine instances on a single physical server. Virtual

machine instances normally share physical processors and I/O

interfaces with other instances. It is expected that virtualization

can impact the computation and communication performance

of cloud services. However, very few studies have been

performed to understand the characteristics of these large scale

virtualized environments.

In this paper, we present an empirical measurement study

on the end-to-end networking performance of the commercial

Amazon EC2 cloud service, which represents a typical large

scale data center with machine virtualization. The focus of our

study is to characterize the networking performance of virtual

machine instances and understand the impact of virtualization

on the network performance experienced by users.

Observations: We measure the processor sharing, packet

delay, TCP/UDP throughput and packet loss properties among

Amazon EC2 virtual machine instances. Our study systemati-

cally quantifies the impacts of virtualization and finds that the

magnitude of the observed impacts are significant:

1) We find that Amazon EC2 small instance virtual ma-

chines typically receive only a 40% to 50% share of the

processor.

2) Processor sharing can cause very unstable TCP/UDP

throughput among Amazon EC2 small instances. Even

at the tens of millisecond time granularity, the TCP/UDP

throughput experienced by applications can fluctuate

rapidly between 1 Gb/s and zero.

3) Even though the data center network is not heavily

congested, we observe abnormally large packet delay

variations among Amazon EC2 instances. The delay

variations can be a hundred times larger than the propa-

gation delay between two end hosts. We conjecture that

the large delay variations are caused by long queuing

delays at the driver domains of the virtualized machines.

4) We find that the abnormally unstable network perfor-

mance can dramatically skew the results of certain

network performance measurement techniques.

Implications: Our study serves as a first step towards under-

standing the end-to-end network performance characteristics

of virtualized data centers. The quantitative measurement

results from this study provide insights that are valuable to

users running a variety of applications in the cloud. Many

cloud applications (e.g. video processing, scientific computing,

distributed data analysis) are data intensive. The networking

performance among virtual machines is thus critical to these

applications’ performance. The unstable throughput and packet

delays can obviously degrade the performance of many data

intensive applications. More importantly, they make it hard to

infer the network congestion and bandwidth properties from

end-to-end probes. Packet loss estimation is an example that

will be discussed in section VI. The abnormal variations in

network performance measurements could also be detrimental

to adaptive applications and protocols (e.g. TCP vegas [5],

PCP [2]) that conduct network performance measurements

for self-tuning. Researchers have also recently started to

deploy large scale emulated network experiments on cloud ser-

vices [6], [12]. For this use of cloud services, our results point

to challenges in performing accurate network link emulation

in virtualized data centers. The unstable network performance



2

of cloud services may bias the conclusions drawn from these

experiments. Given the observations from our measurement

study, many applications may need to be adjusted to achieve

optimal performance in virtualized data center environments.

The rest of this paper is organized as follows. In Section

II, we introduce the background on Amazon EC2 and the

Xen virtualization technique. In section III, we explain our

measurement methodology. In Section IV, V, VI, we describe

our measurement results and discuss the reasons behind our

observations. In Section VII, we discuss the implications of

our findings on different classes of cloud applications. We

discuss the related work in Section VIII and conclude the paper

in Section IX.

II. BACKGROUND

A. Xen Virtualization

Xen [3] is an open source x86 virtual machine monitor

which can create multiple virtual machines on a physical

machine. Each virtual machine runs an instance of an oper-

ating system. A scheduler is running in the Xen hypervisor

to schedule virtual machines on the processors. The original

Xen implementation schedules virtual machines according to

the Borrowed Virtual Time (BVT) algorithm [8].

Particularly for network virtualization, Xen only allows a

special privileged virtual machine called driver domain, or
domain 0 to directly control the network devices. All the

other virtual machines (called guest domains in Xen) have to

communicate through the driver domain to access the physical

network devices. The way Xen realizes this is, the driver

domain has a set of drivers to control the physical Network

Interface Cards (NIC), and a set of back-end interfaces to

communicate with guest domains. The back-end interfaces and

physical drivers are connected by a software bridge inside

the kernel of the driver domain. Each guest domain has a

customized virtual interface driver to communicate with a

back-end interface in the driver domain. All the packets sent

from guest domains will be sent to the driver domain through

the virtual interfaces and then sent into the network. All the

packets destined to a guest domain will be received by the

driver domain first, and then transferred to the guest domain.

B. Amazon Elastic Cloud Computing (EC2)

Amazon EC2 is a component of Amazon’s Web Services

(AWS), which allows users to rent computers to run computer

applications in the Amazon EC2 data center. Amazon EC2

uses the Xen virtualization technique to manage physical

servers. There might be several Xen virtual machines running

on one physical server. Each Xen virtual machine is called

an instance in Amazon EC2. There are several types of

instances. Each type of instance provides a predictable amount

of computing capacity. The small instance is the primary

instance type, which is configured with 1.7GB memory, 1

EC2 compute unit and 160GB instance storage. According

to Amazon, ”one EC2 compute unit provides the equivalent

CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon

processor.” For applications requiring higher computing ca-

pacity, Amazon EC2 provides several high-capacity instances

which are configured with 4 to 20 EC2 compute units. The

input-output (I/O) capacities of these types of instances are

not specified clearly.

