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Recent �ndings point toward diet having a major impact on human health. Diets can either 

affect the gut microbiota resulting in alterations in the host’s physiological responses 

or by directly targeting the host response. The microbial community in the mammalian 

gut is a complex and dynamic system crucial for the development and maturation of 

both systemic and mucosal immune responses. Therefore, the complex interaction 

between available nutrients, the microbiota, and the immune system are central regu-

lators in maintaining homeostasis and �ghting against invading pathogens at mucosal 

sites. Westernized diet, de�ned as high dietary intake of saturated fats and sucrose 

and low intake of �ber, represent a growing health risk contributing to the increased 

occurrence of metabolic diseases, e.g., diabetes and obesity in countries adapting a 

westernized lifestyle. In�ammatory bowel diseases (IBD) and asthma are chronic muco-

sal in�ammatory conditions of unknown etiology with increasing prevalence worldwide. 

These conditions have a multifactorial etiology including genetic factors, environmental 

factors, and dysregulated immune responses. Their increased prevalence cannot solely 

be attributed to genetic considerations implying that other factors such as diet can be 

a major contributor. Recent reports indicate that the gut microbiota and modi�cations 

thereof, due to a consumption of a diet high in saturated fats and low in �bers, can 

trigger factors regulating the development and/or progression of both conditions. While 

asthma is a disease of the airways, increasing evidence indicates a link between the gut 

and airways in disease development. Herein, we provide a comprehensive review on the 

impact of westernized diet and associated nutrients on immune cell responses and the 

microbiota and how these can in�uence the pathology of IBD and asthma.

Keywords: westernized diet, in�ammatory bowel disease, asthma, saturated fat, micronutrients, microbiota

GENERAL INTRODUCTION

�e prevalence of chronic in�ammatory diseases a�ecting mucosal sites such as the intestine and the 
airways is increasing worldwide (1, 2). Among these, in�ammatory bowel disease [IBD, mainly com-
prising ulcerative colitis (UC) and Crohn’s Disease (CD)] and allergic asthma are the most relevant. 
Recent �ndings point toward potential links between these two pathologies, e.g., histamine and mast 
cell activity and immunoglobulin E (IgE) production, reviewed in Ref. (3). Both diseases have a 
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and immune modulators are the current treatments of choice 
for patients with IBD, with the overall goal being in�ammation 
reduction, increase of mucosal healing and symptom relief  
(16, 44). New treatment strategies include inhibitors targeting 
leukocyte tra�cking (α4β7 integrin, sphingosine-1-phosphate, 
S1P), cytokine [interleukin (IL)-12p40, IL-23], janus kinase-
pathway, in�ammasome (NLRP3/IL-1β), to name a few (45, 46). 
�e etiology of IBD is still unknown but the evidence points 
toward environmental factors, with the microbiota being of 
particular interest. �e microbiota can trigger and/or sustain a 
tissue damaging immune response in genetically susceptible indi-
viduals. Research in the last decade has identi�ed a crucial role for 
the commensal bacteria in the pathogenesis of IBD. Experimental 
IBD was not evidenced in animals raised under germ-free (GF) 
conditions when compared to groups of conventionalized animals 
(47). Antibiotics have proven bene�cial to certain subgroups of 
patients with CD but not in patients with UC (48) and in�amma-
tory lesions are more frequently located in areas with large bacte-
rial burden, i.e., ileum and colon (49). Alterations in the enteric 
microbial �ora reported in patients with IBD include decreases in 
Firmicutes and Bacteroidetes and increases in Enterobacteriaceae 
(e.g., Escherichia coli) (50). A reduction in anti-in�ammatory 
commensals, such as Faecalibacterium prausnitzii has been asso-
ciated with CD (51). Several pathogenic bacteria are suggested as 
etiological agents of IBD but to date none has been identi�ed to 
cause IBD (47). In contrast, pathobionts, i.e., commensal bacteria 
with potential pathological properties, have been isolated, includ-
ing strains of adherent and invasive E. coli (AIEC), commonly 
identi�ed in the mucosa of CD patients (52).

Genome-wide association studies have so far identi�ed over 
160 genetic loci in IBD, with 30 loci being speci�c to CD, 23 
loci to UC, and 110 loci are associated with both forms of IBD 
(53). IBD susceptibility single-nucleotide polymorphisms were 
identi�ed in genes a�ecting innate and adaptive immune cell 
function, bacterial recognition, etc. (Figure 1). �erefore, the role 
of mononuclear phagocytes including monocytes/macrophages 
and dendritic cells (DCs) in the development of IBD has been 
extensively studied. Several mouse models of IBD, including 
dextran sodium sulfate (DSS)- and 2,4,6-trinitrobenzene sulfonic 
acid-induced colitis and the TNFΔARE model of Crohn’s-like ile-
itis, have revealed that lamina propria mononuclear phagocytes 
have protective as well as pathogenic roles during the disease 
progression (54–60). �ree explanations have been postulated 
to explain these �ndings—(1) an inappropriate response to non-
harmful commensal bacteria (i.e., NOD2, REL, CARD9); (2) 
an ine�cient clearance of microbes (commensals/pathobionts) 
leading to chronic immune stimulation (i.e., ATG16L1, IRGM), 
and (3) a failure to resolve in�ammation by maintaining a pro-
in�ammatory phenotype (i.e., IL-12, IL-18RAP/IL-1R1, IFNGR/
IFNAR1) (39) (Figure 1). �e intestinal epithelium functions as 
a barrier between the host and its environment (microbes, non-
self-antigens from diet, nutrients, etc.) and consists of highly 
specialized cells that ful�ll this barrier task. Genes associated 
with epithelial cell function, such as HNF4A, ECM1, CDH1 have 
a UC correlation (53) (Figure 1). Alterations in barrier integrity 
associated with IBD include decreased structure of tight-junction 
(TJ) proteins, which regulate paracellular permeability, impaired 

multifactorial cause, in which environmental factors such as diet 
and the commensal microbiota are gaining increased attention. 
In this regard, consumption of the so-called “Westernized” diet is 
associated with increased risk for IBD (4) and asthma morbidity 
(5). Westernized diet is characterized by a high content of proteins 
(derived from fatty domesticated and processed meats), saturated 
fats, re�ned grains, sugar, alcohol, salt, and corn-derived fructose 
syrup, with an associated reduced consumption of fruits and 
vegetables (4, 6, 7). Research in the last decade has uncovered 
that changes from a diet rich in �bers and low in fats to a diet 
low in �bers and high in saturated fats directly contributes to the 
development of obesity, metabolic syndrome, and cardiovascular 
diseases (8, 9). Macronutrients (carbohydrates, lipids, and protein) 
and micronutrients (vitamins and minerals) are required for our 
body to function and several of these are naturally obtained from 
our diets and from the resident microbiota. Both patients with 
IBD and asthma present nutritional problems leading to several 
complications including anemia, osteoporosis, acute respiratory 
infections, etc. �e link between diet, nutrients and immune 
responses is embedded in a complex network of signals and has 
to be considered in the light of other factors including microbial 
composition, genetic background, and lifestyle, to mention but a 
few. �e advent of high-throughput Next-Generation Sequencing 
technologies has driven the discovery and dissection of regula-
tory mechanisms involved in the disease state. In this review, 
we will focus on the interactions between diets and nutrients 
associated with Westernized regimes and their impact on the 
microbiota and immune responses at mucosal interfaces, i.e., 
the intestines and lungs. We will outline the complex network 
between nutrients, microbial alterations and abnormal immune 
responses associated with IBD and asthma.

Table  1 summarizes the impact of dietary factors on host 
responses. Figure 1 summarizes identi�ed genes associated with 
IBD and asthma and immune responses. Figure 2 displays the 
regulatory interaction between diet, mucosal immunity, and 
commensal microbiota to maintain mucosal homeostasis and the 
resulting pathology upon loss of balance. Figures 3 and 4 outline 
the mechanisms targeted by nutrients in the healthy intestine 
and lung and in the in�amed gut (IBD) and lung (asthma), 
respectively.

IBD—GENETICS, IMMUNE RESPONSE, 

AND MICROBIOTA

In�ammatory bowel diseases are multifactorial chronic immune-
mediated diseases of the gastrointestinal (GI) tract. �ey o�en  
have an early onset and a course which is characterized by intermit-
tent phases of remission and relapses (42, 43). Nearly 2.2 million 
people in Europe, 1.5 million Americans, and several 100,000 more 
individuals su�er from IBD. �e prevalence and incidence of IBD 
is increasing worldwide and its growth is not con�ned to Western 
Europe or the USA; countries adapting a westernized lifestyle, 
such as Japan and South Africa, are seeing mounting numbers 
of a�ected individuals (2). Patients su�ering from IBD present 
symptoms such as abdominal pain, fever, and diarrhea with blood 
and/or mucus excretion. Antibiotics, biologics, corticosteroids, 
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mucus production due to loss of goblet cells and an altered  
production of antimicrobial peptides (61) (Figure 4).

