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Abstract— This paper focuses on comparing the results using 
different wavelets for the detection of broken rotor bars in 
induction machines, operating under transient conditions. In 
Fourier analysis the basis functions are complex exponentials 
producing the same results for a particular waveform being 
analyzed. However in wavelet analysis the basis functions could 
be any permissible wavelets and the results produced are unique 
to the selected wavelet. Some wavelets are more efficient at 
encoding, denoising, compressing, decomposing and 
reconstructing signals than others. It is therefore desirable to 
select a wavelet that produces the best results for the signal 
being analyzed. The results show that using higher order 
wavelets improve the ability to detect broken rotor bars in 
induction machines operating under transient conditions. 

I INTRODUCTION 
The detection of different machine faults, under steady 

state operating conditions, has improved over the past decade. 
Currently air gap eccentricities, bearing failures, inter-turn 
winding failures, as well as broken rotor bars can be detected 
by analyzing the frequency spectrum of the stator current of 
an induction machine [1-12]. 

It has been found that these steady state techniques are 
effective only when the machines, that are being diagnosed, 
are almost fully loaded and running at a constant speed. 
Subjecting a machine to heavy loads could be impractical and 
could reduce the operating lifetime of the machine. There are 
also cases where machines are never fully loaded. Because of 
these scenarios, the steady state techniques that have been 
previously developed, are less accurate when applied to 
machines that are lightly loaded or operate predominantly 
under transient conditions such as wind generators and motor 
operated valves etc.  

An alternative to using steady state analysis has been 
proposed and researched in an attempt to detect machine 
faults by examining the starting transient of an induction 
machine. This approach is advantages because during startup 
the machine is subjected to stresses above normal operation. 
These stresses could highlight machine defects that are early 
in their development and not easily detected during steady 
state operation. The second advantage is that the machine is 
subjected to a wider range of slip, which further separates the 
frequencies associated with rotor bars. In this case the 

machine does not have to be heavily loaded in order to make 
an accurate diagnosis.  

In [13] a method for the detection of broken rotor bars and 
end ring faults, by examining the starting transient is 
proposed. The detection algorithm is based on steady-state 
detection techniques by monitoring the sidebands of the 
current fundamental. Instead of using the Fourier transform to 
monitor the sideband frequencies, a Phase Vocoder [14] 
based on the Short-Time Fourier Transform is used to 
produce a time-frequency representation of the starting 
current.   

The problem here is that the system is based on the Short-
Time Fourier Transform. The transform divides a non-
stationary signal into small windows of equal time. The 
Fourier Transform is then applied to the time segment being 
examined. As the width or support of the window function 
decreases, a smaller portion of the input signal is considered, 
guaranteeing a greater time localization of frequency 
components in the signal. As the support of the window 
function increases, more accurate information about 
frequencies within the window is increased, but the ability to 
determine the time when those transients occur within the 
input signal is lost.  The reason that time information is lost is 
due to the Heisenberg Uncertainty Principle. It states that one 
cannot know the exact time and frequency components of a 
signal [15], [16]. 

Wavelet analysis was introduced to overcome the 
shortcomings of Fourier analysis. In Fourier analysis the 
basis functions are complex exponentials producing the same 
results for a particular waveform being analyzed. However in 
wavelet analysis the basis function could be any permissible 
wavelet and the results produced are unique to the selected 
wavelet. Some wavelets are more efficient at encoding, 
denoising, compressing, decomposing and reconstructing 
signals than others. It is therefore desirable to select a wavelet 
that produces the best results for the signal being analyzed.  
   In the following sections we apply the discrete wavelet 
transform to the starting current of an induction machine. It 
will be shown that higher order wavelets produce results that 
are easier to interpret. These results are shown as clusters of 
coefficients in the decomposition of the current signal. 
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II WAVELET THEORY 
The orthogonal basis functions used in Wavelet analysis 

are families of scaling functions, φ  and associated 
wavelets,  The scaling function,  can be 
represented by the following mathematical expression: 
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where, 
Hk represents the coefficients of the scaling function, 
k represents a translation, 
j represents the scale. 

Similarly, the associated wavelet  can be generated 
using the same coefficients as the scaling function. 
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The scaling functions are orthogonal to each other as well 

as with the wavelet functions as shown in (3), (4). This fact is 
crucial and forms part of the framework for a multiresolution 
analysis. 
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Using an iterative method, the scaling function and 
associated wavelet can be computed if the coefficients are 
known. Figure 1 shows the Daubechies 2 scaling function and 
wavelet.       

A signal can be decomposed into approximate coefficients, 
aj,k, through the inner product of the original signal at scale j 
and the scaling function. 
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Figure 1.  Daubechies2 scaling function (left) and associated wavelet (right). 
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Figure 2.  
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Daubechies8 scaling function (left) and associated wavelet (right). 