Allocated EC2 instances can be placed at different physical

locations. Amazon organizes the infrastructure into different

regions and availability zones. There are two regions, us-

east-1 and eu-west-1, which are located in the US and in

Europe respectively. Each region is completely independent

and contains several availability zones that are used to improve

the fault tolerance within the region. We suspect that each

availability zone is an isolated data center which is powered

by its own powerline. Different availability zones in the same

region are placed very close to each other. The region us-

east-1 has three availability zones, us-east-1a, us-east-1b and

us-east-1c. The region eu-west-1 has two availability zones,

eu-west-1a and eu-west-1b.

III. EXPERIMENT METHODOLOGY

In this section, we introduce the methodology of our mea-

surement study. We first explain the properties we measure

in our experiments, and the methodology we use to measure

them.

A. Properties and Measurement Tools

Processor Sharing: Since each Amazon EC2 instance

is a Xen virtual machine, an immediate question users may

ask is ”how does Amazon EC2 assign physical processor to

my instance? Are there any processor sharing?” To answer

this question, we use a simple CPUTest program to test the

processor sharing property of EC2 instances. This program

consists of a loop that runs for 1 million times. In each

iteration, the program simply gets the current time by calling

gettimeofday() and saves the timestamp into a pre-allocated

array in memory. When the loop finishes, the program dumps

all the saved timestamps to the disk. Normally, if the program

is executed continuously, all loop iterations should take a

similar amount of time. However, virtual machine scheduling

can cause some iterations to take much longer than the others.

If the instance is scheduled off from the physical processor,

we should observe a gap in the timestamp trace. Since context

switching among user processes can also cause a gap in the

timestamp trace, we always run the CPUTest program as the

only user process in our processor sharing experiments to

minimize the impact of context switching. Therefore, from the

timestamp trace of this program, we can estimate the processor

sharing property of EC2 instances.

Packet round-trip delay: Given an instance pair, we use

ping to measure the packet round-trip delay (or round-trip

time, RTT) between them. To also measure delay variations,

we send 10 ping probes per second, and continuously collect

5000 round-trip delay measurements.

TCP/UDP throughput: We developed two programs

TCPTest and UDPTest to measure the TCP and UDP through-

put that can be achieved by applications running on Amazon



3

EC2 instances. The UDPTest tool has a sender and receiver.

The sender reads data from a buffer in memory and sends

it as UDP packets. Since Amazon EC2 instances are Xen

virtual machines, the UDP packets are sent to network through

Xen driver domain. The communication between Xen driver

domain and guest domain is done by copying data from

memory to memory. If UDP sender sends as fast as possible,

it will burst data at very high rate to the driver domain. A

lot of traffic will be dropped when Xen driver domain cannot

send them out in time. Therefore, in our UDPTest tool, the

sender controls the sending rate to 1Gb/s by adding small idle

intervals between every 128KB of data. We set the sending rate

to 1Gb/s because according to our experiences, the Amazon

EC2 instances are configured with Gigabit network cards. The

UDP/IP packet size is 1500 bytes (i.e. the MTU of Ethernet)

and the socket buffer size is 128KB. The receiver simply

receives the UDP data and calculates the UDP throughput.

The TCPTest tool also has a sender and a receiver. The sender

reads data from a buffer in memory and sends data via a

TCP connection to the receiver. The receiver also simply

receives the data and calculates the TCP throughput. The TCP

maximum send and receive window sizes are set to 256KB.

From our experience, most of the RTTs among Amazon EC2

instances are below 0.5 ms. Therefore, if the network allows,

end host could achieve throughput higher than 4Gbps by this

window size.

Packet loss: We use the Badabing tool [13] to estimate the

packet loss among Amazon EC2 instances. Badabing is the

state-of-the-art loss rate estimation tool. It has been shown

to be more accurate than previous packet loss measurement

tools [13]. Packet loss estimation is considered challenging

because packet loss typically occurs rarely and lasts for very

short time. Badabing use active probes and statistical estima-

tions to measure the packet loss properties. However, since

we are using these tools in a virtualized environment, those

estimations may not give us accurate results. We will provide

detailed discussion on the packet loss estimation results in

section VI.

B. Instance Type Selection

Amazon EC2 provides different types of instances for users.

Our measurement experiments are mainly based on Amazon

EC2 small instances and high CPU medium instances (or

called medium instances). Small instances are the default

instances in Amazon EC2 and they compete for physical

processor resources, which creates an interesting environment

for studying the impact of virtualization on network perfor-

mance. High CPU medium instance is one type of high-

capacity instances in Amazon EC2. Based on Amazon EC2

documents, the high-capacity instances are configured with

multiple virtual cores (2 for high CPU medium instances).

Each virtual core represents a CPU core that is visible inside a

virtual machine. It is expected to have no processor competing

among high-capacity instances. We choose medium instances

as comparison with small instances to study the cases with

and without processor sharing among virtual machines.

C. Large Scale Experiment Setup

We deploy large scale experiments to evaluate the system

wide networking performance of Amazon EC2 instances. We

set up a spatial experiment to evaluate how the network

performance varies on instances at different network locations.