In terms of location, CD can a�ect any part of the GI tract 
from the mouth to rectum. However, in the majority of patients 
with CD the in�ammation is localized to the distal ileum and 
proximal colon (62). �e in�ammation in CD is patchy and o�en 
transmural, which can lead to the development of �brosis, �stu-
las, �ssures, strictures, etc. A dense in�ltration with macrophages 
and lymphocytes and granuloma formation is a typical feature 
of the disease. Patients with CD present an imbalanced immune 
response with high expression of innate pro-in�ammatory 
cytokines, including IL-1β, IL-6, and tumor necrosis factor 
(TNF)-α and a T helper (�)1 (IL-12-mediated interferon 
(IFN)γ) and �17 (IL-17a) pro�le resulting in an enhanced 
and uncontrolled immune response (16, 43, 62) (Figure  4). In 
contrast to CD, UC is restricted to the mucosa of the colon and is 
associated with large in�ltrates of neutrophils, T and B cells in the 
lamina propria. Characteristically, the in�ammation originates in 
the rectum extending continuously in a proximal fashion. Crypt 
abscesses, formed by extravasation of neutrophils through the 
intestinal epithelium, ulcerations, and goblet cell loss are typical 
features of UC. Moreover, high levels of innate cytokines, includ-
ing IL-1β, IL-6, and TNFα, and chemokines, such as CXCL8 and 
GROα/CXCL1 (neutrophil attractants), as well as an atypical �2 
cytokine pro�le accompanied by high production of IL-5, IL-10, 
transforming growth factor beta (TGFβ) and only initially IL-4 
production, which is superseded by IL-13 production is associ-
ated to patients with UC (62–65) (Figure 4).

ASTHMA—GENETICS, IMMUNE 

RESPONSE, AND MICROBIOTA

Asthma is an increasingly common heterogeneous chronic in�am-
matory disease, which places substantial burden on patients, their 
families, and the community (66). Asthma is characterized by 
airway immune hyper responsiveness to inhaled environmental 
particles leading to wheezing, breathlessness, chest tightness, 
and coughing e�ecting airway function (http://ginasthma.org/). 
Worldwide the incidence of asthma, is increasing, with an esti-
mated 300 million a�ected individuals (http://ginasthma.org/). 
Once thought to be a childhood disease it is now presenting in 
respiratory clinics as �rst time adult onset asthma.

Asthma presents with airway in�ammation following expo-
sure to insults such as allergens, pollutants, and microbes (67). 
�e primary site of immune induction is initially the lung epithe-
lium, which interacts with the underlying antigen presenting cells 
such as DCs, inducing an immune response (Figure 4). Alveolar 
macrophages in the airway lumen act as clearance and immune 
sampling mechanisms at the interface between the mucosa and 
the external environment (68). �e immune signaling from 
epithelial cells and macrophages results in secretion of �rst order 
cytokines, such as CXCL8, IFNα, IL-1β, IL-33, TGFβ, and thymic 
stromal lymphopoietin (TSLP), which induce a rapid immune 
tra�cking and a clearance response which subsequently results 
in second order cytokine secretion by T cells (69). Activated DCs 

migrate to the lymph nodes and induce T  cell activation (70) 
(Figure 4). �e subsequent T cell immune response can result in 
either an allergenic �2/eosinophilic IgE-mediated in�ammation 
or an in�ammatory �1/neutrophilic cell in�ux into the airway. 
�e �2 allergenic response involves the interaction of DCs, �2 
cells, and IL-4 producing basophils which induce the expansion 
of type 2 innate lymphoid cells (ILC2) which also produce the �2 
cytokines, IL-5, IL-9, and IL-13, leading to eosinophil and mast 
cell tra�cking to the lung and goblet cell mucus secretion (70) 
(Figure 4). IL-4 derived from �2 cells also induces IgE produc-
tion by B cells. �e mixed �2 and �1 neutrophilic or �2 low 
asthma is induced by toll-like receptor (TLR) activation result-
ing in IL-1β secretion and activation of in�ammatory �1 and 
�17 cells. �ese cells release IL-17a and IFNγ, which activate 
neutrophils and macrophages to release TNFα and induce in�am-
matory signals. �e resulting immune in�ltrates induces the 
symptoms of asthma—bronchoconstriction, mucus production, 
and the resultant tissue remodeling increasing smooth muscle  
and collagen deposition (71, 72). �e subsequent remodeling 
results in airway wall thickening, compromised lung function 
and changes in the lung microbiota (41, 73). �e mechanisms 
of asthma have been studied successfully over the decades using 
murine models, such as the ovalbumin and the house dust mite 
challenge models (74). While all models have limitations, these 
studies have led to successful therapy development and under-
standing of the genetics of asthma (75). Asthma treatment targets 
immune processes by using inhaled corticosteroids, to reduce 
in�ammation, and bronchodilators to counteract the e�ects of 
bronchoconstriction induced by the release of histamine, prosta-
glandins, interleukins, or leukotrienes.

Several genetic studies have identi�ed asthma susceptibility 
genes, including IRAK3, SMAD3, ORMDL3, IL-1RL1, IL-13, 
IL-33, TNFAIP3, and TSLP (76) (Figure  1). Recent studies 
have highlighted the role of the site of the mutation and allele 
frequency and the particular site of functionality, such as the 
asthmatic epithelium, and the epigenetic regulation thereof 
as being key factors contributing to asthma (77, 78). Studies 
on DNA methylation, and microRNA modulation of gene 
expression, are now shedding light on the pathogenesis of this 
multifactorial disease.

�ere is increasing evidence that the gut plays a key role in 
e�ecting the allergic immune response. Murine models have 
demonstrated how feeding of gut commensals can reduce 
allergy symptoms by inducing T regulatory cells (Tregs) which 
migrate to the lung and reduce the immune response (79, 80). 
Indeed, antibiotic-mediated disruption of the gut microbiota 
and mycobiota has been shown to exacerbate allergic asthma 
symptoms in mice (81, 82). Recently, an elegant study by Arrieta 
and colleagues found that the relative abundance of the bacterial 
genera Faecalibacterium, Lachnospiria, Veillonella, and Rothia 
and Clostridium neonatale are decreased in the gut of children 
at risk of asthma development (83, 84). �ese microbes were 
signi�cantly di�erent between the groups at 3  months of age 
and the di�erence decreased as children reached 1  year of age 
highlighting a colonization window of opportunity and of an 
appropriate immune education.
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FIGURE 1 | Shared and individual in�ammatory bowel disease (IBD) and Asthma susceptibility genes/loci. The outlined genes are grouped according to function. In 

green color are the genes associated to asthma, in blue color are the genes associated to ulcerative colitis only, in orange color are the genes associated to Crohn’s 

disease only, in purple color are the genes associated to IBD, in black color are the genes associated to asthma and Crohn’s disease or asthma and IBD, 

respectively. Adapted from Ref. (37–40). Abbreviations: AK2, adenylate kinase 2; ATG16L1, autophagy related 16 like 1; CARD9, caspase recruitment domain family 

member 9; CD14, cluster of differentiation 14; CDH1, cadherin 1; CREM, CAMP responsive element modulator; CTLA4, cytotoxic T-lymphocyte associated protein 

4; DENND1B, DENN domain containing 1B; ECM1, extracellular matrix protein 1; FCGR2A, Fc fragment of IgG receptor IIa; FCGR2B, Fc fragment of IgG receptor 

IIb; FLG, �laggrin; GNA12, G-protein subunit alpha 12; GSTM1, glutathione S-transferase mu 1; GSTP1, glutathione S-transferase pi 1; GSTT1, glutathione 

S-transferase theta 1; HAVCR1, hepatitis A virus cellular receptor 1; HNF4A, hepatocyte nuclear factor 4 alpha; IL-13, interleukin 13; IL-4, interleukin 4; IL-10, 

interleukin 10; IL-12B, interleukin 12B; IL-1R1, interleukin 1 receptor type 1; IL-1R2, interleukin 1 receptor type 2; IL23R, interleukin 23 receptor; IL-27, interleukin 

27; IL-4R, interleukin 4 receptor; CXCR1, C–X–C motif chemokine receptor 1; CXCR2, C–X–C motif chemokine receptor 2; IRGM, immunity related GTPase M; 