Similarly the detail coefficients, dj,k can be obtained though 
the inner product of the signal and the complex conjugate of 
the wavelet function. 
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The original signal can therefore be reconstructed by a 
single series of scaling coefficients and a double series of the 
detail coefficients. 
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A discretized signal can be decomposed at different scales 

as follows: 
1

, ,
0

[ ] ( )
N

j k j k
k

f n a φ
−

=
= ∑ t

tψ

t dt

t dt

h k∑

                          (10) 

( ) ( ) ( ) ( )

1 1

1 , 1 , 1 , 1 ,
0 0

( ) ( )
N N

j k j k j k j k
k k
a t dφ

− −

+ + + +
= =

= +∑ ∑    (11)                     

 
 
The coefficients of the next decomposition level, (j+1), 

can be expressed as 
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The decomposition coefficients can therefore be determined 
through convolution and implemented by using a filter. The 
filter, g[k], is a lowpass filter and h[k] is a highpass filter. 
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Figure 3.  A three level multiresolution decomposition.   

III. SIGNAL PREPARATION FOR WAVELET ANALYSIS 
The nonstationary fundamental of the starting current needs 
to be removed before the wavelet analysis can be 
implemented. The individual measured line currents are 
transformed into a single rotating current vector as shown in 
figure 5. The reason for combining the three line currents is 
that no two starting transients are exactly the same. The 
individual line currents will differ depending on 
instantaneous values of the line voltages at startup. When 
comparing the three line currents under different machine 
health conditions, it will be easier to compare a single 
rotating vector than three line currents that are not similar.  

The vector is then transformed into the time domain and 
used as the input to an adaptive filter [18-19]. The starting 
current comprises two components i.e. the non-stationary 
fundamental and the residual after removing the fundamental 
from the total current. 

The reason for using an adaptive filter can be justified as 
follows. We assume that the voltage waveform does not 
change in frequency or phase during the transient. If the 
power factor is measured, we’ll find that it increases as the 
machine runs up. Since the power factor increases it can be 
concluded that the current has changed in frequency. 

The residual waveform, after filtering, shown in figure 7 
has information relating to the health of the machine 
including bad bearings, broken rotor bars etc.  

 
Figure 4.  Startup current transients for phases A, B and C 

 
 

 
Figure 5.  A plot of the current vector 

 
Figure 6.  The time domain representation of the current vector. 
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Figure 7. The residual current waveform after filtering. 

 

IV. THE IMPACT OF DIFFERENT WAVELETS ON THE RESIDUAL 
CURRENT 

The methodology employed was to apply the discrete 
wavelet transform to the residual current. The family of 
Daubechies wavelets was chosen as the basis functions for 
the decomposition. Daubechies wavelets are classified 
according to the number of vanishing moments, N. The 
smoothness of the wavelets increases with the number of 
vanishing moments. For the case when N=1, the Daubechies 
scaling function and wavelet function resembles that of the 
Haar and are discontinuous. It is desirable to have smooth 
wavelets and therefore N is increased. Although the 
Daubechies2 wavelet is continuous, its derivative is 
discontinuous. For N greater than 2, the wavelet and its 
derivative are both continuous. It has been shown in 
applications such as compression, noise removal and 
singularity detection, that the number of vanishing moments 
plays a key role for efficient coding of signals [16]. 

In [20] it has been shown that the detail scale of interest for 
the detection of broken rotor bars is d9. Figures 9-10 show 
the ninth scale detail coefficients derived from wavelets 
Daubechies1 to Daubechies10 for a healthy machine and a 
machine with one broken rotor bar.  

The results show that there is very little distinction 
between a healthy and damaged condition when comparing 
the scale d9 coefficients generated by DB1-DB3. For this 
reason these wavelets cannot be used in the detection 
analysis.  

A distinct trend is observed when comparing the 
coefficients generated by DB4-DB7. In [20], it is shown that 
two groups of coefficients are dominant in the 9th detail level.  

The group of coefficients on the right hand side is only 
found in the presence of broken rotor bars as shown in figure 
10. It should be noted that only in the coefficients generated 
by DB8-DB10, are two features present that are indicative of 
broken rotor bars. Firstly the group of coefficients on the 
right hand side is only present for the broken rotor bar data. 
Secondly, and more importantly, is the fact that there exists 
coefficients in the right-hand side group that are much larger 
than the coefficients in the left hand group. This is 

 
Figure 8. A 10 level decomposition of a healthy machine. 
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Figure 9. Wavelet decomposition of a healthy machine showing d9 using 

wavelets DB1-DB10. 
 

particularly useful when dealing with ambiguous results such 
as the case of 60% loading where there seems to be a broken 
rotor bar present in the healthy data [20]. 

We can therefore conclude that the wavelet being used for 
the analysis should be at least of the order 8 i.e. DB8 in order 
to make an unambiguous diagnosis. 

 

 
Figure 10.Wavelet decomposition of machine with one broken rotor bar 

showing d9 using wavelets DB1-DB10. 

V. CONCLUSIONS 
A wavelet analysis of the transient starting current of an 

induction machine can be used to detect the presence of 
broken rotor bars. From the results presented it is obvious 
that the choice of wavelet is crucial to the development of a 
fault detection algorithm. The number of vanishing moments 
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affects the ability to distinguish between the conditions of the 
machine. The wavelets recommended for this application 
should be at least of order 8 to make an unambiguous 
assessment of the machines condition. 
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