We set up a temporal experiment to evaluate how the network

performance varies on a given instance over a long time period.

All the large scale experiments are deployed in the us-east-1

region. To eliminate the potential impacts from different kernel

versions, we use the same OS image ami-5647a33f on all the

instances.

Spatial experiment: In the spatial experiment, we request

250 pairs of small instance and 50 pairs of medium instances

from each of the three availability zones us-east-1a, us-east-

1b and us-east-1c. Within each availability zone, the instances

are requested and measured in a round by round manner. In

each round, we request a pair of instances, measure them and

release them. Since we don’t know the instance allocation

strategy of Amazon EC2, we check the network mask of all

the instances to validate that the requested instances are at

different network locations. According to the network mask,

the instances we have chosen cover 177 different subnets in

Amazon EC2 data centers. For each instance pair, we mea-

sure the processor sharing using CPUTest on both instances.

We also measure the network properties between the two

instances, including delay, TCP/UDP throughput and packet

loss. To avoid interference between different measurement

programs, we run the programs one by one sequentially. Since

the TCP/UDP throughput measurement programs are more in-

trusive to the network, we limit the amount of data transmitted

in each test to 800 MB, which corresponds to roughly 10

seconds of measurement time. We run the Badabing tool for

one minute to estimate the packet loss property for an instance

pair. Since all the instance pairs in the same availability zone

are measured sequentially, the measurement traffic of different

instance pairs will not interfere with each other.

Temporal experiment: In the temporal experiment, we

choose two small instance pairs and one medium instance pair

in each of the three availability zones (us-east-1a, us-east-1b

and us-east-1c). For all the nine instance pairs, we measure

their processor sharing and network performance continuously

for 150 hours. The measurements are done in a round by

round fashion. Within each availability zone in each round, we

measure the processor sharing, RTT, TCP/UDP throughput and

packet loss of the three instance pairs one by one. The settings

of all the measurement tools are the same as in the spatial

experiment. The time interval between two adjacent rounds

is set to 10 minutes. We arrange all the experiments inside

the same availability zone sequentially to avoid interference

between measurement traffic.

IV. PROCESSOR SHARING

We use our CPUTest program to test the processor sharing

on small and medium instances in our spatial and temporal

experiments. We first present a typical CPUTest timestamp

trace observed on small and medium instance in Figure 1.



4

0 2 4 6 8 10

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Loop number

T
im

e
 S

ta
m

p
 (

s
)

 

 

Non−virtualized computer: 
AMD Dual Core Opteron 252 2.6GHz

EC2 Small Instance: sharing one core of
AMD Opteron Dual Core 2218E 2.6GHz

EC2 High CPU Medium Instance: 
Intel Xeon Dual Core 2.4GHz

Fig. 1. CPUTest trace plot

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CPU Share 

C
u

m
u

la
ti

v
e
 D

is
tr

ib
u

ti
o

n

Spatial exp, small 
Temporal exp, small 
Spatial exp, medium 
Temporal exp, medium

Fig. 2. The distribution of CPU share

As illustrated in Figure 1, when the CPUTest program is

run on a non-virtualized machine or a medium instance, the

timestamp traces produced indicate the CPUTest program

achieves a steady execution rate with no significant inter-

ruption. However, the timestamp trace of the small instance

shows very obvious scheduling effects. When the CPUTest

program is run on a EC2 small instance, periodically there

is a big timestamp gap between two adjacent loop iterations.

The timestamp gaps are on the order of tens of milliseconds.

In each iteration of the CPUTest program, the program only

retrieves the current time and saves it to memory; there is

no I/O operations. Since CPUTest is the only user program

running on the instance, there shouldn’t be frequent context

switch between user programs. Therefore, the logical reason

that explains the observed execution gap is virtual machine

scheduling. The large timestamp gaps represent the periods

when the instance running the CPUTest program is scheduled

off from the physical processor.

In the CPUTest timestamp trace on an EC2 small instance,

when the CPUTest program is running on the processor, one

loop iteration normally takes less than 3 us. If one loop

iteration takes more than 1 ms, we treat this time gap as a

schedule off period. We define CPU sharing as the percentage

of CPU time an instance gets from the Xen hypervisor.

By searching through the timestamp traces produced by the

CPUTest program, we can estimate the CPU sharing of EC2

instances. Figure 2 shows the distribution of CPU sharing

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1
(a) Small Instances

Bandwidth (Mbps)

C
u

m
u

la
ti

v
e
 D

is
tr

ib
u

ti
o

n TCP Throughput
UDP Throughput

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1
(b) Medium Instances

Bandwidth (Mbps)

C
u

m
u

la
ti

v
e
 D

is
tr

ib
u

ti
o

n TCP Throughput
UDP Throughput

Fig. 3. The Distribution of bandwidth measurement results in spatial
experiment

estimation of small and medium instances in both spatial and

temporal experiments. From this graph, we can see that small

instances are always sharing processors with other instances.