LAMB1, laminin subunit beta 1; LRRK2, leucine rich repeat kinase 2; LTA, lymphotoxin alpha; LTC4S, leukotriene C4 synthase; NOD2, nucleotide binding 

oligomerization domain containing 2; ORMDL3, ORMDL sphingolipid biosynthesis regulator 3; REL, REL proto-oncogene, NF-κB subunit; SBNO2, strawberry notch 

homolog 2; SLC11A1, solute carrier family 11 member 1; SLC22A5, solute carrier family 22 member 5; SMAD3, SMAD Family Member 3; STAT3, signal transducer 

and activator of transcription 3; Th, T helper cell; TGFB1, transforming growth factor beta 1; TNF, tumor necrosis factor; TRAF1, TNF receptor associated factor 1; 

TYK2, tyrosine kinase 2.
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REGULATION OF MICROBIOTA BY DIET

Diet has a major impact on human health, whether by a�ecting 
the host directly or through changes of the microbial community. 
�e microbial community in the mammalian gut is a complex and 
dynamic system with a steady state (85), which can be perturbed 
by many environmental factors, including diet, lifestyle, drugs, 
thereby changing the host’s physiology (10, 86) (Figure 2). As a 
response to dietary changes, shi�s in the composition of the gut 
microbiota occur. Especially during early-life events like weaning 
o� and introduction to solid food, the dynamics of colonization 
are critically involved in educating as well as training the immune 
system (87). �e consumption of a Westernized diet containing 
excessive amounts of re�ned and processed foods, red meats, 
and sugary beverages, accompanied with a low consumption 
of �bers, fruits, and vegetables, is associated with the increased 
occurrence of metabolic diseases, such as diabetes and obesity, 
both of which are associated with systemic low-grade in�amma-
tion attributed to endotoxemia (88, 89) (Figure 2B). A healthy 
gut microbiota maintains a symbiotic relationship within the gut 
mucosa o�ering essential functions in metabolism, immunology, 

and protection of the host (Figure 2A). �e commensal micro-
biota, consisting of up to 1  ×  1014 bacteria, confers coloniza-
tion resistance against pathogens, which is a key host defense 
mechanism against enteric infections. Commensal microbes 
occupy niches and exhaust nutrients thereby limiting the growth 
of newcomers. Dietary changes, in�ammation, and antibiotics 
can disrupt the commensal microbial community and hence 
increase the risk of colonization and expansion of incoming 
pathogens (90). �e commensal microbiota is also essential for 
the elimination of pathogens from the gut. For example, unlike 
conventional speci�c pathogen free mice, GF mice are unable to 
eradicate enteric pathogens such as Citrobacter rodentium from 
the gut (19). �erefore, the abundance and diversity of micro-
bial members plays a crucial role in ful�lling these functions, 
i.e., symbiosis, colonization resistance, clearance of pathogens, 
etc. Decreased microbial diversity or altered composition,  
e.g., increased Firmicutes to Bacteroidetes ratio, entail various 
health risks for the host and are generally associated to poor health 
(91). Feeding high-fat and high sucrose diet to wild-type (WT) 
mice leads to decreased gut microbiota diversity and an increase 
in opportunistic pathogens, resulting in a decreased prevalence 
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of speci�c gut barrier-protective bacteria (92). However, revert-
ing the animals to regular chow food reverses the dietary pertur-
bations thereby con�rming the structural resilience of the gut 
microbiota. Similarly, the human microbiota can rapidly adapt 
to dietary changes (93, 94). A comparative analysis of vegan, 
vegetarian, and omnivore diets and the corresponding shi�s 
in microbial communities revealed that a signi�cant increase 
in β-diversity was present as quickly as 24 h post switch to the 
animal-based diet (93). �ese �ndings suggest that changes 
in environmental conditions of gut microbiota, e.g., through 
changes in diet, put selective pressure on various species, which 
in turn leads to competition for the most adaptable bacteria to 
survive and replicate (7).

DIET AND IMMUNE RESPONSES  

IN THE ADIPOSE TISSUE

�e adipose tissue is an active endocrine and secondary 
immune organ consisting of adipocytes, immune cells (T  cells 
and macrophages) and connective/nerve tissue which produces 
hormones including adipokines [such as leptin and resistin 
(pro-in�ammatory) and adiponectin (anti-in�ammatory)], 
cytokines, and chemokines. �e adipose tissue in lean indi-
viduals is characterized by an anti-in�ammatory cytokine and 
adipokine pro�le (e.g., IL-4, IL-10, IL-33, adiponectin) produced 
by M2 macrophages and Tregs, while obese mice present an 
initial CD8+ T cell in�ltration followed by macrophages result-
ing in a pro-in�ammatory (�1/�17 and M1) pro�le. M1 
macrophages secrete pro-in�ammatory cytokines, including 
TNFα, IL-1β, and IL-6 (95). Although a correlation between 
obesity and IBD is not con�rmed [reviewed in Ref. (96)], the 
cytokine pro�le of the adipose tissue in patients with IBD and 
especially in CD patients, is similar to obese individuals exhibit-
ing increased levels of TNFα, IL-6 and leptin and a reduction 
in adiponectin (97–100). CD adipocytes express TLRs, display 
a higher presence of commensal bacteria (Enterococcus faecalis) 
and an increased translocation of intestinal bacteria resulting in 
an increased C-reactive protein production (101). �ese �nd-
ings indicate that adipocytes participate in the antimicrobial 
response and represent a barrier to maintain homeostasis and 
link the adipose tissue with innate immune responses (102).  
A typical feature of patients with CD is an enlarged mesenteric 
tissue wrapped around the intestine, so-called “creeping fat.” 
�is fat is usually found adjacent to in�ammatory lesions, it cor-
relates with disease activity, is characterized by high in�ltration 
of lymphocytes and macrophages, high levels of peroxisome 
proliferator-activated receptor γ (PPARγ) and TNFα and �brosis 
(103–105). PPARγ is a nuclear receptor that controls the expres-
sion of a large number of regulatory genes in lipid metabolism, 
insulin sensitization, in�ammation, and cell proliferation (106, 
107) and can inhibit the activation of nuclear factor κB (NFκB), 
mitogen-activated protein kinase (MAPK), and cyclooxygenase 
2 (COX-2) pathways leading to reduction of pro-in�ammatory 
mediators (cytokines and prostaglandins). �ese �ndings indi-
cate that mesenteric obesity may play an important role in CD 
pathogenesis. Contrary to IBD, an association between obesity 

and asthma, with increased asthma disease severity, has been 
speci�cally identi�ed in children. Obesity appears to increase 
injury in the lungs of asthmatic patients by increasing eosino-
phil numbers to the airway wall and the systemic production 
of pro-in�ammatory cytokines TNFα, IL-6, IL-1 (5). A recent 
publication highlighted a pathogenic role for IL-17a produced 
from ILC3 cells in airways disease in mice with diet-induced 
obesity. �is was accompanied by NLRP3 in�ammasome and 
IL-17a activation in the adipose tissue and the lungs, leading to 
the identi�cation of a new in�ammasome/�17 mechanism in 
asthma (108). Similarly to IBD, a reduction in adiponectin levels 
has also been reported, which can a�ect the anti-in�ammatory 
immune function in asthma patients (5).

DIETARY PATTERNS IN IBD AND ASTHMA

Dietary nutrients shape the intestinal environment by having a 
crucial impact on intestinal microbial populations and immune 
responses. To date, epidemiological evidence from observational 
studies indicate that intake of �ber rich food, such as fruits and 
vegetables, can protect against IBD and asthma. Conversely, 
this protective e�ect has not been con�rmed in randomized 
controlled trials. Recently, the evidence for the airway and gut 
microbiota in e�ecting asthma development and induction is 
mounting. Timing of neonatal exposure to microbes and the 
diversity of the exposing environment and gut metabolites 
appear to e�ect asthma development (83). In a seminal work by 
Gevers et al., microbial alterations in naïve treated pediatric CD 
patients were correlated with certain microbes, speci�c location 
and e�ect of antibiotic treatment—�ndings that can pave the way 
for new CD diagnostic tools (109). �e e�ect of dietary habits on 
the early development of these diseases is yet to be discovered. 
In the next section, we summarize studies covering di�erent 
dietary patterns and their contribution to disease status. For a 
more comprehensive review on dietary advice and interventions 
see recent reviews (27, 110–112).

Fat and Sucrose
A recent report from the European Prospective Investigation 
in Cancer (EPIC) study, did not identify a correlation between 
body mass index (a measure of obesity) and IBD morbidity 
(113), therefore proposing that a hypercaloric diet per se is not 
enough to trigger the development of IBD. Epidemiological 
studies indicate an increased risk of IBD is associated with 
a higher consumption of red and/or processed meat, dietary 
fat [especially n-6 polyunsaturated fatty acids (PUFAs)] and 
low levels of vitamin D (VitD) (4, 114, 115). In addition, an 
association between disease activity and intake of total fat 
[trans, saturated, and monounsaturated fatty acids (MUFAs)] 
and a high n-6/n-3 PUFA ratio has been identi�ed in patients 
with CD (116). Also, a direct correlation of colonic cytokine 
levels with saturated fatty acids (SFA) was identi�ed in patients 
with UC (115). Similarly to IBD, the quality of fatty acids 
(FAs) appear also to e�ect the asthma response as trans FAs 
margarine (a trans FA source), n-6 FAs intake, and oleic acid 
intake are associated with increased asthma risk (117, 118). In 
addition to saturated fats, a higher prevalence and preference 
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for foods with high calories, i.e., from fat and sucrose, has been 
linked to the worldwide increase in metabolic diseases (119). 
In IBD, one of the �rst studies that related sucrose to the devel-
opment of CD was published four decades ago (120). More 
recently, the EPIC study uncovered an association between 
high consumption of sugar and so� drinks accompanied by 
a low vegetable intake to a higher UC risk (121). Similarly, 
high sugar consumption in sweetened beverages has been 
linked to asthma and dental caries which is also increased 
in asthmatics (18, 21, 122). Studies in experimental models,  
e.g., transgenic CEABAC10 mice fed a diet high in fat and 

sucrose, resulted in altered microbiota composition, par-
ticularly in the expansion of and colonization of AIEC and 
reduction in protective bacteria, increased permeability and 
colonic pro-in�ammatory mediators (Figure 4), and reduction 
in short-chain fatty acids (SCFA) concentrations and the SCFA 
receptor GPR43, supporting a role of fat and sucrose in exacer-
bating in�ammation due to changes in microbial composition 
(20, 123). Overall, the studies to date indicate that a diet rich in 
saturated fat and high sucrose content presents a risk factor for 
IBD and asthma and is associated to in�ammation while results 
from MUFA-containing diets are contradictory.
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Dairy Products
Dairy products are a major source of SFA present in our diets. 
In a Japanese study, an increased incidence of CD was strongly 
correlated to milk protein (124). Furthermore, an increase in 
cheese consumption is associated with an increased risk of both 
UC and CD (125). In line with these �ndings, IL-10−/− mice fed a 
saturated milk fat-derived diet resulted in an increased severity of 
colitis associated with a colonic �1 pro�le and presence of CD4+ 
IFN-γ+ cells in the mesenteric lymph nodes (MLNs) as a result 
of blooming of an opportunistic bacteria Bilophila wadsworthia 
(126) (Figure  4). Interestingly, WT mice fed milk fat diet and 
presenting a blooming of B. wadsworthia did not develop colitis, 
indicating the impact of genetic predisposition on the subsequent 
in�ammatory response. Of note, 20% of patients with UC ben-
e�ted from excluding milk and cheese from their diet (127). �ese 
collected data indicate that dairy products may play a role in IBD 
pathology. In contrast to IBD, a decreased asthma risk is associated 
to milk fat (117, 118). Additionally, it has been reported children 
who consumed raw milk during childhood show a reduced risk  
of developing atopy and/or asthma (128–130). �e protective 

e�ect of raw milk has been speculated to be due to improvement 
in nutrition, prevention of lactose intolerance, or the presence  
of “good” bacteria. However, the topic is still debatable and more 
studies are needed.

Emulsi�ers
Processed foods have been identi�ed as a risk factor for IBD 
(4, 115) and in 2013, it was hypothesized that the increased 
incidence in CD was the result of a higher consumption of 
emulsi�ers in processed foods (131). Indeed, using an animal 
model of colitis (IL-10−/− mice), it was shown that exposure 
to two common emulsi�ers, carboxymethylcellulose (CMC) 
and polysorbate-80 (P80), aggravated colitis by increasing gut 
permeability, reducing mucus thickness, promoting higher 
penetration of intestinal bacteria, and altered microbial compo-
sition, particularly by enrichment in Bilophila spp. (Figure 4). 
Exacerbation in obesity/metabolic syndrome was also observed 
in emulsi�er-treated TLR5−/− mice (132). Supporting these 
�ndings, it was shown in vitro that addition of P80 induced a 
higher translocation of E. coli across M-cells (133) (Figure 4). 
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More recently, using an ex vivo model of human microbiota 
culture which was exposed to CMC and P80 revealed an altered 
gene expression and microbial composition by, e.g., induction 
of bioactive �agellin. However, transfer of emulsi�er-treated 
microbiota to GF mice resulted in a low-grade in�ammation 
and metabolic syndrome features but not colitis (134). �e rel-
evance of these �ndings for the development of the microbiota 
and immune system and in other chronic conditions is yet to 
be addressed.

Fibers, Vegetables, Fruits, and Fish
In contrast to dietary fats, diets rich in �sh (n-3 PUFAs), fer-
mentable �bers and vegetables and fruits lower the risk for IBD  
(4, 115). For example, an inverse correlation of eicosapentaenoic 
acid (EPA) and docosapentaenoic acid with colonic cytokine 
levels was identi�ed in UC patients (115). Several studies have 
suggested that a diet low in re�ned carbohydrates could be ben-
e�cial in the treatment of CD, reviewed in Ref. (135); however, 
clinical trials are needed for this view to be proven (136, 137). 
Findings from a prospective study investigating the long-term 
intake of dietary �ber and risk of incidence of CD and UC in 
women revealed a 40% reduction in risk of developing CD while 
no association to UC was observed (138). Much of the �ber 
intake in this study originated from fruits. �e Aryl hydrocarbon 
receptor (AhR) was identi�ed as a potential mechanism linking 
the positive e�ects of fruit-derived �ber. AhR is expressed ubiq-
uitously in vertebrate cells and mediates the toxicity of xenobiotic 
molecules by binding to the AhR nuclear translocator and acti-
vating dioxin- or xenobiotic-response element sequences (139). 
Indole-3-carbinol, a major component of cruciferous vegetables 
(e.g., broccoli, cabbage, and cauli�ower) can activate AhR in the 
intestine (140), inducing maintenance and expansion of intestinal 
intraepithelial lymphocytes (IELs) and IL-22-producing ILCs 
(141). IELs are T cells expressing αE (CD103)/β7 integrin, local-
ized in between epithelial cells and are characterized as either 
conventional (CD4+ or CD8αβ+TCRαβ+) or unconventional 
(TCRγδ+ and CD8αα+TCRαβ+) IELs. IELs have been regarded 
as a �rst line of defense against infected/damaged epithelial cells 
and are implicated in the regeneration of the intestinal epithelium 
(142). Indeed, recent studies have demonstrated that IELs play 
a hitherto underappreciated role in gut epithelial homeostasis 
(143). In addition, aberrant IEL phenotype and lineages are now 
evident in pathologies such as celiac disease and enteropathy-
associated T lymphoma (144). �e roles that these di�ering IELs 
play in sensing and interacting with the gut microbiota in IBD 
and other GI conditions warrants further investigation.

In asthma, a high-�ber intake in late pregnant mothers was 
correlated with high serum acetate levels and resulted in lower 
infant GP visits for cough or wheeze (17). In children aged 10–14, 
a dietary intake of fruits, but not vegetables, was negatively related 
to wheeze, while no protective e�ect was identi�ed in adults (27).

Intake of oily �sh, such as salmon, sardines, herring, tuna, 
and mackerel, which are rich in n-3 FAs, have shown a potential 
bene�t in preventing asthma in children and in patients with 
UC, while no bene�cial e�ect in adults with asthma was reported 
(145, 146).

NUTRIENTS AND THEIR IMPACT ON 

MICROBIOTA AND IMMUNE RESPONSES 

AT MUCOSAL SITES

Recent evidence has identi�ed the existence of a cross talk between 
the host and the commensal microbiota within the gut. In this 
dialog, nutrients play an important role either by directly interact-
ing with the host via the epithelium or the intestinal immune system 
or indirectly, by modulating the composition of the commensal 
microbiota which in turn will interact with the immune system, and 
vice versa (Figure 2A). �e immune system will react promptly and 
adapt depending on the microbiota (commensal, pathobionts, and 
pathogens) and the diet (prebiotics, supplements, or detrimental 
nutrients). �e worldwide increased incidence of IBD and asthma 
has been hypothesized to be associated with changes in dietary 
habits, i.e., westernized life style. In the following sections, we will 
outline several important macro- and micronutrients associated 
with diets and their e�ect on immune responses at mucosal sites 
important in health and in IBD and asthma.