For almost all the cases, small instances always get 40% to

50% of the physical CPU sharing. We suspect Amazon EC2

uses strict virtual machine scheduling policy to control the

computation capacity of instances. Even there is no other

virtual machines running on the same server, small instances

still cannot use more than 50% of the processor. On the other

hand, medium instances get 100% CPU sharing for most of

the cases. There are only 20% of the cases where medium

instances get 95% of the CPU sharing, which might be caused

by the context switch between the CPUTest program and

kernel service processes.

Note that the scheduling effect observed by our CPUTest

program is only typical for CPU intensive applications since

it does not have any I/O operations during the test period. I/O

intensive applications may have different scheduling pattern.

However, our results do confirm that processor sharing is a

wide spread phenomenon among EC2 small instances, whereas

medium instances do not competing processors with other

instances.

V. BANDWIDTH AND DELAY MEASUREMENT

In this section, we discuss the bandwidth and delay mea-

surement results of Amazon EC2 instances observed in our

experiments.

A. Bandwidth Measurement

Measurement Results: In the spatial experiment, we

measured the TCP/UDP throughput of 750 pairs of small

instances and 150 pairs of medium instances at different net-

work locations. In the temporal experiment, we measured the

TCP/UDP throughput of 6 pairs of small instances and 3 pairs

of medium instances continuously over 150 hours. Figure 3

shows the cumulative distribution of TCP/UDP throughput

among small and medium instances in the spatial experiment.

From these results, we can see that Amazon EC2 data center

network is not heavily loaded since EC2 instances can achieve

more than 500 Mbps TCP throughput for most the cases. More

importantly, we can make an interesting observation from this



5

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1
(a) Small Instances

Bandwidth (Mbps)

C
u

m
u

la
ti

v
e
 D

is
tr

ib
u

ti
o

n TCP Throughput
UDP Throughput

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1
(b) Medium Instances

Bandwidth (Mbps)

C
u

m
u

la
ti

v
e
 D

is
tr

ib
u

ti
o

n TCP Throughput
UDP Throughput

Fig. 4. The distribution of bandwidth measurement results in temporal
experiment

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

Time (s)

T
C

P
 T

h
ro

u
g

h
p

u
t 

(M
b

p
s
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

Time (s)

U
D

P
 T

h
ro

u
g

h
p

u
t 

(M
b

p
s
)

Fig. 5. TCP and UDP throughput of small instances at fine granularity

graph. Medium instances can achieve similar TCP and UDP

throughput. The median TCP/UDP throughput of medium

instances are both close to 760 Mbps. However, the TCP

throughput of small instances are much lower than their UDP

throughput. The median UDP throughput of small instances

is 770 Mbps, but the median TCP throughput is only 570

Mbps. Figure 4 shows the cumulative distribution of TCP and

UDP throughput of small and medium instances over the 150-

hour period in our temporal experiment. We observe the same

behavior from the results of the temporal experiment. Why are

the TCP throughput of small instances much lower than their

UDP throughput? We perform more detailed discussions and

experiments to answer this question.

Discussion: Several factors can impact the TCP throughput

results, including TCP parameter settings, packet loss caused

by network congestion, rate shaping and machine virtualiza-

tion. In our experiments, the TCP window size we use is

256KB which can achieve 4Gb/s throughput if network allows.

Therefore, the low TCP throughput of small instances is not

caused by TCP parameter settings. To investigate further, we

study the TCP/UDP transmission at a much smaller time

scale. In our TCPTest and UDPTest tool, every time when the

receiver receives 256KB of data, it computes a throughput for

the recent 256KB data transmission. Figure 5 demonstrates the

fine-grain TCP and UDP throughput of a typical small instance

pair in 1-second transmission. We consistently observe the

same transmission pattern on all the small instances. To make

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

Time (s) 

T
C

P
 T

h
ro

u
g

h
p

u
t 

(M
b

p
s

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

Time (s)

U
D

P
 T

h
ro

u
g

h
p

u
t 

(M
b

p
s

)

Fig. 6. TCP and UDP throughput of medium instances at fine granularity

the results clearly visible, we only pick one small instance pair

and plot the throughput in 1 second period.

First, we discuss the behavior of TCP transmission. We

observe the drastically unstable TCP throughput switching

between full link rate at near 1 Gb/s and close to 0 Gb/s.

From these transmission patterns, the relatively low average

TCP throughput does not appear to be caused by any explicit

rate shaping in Xen because typical rate shapers (e.g. a token

bucket rate shaper) would not create such oscillations.

By looking at the TCPDUMP trace of the TCP transmission,

we find that during the very low throughput period, no packet

is sent out from the TCP sender. The quiet periods last

for tens of milliseconds. The minimum TCP retransmission

timeout is normally set to 200 ms in today’s Linux ker-

nel [14]. These quiet periods are not long enough to cause

TCP retransmissions. We also confirm that there are no TCP

retransmission observed in the TCPDUMP trace. This result

tells us that the periodic low TCP throughput is not caused by

packet loss and network congestion because if that is the case,

we should observe a large number of TCP retransmissions.

Considering the processor sharing behavior observed in our

CPUTest experiments, we believe that the quiet periods are

caused by the processor sharing among small instances. During

these quiet periods, either the TCP sender instance or the

receiver instance are scheduled off from the physical processor,

therefore no packet can be sent out from the sender.