Macronutrients
In this section, we will summarize the impact of the main macro-
nutrients fat, carbohydrates and proteins on immune responses 
and microbiota (Table 1).

Fats
Under this section, we will outline the impact that saturated-, 
monounsaturated-, and PUFAs have on immune and microbial 
responses associated with IBD and asthma.

Saturated Fatty Acids
Fatty acids belonging to SFAs and containing 12 or less carbon 
(CX) atoms, include carprylic acid (C8:0), capric acid (C10:0), 
and lauric acid (C12:0), are found in vegetable oils, cocoa butter, 
palm oil. SFAs containing more than 12 carbon atoms include 
myristic (C14:0), palmitic acid (C16:0), stearic acid (C18:0) 
which can be found in lard, butter, beef, pork, chicken fats, eggs, 
and vegetable oils (147).

Evidence exists that SFA can act as pro-in�ammatory media-
tors, e.g., as ligands for TLR4 (148, 149). Potential mechanisms 
by which SFAs elicit a TLR4-induced in�ammatory response 
have been recently reviewed (12). Brie�y, it is proposed that 
similar to lipopolysaccharide (LPS), the SFA lauric acid can 
trigger TLR4 via CD14/MD2 activation thereby promoting 
the expression of the transcription factor NF-κB, which plays 
a crucial role in the induction of the pro-in�ammatory media-
tors COX2, TNFα, IL-1β, IL-6, CXCL8, IL-12, and IFNγ (150) 
(Figure 4). Comparably, palmitic acid and stearate can induce 
pro-in�ammatory cytokine production from macrophages via 
degranulation of Ikappa B alpha (IκBα) and phosphorylation of 
c-Jun N-terminal kinases, MAPKs, and extracellular signal-regu-
lated kinases (ERK). LPS together with palmitate activate reactive 
oxygen species and the NLRP3 in�ammasome leading to IL-1β 
maturation in macrophages (95) (Figure  4). Moreover, a high 
intake of SFA, i.e., given in western diet, leads to the modi�cation 
of the gut microbiota raising the proportion of Gram-negative 
bacteria and thereby the natural ligand for TLR4, LPS, as well as 
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an increase in intestinal permeability, which in itself induces a 
state of metabolic endotoxemia (151) (Figure 4). Intake of SFAs 
can also increase plasma low-density lipoprotein cholesterol by 
inducing the formation of low-density Lipoprotein (LDL) and 
by reducing LDL turn-over leading to the generation of oxidized 
LDL (152). Both oxidized LDL and phospholipids are damage-
associated molecular patterns, which are also recognized by TLR4 
and can trigger a CD36–TLR4–TLR6-mediated in�ammatory 
response (153). �ese �ndings support a pro-in�ammatory e�ect 
of SFA on the microbiota on innate responses in macrophages.

To date, mechanistic studies on saturated fats in human IBD 
are scarce and, therefore, much of our knowledge on SFAs and 
intestinal in�ammation emanates from studies in experimental 
models. TNFΔARE mice fed a palm oil-based high-fat diet for 
up to 12  weeks resulted in an initial acceleration of ileitis fol-
lowed by worsening of proximal colitis associated with loss of 
TJ protein occludin in the distal ileum, endotoxin translocation, 
and increased in�ltration of DCs and �17 cells into the lamina 

propria but without the development of obesity or obesity-
associated metabolic features (154). Similarly, Mdr1a−/− mice 
fed a lard-based high-fat diet for 12 weeks led to an exacerbation 
of spontaneous colitis associated with elongated crypts, loss 
of goblet cells, and in�ltration of immune cells. Contrary to 
TNFΔARE mice, Mdr1a−/− mice developed obesity as character-
ized by increased adiposity and presence of foamy macrophages, 
while WT mice did not (155). Rats fed a diet containing capric 
and lauric acid followed by DSS-induced colitis, developed worse 
colitis associated with a higher colonic myeloperoxidase activity 
and a pro-in�ammatory cytokine pro�le as well as a reduction 
in goblet cells (156). Overall, these �ndings indicate that the 
type of SFA diet, microbiota status, diet regimen, and/or the 
genetic background of the animals determine the development 
of intestinal in�ammation and obesity, suggesting that di�erent 
dietary-induced mechanisms regulate these two conditions. In 
asthma, SFA have been shown to e�ect symptoms and immune 
activation, e.g., by inducing a neutrophilic in�ammation and 
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suppressing bronchodilator recovery in asthmatic patients (11, 
27) (Figure 4).

Monounsaturated Fatty Acids and Derived Oils
Monounsaturated fatty acids, including palmitoleic acid (C16:1) 
and oleic acid (C18:1, OA) are normally found in macadamia 
nuts, blue-green algae, olive oil, canola oil, beef tallow, lard, and 
avocado.

Diets rich in MUFA appear to reduce LDL cholesterol and 
potentially increase high-density lipoprotein (HDL) cholesterol 
(157), and palmitoleate treatment of M1 macrophages induce an 
anti-in�ammatory M2 pro�le (158) indicating an anti-in�amma-
tory capacity of MUFAs. �e speci�c role of MUFAs in IBD and 
asthma remains inconclusive. For example, a prospective study 
by de Silva and colleagues showed that a dietary oleic acid was 
inversely associated with UC development (114), while palmi-
toleic and oleic acid treatment of polarized intestinal epithelial 
cells impaired epithelial barrier function (159). MUFA and oleic 
acid intake indicated an increased risk of wheeze and non-atopic 
asthma, respectively (160). Extra virgin olive oil, high in MUFAs, 
contains highly bioactive components which are present in the 
unsaponi�able fraction (UF). Bene�cial e�ects of UF and olive oil 
were demonstrated in an acute DSS model of colitis and in mice with  
C. rodentium induced colitis. Disease amelioration included 
alleviation of oxidative stress, reduction of pro-in�ammatory 
proteins and increased levels of intestinal alkaline phosphatase, 
which can de-phosphorylate bacterial LPS (161–163). In line 
with these �ndings, isolated blood and intestinal T  cells from 
UC patients treated with UF resulted in a reduction in T  cell 
activation, β7 integrin expression and IFNγ production as well as 
induction of apoptosis (164). Findings from these studies indicate 
MUFA exert both pro- and anti-in�ammatory activities in these 
mucosal conditions.

Polyunsaturated Fatty Acids
Polyunsaturated fatty acids are FAs containing more than one 
double carbon bonds. �erefore, naturally, they are more prone 
to oxidation and oxidized LDL synthesis. Long chain PUFAs 
are divided in two main groups; omega-3 (n-3) PUFAs includ-
ing—alpha-linolenic acid (ALA, C18:2), docosahexaenoic acid 
(DHA, C22:6), and EPA (C20:5); and omega-6 (n-6) PUFAs 
including—linoleic acid (LA, C18:3), and arachidonic acid (ARA, 
20:4). LA and ALA are referred to as essential FAs as they are 
the precursors of ARA, EPA, and DHA. DHA and EPA compete 
for the enzymes and products of ARA metabolism whereby they 
can antagonize the formation of in�ammation related eicosanoid 
mediators (165, 166).

Arachidonic acid is the primary n-6 PUFA found in in�am-
matory cells and is important for the production of in�ammatory 
eicosanoids. ARA is formed out of LA which is further converted 
to prostaglandins [e.g., prostaglandin E2 (PGE2), leukotrienes 
(LTBD4), and other lipoxygenase or cyclooxygenase products 
(COX1/-2)], the so-called eicosanoids, all of which have pro- and 
anti-in�ammatory in addition to atherogenic and pro-thrombotic 
e�ects (166). PGE2 is one of the key prostaglandins produced in 
the intestine where it has dual functions: (1) a pro-in�ammatory 

role, e.g., it is produced by macrophages and neutrophils as a 
response to in�ammatory stimuli and (2) a regulatory role, by 
inducing immune tolerance, independent of IL-10 or Tregs (167).

n-3 PUFAs are primarily sourced from the human diet, with 
DHA and EPA especially sourced from �sh (e.g., salmon) and 
ALA from seed oils (e.g., walnut, linseed oil). Several reports 
have highlighted their e�ect in preventing and/or treatment of 
di�erent in�ammatory diseases in animals and humans, includ-
ing IBD and asthma. n-3 PUFAs can inhibit TLR4 signaling 
and the subsequent gene transcription of pro-in�ammatory 
mediators (168), a process partly mediated via GPR120 (169) 
(Figure 3). n-3 PUFAs can also activate the anti-in�ammatory 
transcription factor PPAR-γ and inhibit NF-κB (Figure 3) and 
the subsequent pro-in�ammatory cytokine production includ-
ing TNFα, activity which is highly expressed in the mucosa of 
patients with IBD and asthma subtypes (13, 170, 171). DHA 
can also improve epithelial barrier integrity by increasing the 
expression of the TJ proteins occludin and claudin-1 (Figure 3) 
(172), as the integrity of the epithelium is critical in prevent-
ing paracellular translocation of LPS into systemic circulation. 
PUFA supplementation in particular those related to �sh oils can 
also modulate asthma symptoms (173, 174), with reduction of 
wheeze, improved pulmonary function and reduced pro-in�am-
matory mediators in sputum. However, it should be noted that 
many trials are designed to measure di�erent outcomes which 
can deliver con�icting �ndings (27, 175). With the evolution in 
food technology and modern agriculture in the last 100 years the 
amount of n-6 FAs, e.g., LA present in our food has increased 
due to change in animal feed from grass to grains (176, 177). 
�erefore, the ratio of n-6/n-3 PUFAs present in the food has 
changed from 1:1 to 16:1 in USA/Europe (177) (Figure 2). �is 
ratio has increased dramatically due to food processing, less �sh 
and �ber consumption, and the dietary habits of farm animals. In 
line with this, a recent study identi�ed a higher ARA:EPA ratio in 
the in�amed mucosa of UC patients, which correlated with the 
severity of the disease (178). No association of n-6/n-3 ratio was 
found in individuals with hay fever or allergic sensitization (179). 
�e relevance of a lack of n-6/n-3 ratio association to asthma is 
still to be uncovered.

Carbohydrates
Carbohydrates are divided into four groups: monosaccharides, 
disaccharides, oligosaccharides and polysaccharides. Generally, 
monosaccharides and disaccharides are referred to as sugar. In 
the western diet a large amount of calories are ingested in form 
of re�ned carbohydrates, i.e., sucrose, starch, fructose syrup, 
etc.—obtained from so� drinks, pastries and desserts, and white 
bread. �is energy-dense but nutrient-poor diet is a risk factor 
for obesity, type 2 diabetes, cardiovascular diseases and more. 
�erefore, the biological plausibility exists that it has impact on 
intestinal in�ammation and asthma. Moreover, related to the 
carbohydrates that can be metabolically used by gut microbes, the 
term “microbiota-accessible carbohydrate” has been proposed. 
�e term refers to the ability of microbial carbohydrates to modify 
the composition of the microbiota, and dictate the functionality 
and metabolic output (180).
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Fibers
Dietary �ber is a plant-based nutrient and a type of carbohy-
drate, which due to its biochemical structures resists digestion 
by intestinal and pancreatic enzymes in the human GI tract. 
�erefore, the �ber passes through the GI tract relatively intact. 
Fermentable carbohydrate substrates such as non-starch polysac-
charides, resistant starch and oligosaccharides serve as important 
substrates for the gut microbiota. �e microbes located in the 
human colon use fermentation to produce SCFAs, lactate and 
gas (181). �ese fermentation products selectively promote the 
growth of bene�cial Bi�dobacteria and Lactobacilli and exert 
anti-in�ammatory (inhibition of NFκB transcription via GPR41) 
and anti-carcinogenic functions (182).

Short-Chain Fatty Acids. Upon fermentation of dietary �ber, 
bacterial metabolites such as SCFAs are produced in the colon. 
SCFA mediates the communication between the commensal 
microbiota and the immune system a�ecting the balance between 
pro- and anti-in�ammatory responses. �e bene�cial e�ects of 
butyrate on colonic health are particularly well established (183). 
Microbial-derived butyrate and to a lesser extent acetate and 
propionate, can facilitate the generation of extrathymic Foxp3+ 
Tregs which are crucial for limiting intestinal in�ammation  
(17, 184, 185) (Figure 3). Presence of butyrate during human DC 
maturation results in a tolerogenic phenotype, with an increased 
expression of IL-10 (186, 187), further supporting the regulatory 
potential of SCFAs (Figure 3). SCFA can signal through the acti-
vation of speci�c G-protein coupled receptors (GPCRs), GPR41, 
GPR43, GPR109, which are particularly expressed in immune 
cells, e.g., polymorphonuclear leukocytes, and are suggested to 
participate in immune surveillance of the colonic mucosa a�ect-
ing the balance between pro- and anti-in�ammatory responses 
(188). GPR43 is additionally expressed in the colonic epithe-
lium where it can mediate SCFA-regulated e�ects on epithelial 
barrier and proliferation (Figure  3). Butyrate is also a natural 
ligand for PPARγ, which is expressed in colonic epithelial cells,  
macrophages and lymphocytes. Colonic PPARγ expression is 
linked to host–microbe interactions with natural (e.g., SCFA—
butyrate, conjugated LA) and synthetic (e.g., 5-aminosalicylic 
acid) PPARγ ligands preventing in�ammation in experimental 
colitis (189).

A signi�cant decrease in the number of butyrate-producing 
bacteria including Eubacterium rectale/Roseburia spp (which 
belong to Clostridium coccoides) and F. prausnitzii (which belong 
to Clostridium leptum cluster), both within the Firmicutes phylum 
was revealed in patients with UC and CD (190, 191). In patients 
with UC, colonic irrigation with butyrate is able to limit in�am-
mation and in experimental models it ameliorates in�ammation 
and modi�es microbial composition (183, 192).

In the Canadian CHILD study the SCFA acetate was reduced 
in the feces of infants with atopy and wheeze (83). Feeding a 
high �ber diet to mice has resulted in gut microbiota alteration 
which concomitantly leads to increased serum SCFAs, such as 
acetate and propionate, and alleviates allergic asthma symptoms 
(Figure  3). �ese SCFAs induced an enhanced DC and mac-
rophage phagocytosis and reduced �2 responses in the murine 
lung (17, 23, 193). Furthermore, binding of propionate to GPR41 

and acetate and propionate to GPR43 also supported the reduc-
tion in airway in�ammation (17, 23, 194, 195). �ese microbiota-
mediated e�ects are also linked to maternal in�uences of asthma 
risk, where high serum acetate concentrations, but not propion-
ate, in pregnant mothers’ correlate with reduced asthma risk and 
are thought to modulate Tregs biology of the fetus (17). �ese 
�ndings clearly point to a crosstalk between the gut and the lung 
via SCFA in asthma and between the microbiota and the intestine 
in IBD, indicating that treatments aiming to increase SCFAs and 
SCFA producing bacteria should be further investigated.

Proteins
Proteins consist of carbon, hydrogen, oxygen, and nitrogen  
elements. �ey are essential nutrients and are involved in virtu-
ally all physiological functions. High protein intake, especially 
animal derived protein, is associated with an increased risk of 
CD (196). In asthmatics high ingestion of cured meats is linked 
with worsening of symptoms (24).

Carnitine is an amino acid derivative synthesized primar-
ily in the liver and kidneys from lysine and methionine and 
is involved in lipid metabolism in eukaryotic cells (197). In 
humans, the main source of carnitine is red meat. Humans 
with an omnivorous diet following ingestion of l-carnitine, 
presented increased plasma trimethylamine-N-oxide (TMAO) 
levels, which was dependent on microbiota mechanisms, when 
compared to vegans or vegetarians. Elevated plasma levels of 
TMAO are positively correlated with an increased risk for major 
adverse cardiovascular events (198). However, TMAO has also 
protective functions, e.g., by protecting cells from osmotic and 
hydrostatic damage, and therefore, is essential for all organisms 
(25). A recent study proposed plasma TMAO as a non-invasive 
biomarker for IBD, as decreased TMAO levels are seen in these 
patients (199). �e reduced TMAO was likely related to altera-
tions in the gut microbiome (the abundance of anaerobes or fac-
ultative anaerobes) in these patients. TMAO is also an oxidation 
product of trimethylamine which can be found in seafood, �sh, 
etc. Consumption of TMAO-containing food, e.g., oily �sh can 
lead to accumulation of TMAO and protection against asthma 
in childhood (200). Further studies are necessary to shed a light 
into mechanisms that underlie the association of high intake of  
animal protein in these conditions.

Other studies have also shown how dietary peptides and amino 
acids can modulate intestinal immune functions and in�uence 
in�ammatory responses. Supplementation with the dipeptide 
alanine-glutamine, led to decreased expression of in�ammatory 
mediators and increased expression of mucin 2 (MUC2) promot-
ing mucosal recovery in the DSS-induced colitis mouse model 
(26). Moreover, lower serum tryptophan is associated to active 
CD (201). Supplementing tryptophan presented bene�cial e�ects 
in the DSS-induced porcine IBD model, by inducing T cell apop-
tosis and thereby inhibiting �1-mediated immune responses 
and subsequently reducing in�ammation (202).