From Figure 5, we can observe a similar unstable UDP

throughput on small instances. The difference between UDP

and TCP transfers is that, in many cases, after a low throughput

period, there is a period where the receiver receives UDP

traffic at a high burst rate (even higher than the network’s

full link rate). That is why UDP throughput is higher than

TCP throughput on average. We believe the reason is, during

the low UDP throughput periods, the receiver is scheduled off

from the processor, but the sender instance is scheduled on. All

the UDP traffic sent to the receiver will be buffered in the Xen

driver domain. When the receiver is scheduled in later, all the

buffered data will be copied from driver domain memory to

the receiver’s memory. Since the data is copied from memory

to memory, the receiver can get them at a much higher rate

than the full link rate.



6

1 2 3 4 5 6 7 8 9
0

0.5

1

Hop count

H
is

to
gr

am

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.02

0.04

0.06

Propagation delay (ms)P
ro

b
a

b
il

it
y

 D
e

n
s

it
y

 F
u

n
c

ti
o

n

Fig. 7. The Distribution of propagation delays and hop count results in
spatial experiment

10
−3

10
−2

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1
(a) Small Instances

RTT (ms)

C
u

m
u

la
ti

v
e

 D
is

tr
ib

u
ti

o
n Min

Median
Average
Max
Std Dev

10
−3

10
−2

10
−1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1
(b) Medium Instance

RTT (ms)

C
u

m
u

la
ti

v
e

 D
is

tr
ib

u
ti

o
n Min

Median
Average
Max
Std Dev

Fig. 8. The distribution of delay statistical metrics in spatial experiment

We define a buffer burst period by a UDP transmission

period during which the receiver continuously receive data

at rates higher than the full link rate. Since we control the

UDP sending rate to 1Gbps, during a buffer burst period,

the additional amount of data beyond full link rate transfer

must come from the Xen driver domain buffer. We call this

additional data buffer burst data. We can estimate the lower

bound of Xen driver domain buffer size by the volume of

buffer burst data. We analyze the UDP transmission trace of

small instance pairs in our 150 hour temporal experiment. We

find, in the maximum case, the buffer burst data is as high

as 7.7 MB. It means that Xen driver domain buffer can be

more than 7.7 MB. The large buffer at Xen driver domain

can help reduce the packet loss and improve the average UDP

throughput when instances are scheduled off from physical

processors.

Figure 6 demonstrates the fine-grain TCP/UDP throughput

trace for a medium instance pair. Since there is no processor

sharing among medium instance pairs, the TCP/UDP through-

put is relatively stable. Medium instances can achieve similar

UDP and TCP throughput which are decided by the traffic

load of the data center network.

B. End-to-end Delays

Measurement Results: In this section, we discuss the

packet delay measurement in our experiments. In our spatial

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

Measurement 

R
T

T
 (

m
s

)

Two non−virtualized machines 4 hops apart

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

Measurement

R
T

T
 (

m
s

)

Two medium instances 4 hops apart

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

10

20

Measurement

R
T

T
 (

m
s

)

Two small instances 3 hops apart

Fig. 9. Raw RTT measurements on Amazon EC2 instances and non-
virtualized machines in university network

experiment, we measure the packet round trip delay (RTT) of

750 small instance pairs and 150 medium instance pairs using

5000 ping probes. Before describing the characteristics of end-

to-end delays, we first discuss an interesting observation in

our ping measurement results. We consistently observe very

large delays (hundreds of ms) for the first several ping probe

packets over all the instance pairs in our spatial experiment.

We compare the ping RTT results with the RTTs measured

by UDP probe packets. We find that the UDP probe RTTs

have the same characteristics with the ping RTTs except that

the first several UDP probe packets do not have abnormally

large delays. By looking at the TCPDUMP trace of the ping

packets, we believe the reason for the abnormally large initial

ping RTTs is that every time ping packets are initiated between

an instance pair, the first several ping packets are redirected

to a device, perhaps for a security check. The routers can

forward ping packets only after the security check device

allows them to do so. The large delays of the first several ping

packets are caused by the buffer delay at the security device.

Therefore, in our RTT characteristics analysis, we remove

the RTT measurement results of the first 50 ping packets

to eliminate the impact of this security check on our delay

measurements.

We analyze several characteristics of RTTs among EC2

instances. First, we estimate the propagation delays between

instance pairs using the minimum RTTs observed in ping

probes. In Figure 7, the bottom graph shows the probability

distribution of propagation delays for all instance pairs. The

propagation delays have a two-peak distribution. The top graph

in Figure 7 shows the histogram of the hop counts for all the

instance pairs. The hop counts are measured using traceroute.

From this graph, we can see that in the EC2 data center,

instances are very close to each other. All the instance pairs

we measured are within 4 hops from each other, and most

propagation delays are smaller than 0.2 ms. For all the 900

instance pairs we have measured, the instances are either 3

hops or 4 hops away from each other. This is the reason why

we observe a two-peak propagation delay distribution.