Micronutrients
Micronutrients or trace elements are nutrients required by 
organisms in small quantities to maintain a variety of physi-
ological functions and as most of them are essential, they need 
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to be obtained from the diet. �ese minerals include iron, cobalt, 
chromium, copper, iodine, manganese, selenium (Se), zinc (Zn) 
and vitamins include Vitamin A (VitA), vitamin B1 (VitB1), 
Vitamin B6 (VitB6), Vitamin B9 (VitB9), VitB12, VitD, and VitK. 
Micronutrient de�ciencies impair immune function and increase 
the severity of disease (203). Micronutrient de�ciencies occur in 
more than half of patients with IBD, with CD patients present-
ing more de�ciencies than UC patients, with the most common 
being VitB1, VitB6, VitB12, VitD, VitK, iron, folic acid, Se, and Zn 
(204). �is de�ciency in vitamins (hypovitaminosis) is thought 
to be the result of malabsorption, altered microbial composition 
and impaired host mucosal system. Low dietary intakes of VitA 
and VitC are associated with asthmatics (205). �e next section 
summarizes the most relevant micronutrients in relation to IBD 
and asthma pathology.

Vitamins
Vitamins can be absorbed from the diet but the gut commensal 
microbiota play an important role in their production and bio-
availability (206). Indeed, the diet of germ-free mice requires 
supplementation with dietary VitK and B Vitamins to maintain a 
normal function (207).

Vitamin A
Vitamin A is a group of unsaturated organic compounds 
including retinol, retinoic acid (RA), and several pro-vitamin A 
carotenoids including beta-carotene. �ey are fat-soluble sub-
stances obtained from animal food sources. RA is a metabolite 
of VitA, which is produced by CD103+ DCs and epithelial cells 
and acts as ligand for RA receptors (RARs) and Retinoic-X-
Receptor (RXR), transcription factors regulating gene expres-
sion. Lymphoid cells express RAR, RXRs and RA, which are 
known to regulate IgA and mucosal homeostasis (Figure  3). 
DCs from Gut associated lymphoid tissue (GALT) produce RA 
to sustain gut tropism and in synergy with GALT-DC-derived 
IL-6 or IL-5, induce IgA production (208) (Figure 3). RA can 
also control the presence of RORγ+ ILCs, the formation of 
lymphoid tissue in the small intestine (209) and appears to be a 
cofactor in IgA class switch recombination (210). RA can also 
induce the gut-homing capacity on T cells by the up-regulation 
of the integrin α4β7 and the chemokine receptor CCR9 (211) 
(Figure 3). A diet de�cient in VitA can lead to a systemic pro-
in�ammatory state, due to a lack of homing integrins in MLN 
activated T- and B-cells, which then go into systemic circulation 
instead of migrating back to the gut (212, 213). RA, together 
with TGFβ, promotes naïve CD4+ to become Foxp3+ Tregs and 
RA alone has also inhibitory e�ects on �17 cell di�erentiation 
(Figure  3). Others have also described that VitA can impair 
the reprogramming of Tregs into IL-17-producing cells during 
intestinal in�ammation (214).

Patients with IBD have been reported to be de�cient in VitA 
(Figure 4). Cytochrome P450 26 B1 (CYP26B1) participates in 
the degradation of RA, and homozygous carriers of the CYP26B1 
polymorphism rs2241057 have been associated as risk factor of 
CD development, linking an elevated catabolic function of RA to 
IBD (215). Supplementation of VitA/RA seems to attenuate intes-
tinal in�ammation in experimental models and even induces a 

shi� in �17/Tregs in UC biopsies (216–218). VitA appears to 
in�uence the microbiota, as its de�ciency seems to favor a non-
symptomatic reservoir of E. coli-like enteric infections (219, 220).

Vitamin D
Vitamin D belongs to a group of fat-soluble vitamins which are 
essential for bone mineralization and optimal intestinal absorp-
tion of calcium, iron, magnesium, phosphate, and Zn. VitD 
regulates the epithelial integrity/barrier function and is involved 
in the detoxi�cation and protection against infection as well as in 
controlling of the commensal microbiota (221, 222).

Vitamin D can be obtained from the diet or by dermal synthesis, 
e.g., in the skin where it is produced from 7-dehydrocholesterol 
(222). 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] is the active 
form, which arises from the bloodstream (endocrine action) or 
it can be locally produced from circulating 25(OH)D3 within 
intestinal cells (intracrine, autocrine and paracrine action). VitD 
is ubiquitously expressed in several human tissues including 
immune cells, but its expression is higher in intestinal epithelial 
cells (223). VitD de�ciency has been associated with a greater dis-
ease activity and extended disease duration in patients with IBD 
(Figure 4) – why a supplementation of VitD is o�en required. 
Human polymorphisms in the vitamin D receptor (VDR) are 
also associated with susceptibility to IBD (224). Vitamin D3 has 
been linked to bene�cial e�ects in asthma; however, the bene�ts 
are mainly observed in children or via maternal supplementa-
tion (225). Recent studies have identi�ed that VitD3 appear to 
modify VEGF function and reduction in airway smooth muscle 
proliferation (226).

�e biological actions of 1,25(OH)2D3 are mediated via 
the VDR, which acts as an heterodimer with RXR to acti-
vate VitD target genes (222, 227). VDR targeted pathways 
regulating in�ammatory responses include TLR and NF-κB 
signaling, �17/Tregs response, apoptosis, cell proliferation 
and di�erentiation, barrier function, etc. (Figure  3). �e anti-
in�ammatory role of 1,25(OH)2D3 is based on the suppressive 
e�ect of NFκB activity, as NFκB-induced pathways are enhanced 
in VDR−/− mice exposed to bacterial and chemically induced 
colitis (228). 1,25(OH)2D3 regulates intestinal barrier trough 
the up-regulation of TJ proteins including occludin, ZO1, clau-
din 2 and E-cadherin (221, 229) (Figure 3). In support of this, 
IL-10−/− mice expressing the human VDR in intestinal epithelial 
cells resulted in a reduced development of spontaneous colitis 
(230). VitD has been linked to the modulation and control of 
the gut commensal microbial composition (Figure  3), since 
VDR−/− mice present an altered microbiota with more abundance 
on Bacteroidetes and Proteobacteria phyla and less abundance on 
the Firmicutes phyla (231). Interestingly, analysis of mice treated 
with 1,25(OH)2D3 revealed an increased C. rodentium load in 
the colon and spleen doubtless due to the suppression of a �17 
response, which is essential for C. rodentium clearance (232). In 
contrast, following infection with C. rodentium, a diet de�cient 
in VitD aggravated barrier function, microbiota composition and 
in�ammation (233). Correspondingly, mice fed a high-fat and 
VitD de�cient diet presented increased ileal antimicrobial pep-
tides and Helicobacter hepaticus and reductions in TJ proteins, 
MUC2 expression and abundance of bene�cial bacteria such as 
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TABLE 1 | Dietary factors and host in�ammatory responses at mucosal sites.

Dietary factor In�ammatory/immune response Reference

Intestine Lung

Macronutrients

Fat

High-fat diet Permeability of epithelial barrier ↑ Neutrophil ↑

TLR4 mRNA ↑

(10, 11)

Saturated fatty acids Activation of TLR4↑ (12)

n-3 PUFA, e.g., EPA, DHA PG (series-3) ↑

LK (series-5) ↑

Leukocyte chemotaxis↓

IL-1β ↓, TNFα ↓

Resolvins, Maresins and Protectins↑

Maternal supplementation reduced Childhood 

Asthma

IL-13 cord blood ↓

Mucus (murine) ↓

CD45+ in�ammatory cell in�ltrates (murine) ↓

(13)

(14, 15)

n-6 PUFA, e.g., ARA, linoleic acid PG (series-2) ↑

LK (series-4) ↑

Mucus (murine) ↓ (14)

SCFA, e.g., butyrate Energy source for colonocytes

Barrier function ↑

Peroxisome proliferator-activated receptor γ activation ↑

Allergy ↓ (16, 17)

Carbohydrates

Sucrose Permeability of epithelial barrier ↑ Asthma and dental caries ↑ (18–21)

Fermentable carbohydrates, e.g., �ber Butyrate production ↑ SCFA levels ↑

DC maturation ↓

TH2 response ↓

(22, 23)

Proteins

Animal-derived proteins, e.g., carnitine TMAO synthesis ↑ Asthma exacerbation (cured meats) (24, 25)

Dipeptides, e.g., alanine–glutamine Mucin 2 expression ↑ (26)

Micronutrients

Vitamins

Vitamin A, e.g., RA, β-carrotene Induction of tolerogenic DC and Tregs ↑ (27, 28)

Vitamin D Cathelicidin production

Innate defense toward regulatory state ↑

Ca2+absorption ↑

Maternal supplementation reduction in airway 

smooth muscle

(27, 29, 30)

Vitamin B, e.g., thiamine, folate, 

cobalamine, pyridoxine

Vitamin B9 de�ciency—colonic Foxp3 + Tregs ↓ Folate de�ciency—asthma exacerbations (31–34)

Minerals

Iron Incorporated into iron–sulfur clusters, redox cofactors, or used 

metalloenzymes

(35, 36)

ARA, arachidonic acid; Ca2+, calcium; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; Foxp3, Forkhead-Box-Protein P3; LK, leukotrienes; PG, prostaglandins; RA, retinoic 

acid; TLR4, toll-like receptor 4; PUFA, polyunsaturated fatty acid; SCFA, short-chain fatty acid; Tregs, T regulatory cells; CD, cluster of differentiation; DC, dendritic cells;  

IL, interleukin; TMAO, trimethylamine-N-oxide; Th, T helper cell.
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Akkermansia muciniphila developing insulin resistance and fatty 
liver (234).

Other Vitamins
Vitamin B1. Vitamin B1, also known as thiamine, is mainly 
obtained from whole grains, trout, pork, peas and beans. It has 
an important role in the catabolism of sugars and amino acids 
(235, 236). �iamine is a component of the pyruvate dehydroge-
nase that catalyzes the formation of Acetyl CoA in FA synthesis, 
a pathway which is altered in IBD (237). Pediatric IBD patients 
presented alterations in cellular transport of thiamine and FAs 
synthesis (e.g., bile acids) (237, 238). Altogether, these �ndings 

highlight a potential link between the microbiota, glucose, FAs 
and mucosal alteration leading to intestinal in�ammation in 
which thiamine may have a key role.

Vitamin B6. Vitamin B6 is a water-soluble vitamin, also known 
as pyridoxine, which exists in several forms and can be obtained 
from fruits, vegetables, grains, �sh and meat. �e biologically 
active form of VitB6, Pyridoxal 5′-phosphate (PLP), is involved 
in the synthesis or metabolism of proteins, lipids and carbohy-
drates and important in the modulation of immune pathways  
(236, 239). PLP treatment ameliorated colitis in IL-10−/− mice due 
to a reduction in colonic TNFα, IL-6, IFNγ, COX-2 and nitric oxide 
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synthase (iNOS) expression and modulation of the chemotactic 
lipid S1P (240). Eubacterium rectale, a dominant non-pathogenic 
fecal Gram-positive commensal bacterium has been described as 
one of the important bacterial group synthetizing PLP (241).

Vitamin B9. Vitamin B9 is a water-soluble vitamin also known 
as folic acid or folate, it can be obtained from vegetables and fruits 
and is important in DNA repair and methylation aiding rapid 
cell division and growth during, e.g., infancy and pregnancy. 
Bacteria linked to folate biosynthesis include Bi�dobacteria and 
Lactobacilli groups (207, 242, 243). A de�ciency in VitB9 has been 
more commonly ascribed to CD, especially in patients with ileal 
disease, than in UC patients (244, 245). VitB9 de�ciency has also 
been associated with a reduction in colonic Foxp3+ Tregs (33). 
Folate supplementation during pregnancy has been linked to 
an increased risk of infants developing asthma; however, this is  
controversial with con�icting studies providing little clear evi-
dence (34, 246).

Vitamin K. Vitamin K is a fat-soluble vitamin required for 
synthesis of certain proteins involved in blood coagulation 
and is linked to calcium pathways and calci�cation. VitK1 can 
be obtained from, e.g., meats, cheeses, and eggs or synthetized 
(VitK2) by the microbiota of the colon de novo or from VitK1 
(236, 247, 248). VitK de�ciency has been associated with both 
adult and pediatric CD patients (249). A protective role of VitK 
was shown in a model of DSS-induced colitis associated with a 
reduction in IL-6 production from B cells (250).

Minerals
Minerals are obtained from the diet, and are essential nutrients 
needed by organisms for synthesis of common organic molecules. 
Accordingly, mineral de�ciencies in the westernized diet have a 
major impact on host health. �e next section summarizes the 
most relevant minerals in relation to IBD and asthma pathology.

Iron
Anemia is one of the most common extra-intestinal manifesta-
tions of IBD. �e de�ciency, results from either an absolute state, 
i.e., poor dietary intake of iron, reduced iron absorption, and/
or increased blood loss from chronically in�amed intestinal 
mucosa; and/or functional iron state, i.e., de�ciency in VitB12 
and insu�cient availability of iron for incorporation into eryth-
roid precursors despite normal or increased body iron stores  
(251, 252). It is estimated that up to 80% of patients with IBD 
present with anemia (253). Consequently, oral or i.v. iron supple-
mentation is important in treatment of IBD patients. Nonetheless, 
caution is needed as non-absorbed iron can be toxic to intestinal 
epithelial cells, since it can stimulate growth and virulence of 
bacteria and appears to worsen disease activity in the patients 
(178, 254). In support of this data, rats supplemented with iron 
and exposed to DSS-induced colitis revealed an increased neu-
trophil in�ltration, TNFα and IL-1 expression and NF-κB acti-
vation – all of which could be prevented by supplementing the 
diet with VitE (dl-alpha-tocopherol acetate) (255). In contrast, 
rats with humanized gut microbiota and fed dietary iron sup-
plementation exhibited an increased abundance of Bacteroides 

spp. and Clostridium cluster IV, leading to an increased butyrate 
concentration in the gut, without the induction of colitis. �us, 
iron supplementation can increase the proportion of bene�cial 
gut microbiota metabolites which may contribute to gut health 
in IBD individuals (256).

Other Minerals
Selenium. Selenium is an essential antioxidant trace min-
eral which can be obtained from proteins or vegetables and is 
used in the body to synthetize the amino acid selenocysteine 
(selenoproteins). Large amounts of Se can cause toxicity (257). 
�e amino acid transporters SLC3A1 and SLC1A4 have been 
suggested as Se transporters (236) and play a role in intesti-
nal epithelial permeability and barrier function. Lower Se 
serum levels have been described in children with IBD (258). 
A possible therapeutic role for Se has been described, whereby 
macrophage derived selenoproteins enhance 15-hydroxypros-
taglandine dehydrogenase (15-PGDH) and protects mice from 
DSS-induced colitis (259). A potential role for Se in asthma 
pathogenesis has been hypothesized; however, data from 
human studies are con�icting. A bene�t of Se supplementation 
in animal asthma studies has been identi�ed by regulating � 
cell di�erentiation (260).

Zinc. Zinc is an important mineral involved in wound repair, 
tissue regeneration, and the immune response. Low serum Zn 
levels have been reported in children with IBD (258). Zn given 
orally to CD patients restored intestinal permeability by modu-
lating TJ proteins in both the small intestine and colon (261). Zn 
concentrations have been found to be signi�cantly lower in asth-
matic patients and it is thought to result in reduced antioxidant 
function increasing asthma risk (262).

CONCLUSION AND FUTURE 

PERSPECTIVES

�e increasing incidence of IBD and asthma implies a funda-
mental role for environmental factors. Several lines of evidence 
have identi�ed the consumption of a diet high in saturated fat 
and high in sucrose increases a person’s risk for several chronic 
conditions including IBD and asthma (4, 27). Studies in animal 
models, human cells and tissues for both conditions have also 
highlighted the complex interaction between diet, the micro-
biota and the host response, especially regarding aggravation of 
in�ammatory responses upon consumption of certain trigger-
ing nutrients and diets. Dietary ingredients in the western diet 
are not limited to the ones listed in this review. Apart from the 
increased consumption of saturated fats and sucrose, there is an 
increased consumption of food additives including sweeteners, 
emulsi�ers, thickeners, preservatives and food colorings. Some 
of these have already been associated to asthma and IBD (122, 
132, 134) but there is a need for larger epidemiological stud-
ies to identify the e�ect that these products may have on both 
microbial composition and host responses (e.g., in�ammation, 
metabolism, etc.) in disease development. In an elegant study by 
Arrieta and colleagues it was shown that changes in the micro-
biota especially at a young age, can help to identify a window of 
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opportunity for bacteria colonization and an appropriate immune 
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