For each instance pair, we compute the minimum, median,

average, maximum RTTs and the RTT standard deviation from

the 4950 probes. Figure 8 shows the cumulative distribution of



7

these RTT statistical metrics for small and medium instances

(note that the x-axis is in log scale). From this graph, we can

see that the delays among these instances are not stable. The

propagation delays are smaller than 0.2 ms for most of the

small instance pairs. However, on 55% of the small instance

pairs, the maximum RTTs are higher than 20 ms. The standard

deviation of RTTs is an order of magnitude larger than the

propagation delay and the maximum RTTs are 100 times larger

than the propagation delays. The delays of medium instances

are much more stable than the small instances. But we still

observe that, for 20% medium instance pairs, the maximum

RTTs are larger than 10ms. Considering the Amazon EC2 data

center is a large cluster of computers that are not spread over

a wide area, these large delay variations are abnormal.

As a comparison, we test the RTT and between non-

virtualized machines located in our university network and

in Emulab. We observe much smaller delay variations on

the machines in our university network and in Emulab. For

example, for two machines in our university network which

are 4 hops away, the minimum/average/maximum RTTs are

0.386/0.460/1.68 ms respectively, and the RTT standard de-

viation is 0.037 ms. For two machines in Emulab which are

connected through a switch, the minimum/average/maximum

RTTs are 0.138/0.145/0.378 ms, and the RTT standard devia-

tion is 0.014 ms. For all these non-virtualized machines, the

RTT standard deviation is roughly 10 times smaller than the

propagation delays. To visualize this difference, we plot the

5000 RTT measurement results for non-virtualized machines,

small instances, and medium instances in Figure 9. We can

clearly see that, RTTs among Amazon EC2 instances have

much higher variations than non-virtualized machines. The

delay variations among small instances are much higher than

that of medium instances.

Discussion: End-to-end delay variation are typically as-

sumed to be caused by the queuing delays on routers when

a network is congested. However, in the Amazon EC2 data

center, the large delay variations are unlikely to be caused by

network congestion. The reasons can be argued as follows.

First, we observe very rare packet loss in the ping probes.

Among all the instance pairs we have done ping probes, 98%

of them did not experience any ping packet loss. The other 2%

only experience roughly 1 out of 1000 packet loss. Second, in

our bandwidth measurement experiments, all the instances we

have measured can achieve at least 500Mb/s TCP throughput.

All these results imply that the Amazon EC2 data center

network is not congested.

Considering the processor sharing and large Xen driver

domain buffer observed in previous sections, our conjecture is

that the large delay variations among EC2 instances are caused

by the long queuing delay at the Xen driver domain. Since

small instances are sharing processors with other instances,

when the receiver instance is scheduled off, the probe packets

will be buffered at the Xen driver domain until the receiver

is scheduled on. This long buffering delay causes very high

delay variations among small instances. Although medium

instances do not share processors, they are still sharing Xen

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Packet Loss 

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

 

 

Badabing loss frequency estimation (spatial exp) 

Badabing loss frequency estimation (temporal exp)

Badabing probe loss rate (spatial exp)

Badabing probe loss rate (temporal exp)

Fig. 10. Badabing packet loss results in spatial and temporal experiments

driver domain with other instances. Let us suppose a medium

instance A is sharing Xen driver domain with another instance

B. Since there is a large buffer in the driver domain, instance

B could burst a big trunk of data into the driver domain

buffer. In this case, the packet from A could be put into a

long queue in Xen driver domain, which leads to relatively

long queuing delay. Since packets don’t need to wait for

the processor scheduling for medium instances, the delay

variations on medium instances are generally smaller than

small instances.

VI. PACKET LOSS ESTIMATION

Estimation Results: In this section, we describe the packet

loss estimation results observed in our experiments. Badabing

estimates the packet loss characteristics of an end-to-end path

by estimating if each 5ms time slot is a lost episode. Figure 10

shows the overall cumulative distribution of packet loss fre-

quency estimated by Badabing in our spatial and temporal ex-

periments (note the x-axis is in log scale). Here the packet loss

frequency is defined as (loss time slot/total time slot).
From this graph, we can see that Badabing reports abnor-

mally high packet loss frequency in the Amazon EC2 data

center. In both spatial and temporal experiment results, more

than 10% of the Badabing measurements report very high

packet loss frequency (> 10%). This packet loss frequency

is extremely high since normally packet loss happens very

rarely (< 0.1%). To cross validate, we look at the probing

packet traces of all the Badabing measurements, the cu-

mulative distributions of Badabing probe loss rate are also

plotted in Figure 10. The Badabing probe loss rate is defined

as (lost probes/total probes) in Badabing measurements.

From the distribution of Badabing probe loss rate, we can see

that probe packet loss actually happens very rarely in both spa-

tial and temporal experiments. For 98% of the measurements,

the probe loss rates are smaller than 0.005 and for 60% of

the measurments, the probe loss rates are smaller than 0.001.

The very high packet loss frequency reported by Badabing

is suspicious. We perform a more detailed discussion on the

Badabing estimation results.

Discussion: Badabing estimates the loss characteristics of

end-to-end paths by detecting the loss episodes. loss episode



8

0 2000 4000 6000 8000 10000
180

200

220

240

260

280

300

320

Probe ID

B
ad

ab
in

g 
O

ne
 W

ay
 D

el
ay

 (
m

s)

 

 

Probe One Way Delay
Maximum One Way Delay Estimation

Fig. 11. Badabing probe packet one way delay and maximum OWD
estimation

is defined as the time series indicating a series of consecutive

packets (possibly only of length one) were lost [16]. There is

a sender and a receiver in the Badabing tool. At each 5ms

time slot, the sender sends a probe with 30% probability.

Each probe includes 3 probing packets and all the probe

packets are timestamped. When the receiver receives a probe

packet, it simply remembers the packet sequence number

and the timestamps. Badabing assumes time synchronization

between the sender and receiver. However, since Badabing

estimates loss episode based on delay differences, the time

synchronization does not have to be perfect. The estimation

algorithm marks a time slot as lossy or not lossy based on the

one way delay and lost packets in the time slot. The criteria is

that if there is a lost packet within τ time of the current time

slot, or the one way delay is larger than max owd× (1−α),
the time slot is marked as lossy. Here, the max owd is the

maximum one way delay of the path, which is estimated by

the one way delay of the most recent successful packet when

a packet loss happens. By default, τ is set to 50 ms and α is

set to 0.005. Here, Badabing is making an implicit assumption

that when an end-to-end path is in loss episodes, the one way

delays (OWD) of this path will be higher than its one way

delays when the path is not in loss episodes. This assumption

makes sense in the wide area Internet environments.

However, in our previous results, we have observed very

high delay variation even though the data center network is

not congested. These large delay variations are very likely

to be caused by the machine virtualization. The problem is

that, the delay variations caused by virtualization can be much

larger than the delay variations caused by network congestion.

Many of these large delay variations can cause Badabing to

mark a time slot as lossy. Therefore, in this environment,

Badabing will have a much higher false positive rate. That

is why Badabing reports very high packet loss frequency on

many instance pairs in our experiments. To demonstrate this

effect, we plot the one way delay and corresponding maximum

OWD estimation for 10,000 probes on a small instance pair

in Figure 11. During the 10,000 Badabing probes, there are

only 7 packets lost. Every time when a packet loss happens,

Badabing will estimate a new maximum OWD based on one

way delay of most recent successful packets. From the graph,

we can see that the estimated maximum OWDs are not very

large. However, in many cases, the one way delay variations

caused by virtualization can be much larger than the estimated

maximum OWDs. All these cases will cause false positive

detections in the Badabing results.

The discussion of Badabing results reveals that, in the

virtualized data center environment, there are additional diffi-

culties to infer network properties using statistics. Some valid

assumption in traditional network environments may not hold

in virtualized data centers.

VII. IMPLICATIONS

We have found that the networking performance between

Amazon EC2 instances demonstrate very different characteris-

tics from traditional non-virtualized clusters, such as the abnor-

mal large delay variations and unstable TCP/UDP throughput

caused by end host virtualization. In this section, we discuss

the implications of our findings on applications running in

cloud services.

Network measurement based systems in cloud: As dis-

cussed in the previous section, the large delay variation can

completely skew the packet loss estimation results of the

Badabing tool. Badabing is just one example of the problem.

The fundamental problem is that the simple textbook end-

to-end delay model composed of network transmission delay,

propagation delay, and router queuing delay is no longer

sufficient. Our results show that in the virtualized data center,

the delay caused by end host virtualization can be much larger

than the other delay factors and cannot be overlooked. Other

than the Badabing tool we discussed in the paper, the large

delay variations can also impact many other protocols and

systems that rely on the RTT measurement to infer network

congestion, such as TCP vegas [5] and PCP [2]. Therefore,

if the cloud service users want to build systems relying on

the network measurements to make decisions, they need to be

aware of the virtual machine scheduling characteristics of the

virtualized data center environment.

Network experiments in cloud: Emulab is a widely used

facility for networking researchers to deploy emulated network

experiments. However, Emulab is based on a relatively small

computer cluster. In many cases, researchers cannot find

enough machines to deploy their large scale experiments.

Recently, researchers have proposed to deploy large scale

network experiments on the Amazon EC2 service (e.g. the

Cloudlab project [6]). However, as far as we know, there is

no quantitative result about the feasibility of this idea. Our

measurement results provide some insights on this problem. To

deploy network experiments on Amazon EC2, the challenge

is to emulate different kinds of network links between EC2

instances. The processor sharing and unstable network perfor-

mance bring challenges to the link emulation. First, because

all the small EC2 instances are sharing processors with other

instances, it is very hard for them to set timers precisely to

perform accurate rate shaping. In addition, the large delay

variations and unstable throughput make it hard to emulate



9

stable high speed links among small instances. Using high

capacity instances might be able to reduce the problem, but

further experimental study is needed to understand this issue.

Scientific computing in cloud: Unstable network through-

put and large delay variations can also have negative impact

on the performance of scientific computing applications. For

example, in many MPI applications, a worker has to exchange

intermediate results with all the other workers before it can

proceed to the next task. If the network connections to a few

workers suffer from low throughput and high delay variations,

the worker has to wait for the results from the delayed

workers before it can proceed. Therefore, MPI applications

will experience significant performance degradation. MapRe-

duce applications [7] may experience the same problem when

a large amount of data is shuffled among all the mappers

and reducers. To improve the performance of these scientific

computing applications on cloud service, we may need to

customize their job assignment strategies to accommodate the

unstable networking performance among virtual machines.

VIII. RELATED WORK

A few studies have evaluated the performance of cloud ser-

vices. In [10], Garfinkel has reported his experience of using

Amazon EC2, S3 (simple storage service) services. The focus

is mainly on the performance of the Amazon S3 service. This

paper measures the throughput and latency of the S3 service

from Amazon EC2 and other Internet locations. In contrast,

the focus of our study is on the networking performance

of Amazon EC2 instances and the impact of virtualization

on the network performance. In [15], Walker evaluates the

performance of Amazon EC2 for high-performance scientific

computing applications. The author compares the performance

of Amazon EC2 against another high performance computing

cluster NCSA, and reports that Amazon EC2 has much worse

performance than traditional scientific clusters. This paper is

focused on the application level performance of Amazon EC2.

The findings of our study can help to explain some of the

observations in [15].

In [9], Ersoz et al. measure the network traffic characteris-

tics in a cluster-based, multi-tier data center. This study is not

based on a real commercial data center service. Instead, the

authors measure the network traffic using an emulated data

center prototype. A more recent study [4] has measured the

network traffic workload of production data centers. The focus

of this work is to investigate the data center traffic pattern and

explore the opportunities for traffic engineering. No virtual-

ization is considered in these studies. As far as we know, our

work is the first study focusing on the networking performance

of Amazon EC2 instances and on understanding the impact of

virtualization on the data center network performance.

IX. CONCLUSION

In this paper, we present a quantitative study of the end-to-

end networking performance among Amazon EC2 instances

from users’ perspective. We observe wide spread processor

sharing, abnormal delay variations and drastically unstable

TCP/UDP throughput among Amazon EC2 instances. Through

detailed analysis, we conclude that these unstable network

characteristics are caused by virtualization and processor

sharing on server hosts. The unstable network performance

can degrade the performance of and bring new challenges to

many applications. Our study provides early results towards

understanding the characteristics of virtualized data centers. As

future work, we will study how applications can be customized

to achieve good performance over virtualized environments.

ACKNOWLEDGMENTS

This research was sponsored by the NSF under CAREER

Award CNS-0448546, NeTS FIND Award CNS-0721990, by

Microsoft Corp., and by an Alfred P. Sloan Research Fel-

lowship. Views and conclusions contained in this document

are those of the authors and should not be interpreted as

representing the official policies, either expressed or implied,

of NSF, Microsoft Corp., the Alfred P. Sloan Foundation, or

the U.S. government.

REFERENCES

[1] “Amazon ec2,” http://aws.amazon.com/ec2/.
[2] T. Anderson, A. Collins, A. Krishnamurthy, and J. Zahorjan, “Pcp: Effi-

cient endpoint congestion control,” in Proceedings of USENIX NSDI’06,
May 2006.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” in
Proceedings of SOSP’03, Oct. 2003.

[4] T. A. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding
data center traffic characteristics,” in Proceedings of SIGCOMM WREN
Workshop, Aug. 2009.

[5] L. S. Brakmo and L. Peterson, “Tcp vegas: End-to-end congestion
avoidance on a global internet,” IEEE Journal of Selected Areas in
Communication, vol. 13, no. 8, Oct. 1995.

[6] “Cloudlab,” http://www.cs.cornell.edu/ einar/cloudlab/index.html.
[7] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on

large clusters,” in Proceedings of USENIX OSDI’04, Dec. 2004.
[8] K. J. Duda and D. R. Cheriton, “Borrowed-virtual-time(bvt) scheduling:

supporting latency-sensitive threads in a general purpose scheduler,” in
Proceedings of SOSP’99, Dec. 1999.

[9] D. Ersoz, M. S. Yousif, and C. R. Das, “Characterizing network traffic
in a cluster-based, multi-tier data center,” in Proceedings of ICDCS’07,
Jun. 2007.

[10] S. L. Garfinkel, “An evaluation of amazon’s grid computing services:
Ec2, s3 and sqs,” Computer Science Group, Harvard University, Tech-
nical Report, 2007, tR-08-07.

[11] “Gogrid,” http://www.gogrid.com/.
[12] C. Raiciu, F. Huici, M. Handley, and D. S. Rosen, “Roar: Increasing

the flexibility and performance of distributed search,” in Proceedings of
SIGCOMM’09, Aug. 2009.

[13] J. Sommers, P. Barford, N. Duffield, and A. Ron, “Improving accuracy in
end-to-end packet loss measurement,” in Proceedings of SIGCOMM’05,
Aug. 2005.

[14] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. Andersen, G. R.
Ganger, G. A. Gibson, and B. Mueller, “Safe and effective fine-grained
tcp retransmissions for datacenter communication,” in Proceedings of
SIGCOMM’09, Aug. 2009.

[15] E. Walker, “Benchmarking amazon ec2 for high-performance scientific
computing,” in USENIX ;login: magzine, Oct. 2008.

[16] Y. Zhang, N. Duffield, V. Paxson, and S. Shenker, “On the constancy
of internet path properties,” in Proceedings of IMW’01, Nov. 2001.


