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Abstract
Given the prevailing state of cybersecurity, it is reasonable to understand why cybersecurity experts are seriously considering 
artificial intelligence as a potential field that can aid improvements in conventional cybersecurity techniques. Various pro-
gressions in the field of technology have helped to mitigate some of the issues relating to cybersecurity. These advancements 
can be manifested by Big Data, Blockchain technology, Behavioral Analytics, to name but a few. The paper overviews the 
effects of applications of these technologies in cybersecurity. The central purpose of the paper is to review the application of 
AI techniques in analyzing, detecting, and fighting various cyberattacks. The effects of the implementation of conditionally 
classified “distributed” AI methods and conveniently classified “compact” AI methods on different cyber threats have been 
reviewed. Furthermore, the future scope and challenges of using such techniques in cybersecurity, are discussed. Finally, 
conclusions have been drawn in terms of evaluating the employment of different AI advancements in improving cybersecurity.

Keywords  Artificial intelligence · Cybersecurity · Machine learning

Introduction

Cyberspace provides users with an interactive platform to 
share information, engage in discussions or social forums 
and conduct business among many other activities. Cyber-
security provides the required preventive methods to protect 
data, networks, electronic devices, and servers from mali-
cious attacks and unauthorized access. Elements of cyberse-
curity encompass application security, identity management, 
network security, data security, end-user education, disaster 
recovery, and business continuity. Some common types of 
cyber threats involve ransomware, phishing, malware, and 
social engineering. To combat such threats different cyber-
security tools are available which consist of anti-virus/anti-
malware software, firewalls, encryption methods, two-factor 

authentication techniques, and software updates to improve 
security. Such measures are not satisfactory for tracking 
and security of cyberspace from various cybercrimes. To 
be capable of identifying a wide variety of warnings and 
providing clever real-time decisions, cyber defense systems 
should be adaptable, docile, and sound [28, 31, 33]. This can 
be facilitated by the use of Artificial Intelligence.

The digital realm has inspired human beings to extend 
their thinking abilities and thereby carry out research works 
to invent an artificial human brain. This continuous research 
led to the creation of Artificial Intelligence [49]. Artificial 
intelligence (AI) is a technology that is defined as the ability 
of machines to perform tasks that are associated with human 
intelligence. The main study of AI is to train the machines to 
simulate human skills, such as learning, rationalizing, think-
ing, and managing [93]. Some of the AI techniques include 
Natural Language Generation, Expert Systems, Intelligent 
Agents, Deep Learning, Machine Learning, Speech Recog-
nition, Text Analytics, and NLP. These techniques combined 
with various other technological methods can be utilized to 
improve current cybersecurity methods.

Artificial Intelligence serves to develop applications that 
adjust to their structure of use; they self-direct, harmonize, 
diagnose, and importantly learn themselves by producing 
understandable knowledge from discrete data. Therefore, 
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the future of cyber warfare and AI has already merged [67, 
91]. AI can quickly identify and analyze new exploits and 
weaknesses in a system of interest and therefore, it can be 
utilized to augment the field of cybersecurity. These two 
fields became closely integrated when the cyberattacks were 
intended to affect the authentic execution at the individual 
user level and the moderate system levels [20]. CAPTCHA 
(Completely Automated Public Turing test to tell Computers 
and Humans Apart) is the most basic illustration of the amal-
gamation of AI and Cyber Security. Other than CAPTCHAs, 
a significant number of AI methods are employed in cyberse-
curity which can be classified conditionally as "distributed" 
methods and conveniently as “compact” methods [89]. Dis-
tributed methods include (i) Multi-Agent Systems of Intel-
ligent Agents: An autonomous system composed of multiple 
interacting intelligent agents that work to distribute data and 
collaborate to execute relevant responses in case of unpre-
dicted events, (ii) Artificial Neural Networks: consisting of 
artificial neuron that learns and solves problems when com-
bined with each other, (iii) Artificial Immune Systems: an 
immune-based cyberattack management technique compris-
ing of the development of immunocytes (variation, self-tol-
erance, clone) and antigens detection concurrently, and (iv) 
Genetic Algorithms: an implementation of the biological 
evolutionary processes, whereas compact methods consist 
of (i) Machine Learning Systems: systems with the ability 
to involuntarily learn and update from experience without 
being explicitly programmed, (ii) Expert Systems: a method 
that includes a knowledge base and an inference engine, and 
(iii) Fuzzy logic: a system that consists of a related rule set 
repository and a tool for obtaining and managing the rules. 
These AI methods are designed to learn and adapt the most 
detailed modifications in the trained model of the system and 
have the potential to act much more efficiently than existing 
techniques of cybersecurity.

Cyber infrastructures are largely exposed to different 
interruptions and warnings. Electrical devices, such as sen-
sors and detectors, are not sufficient for ensuring the secu-
rity of these infrastructures. Cyber intrusion occurs on a 
global scale. Due to the augmentation of the internet, the 
cyber attackers have access to the knowledge and instru-
ments that are required to carry out cybercrimes. The 
conventional cybersecurity measures are not sufficient in 
fighting the tremendously increasing cyber threats. The tra-
ditional measures however follow a fixed algorithm that has 
a hard-wired logic on the decision-making level and thus 
is inefficient in managing the dynamically evolving cyber-
attacks [33]. The existing cybersecurity methods are slow 
in terms of execution. A common method of cybersecurity 
through firewalls has limitations in the security process. It 
is a perimeter defense technique and thus does not fight the 
enemy within a system [1]. Moreover, the firewall is not 
considered an efficient approach to fight against viruses and 

Trojan horses [1]. In addition to these, the immense spread 
of connected devices in the IoT has raised the requirement 
for intelligent security measures in response to the increas-
ing demand of millions and billions of connected devices 
and services globally [2, 50, 54, 80]. Furthermore, efficient 
security measures are required to fight against the numerous 
network-centric cyber interventions that are carried out by 
intelligent agents, such as computer worms and viruses. The 
existing cybersecurity measures are insufficient to combat 
such attacks because they cannot manage the complete pro-
cess of attack–response promptly. Thus, intelligent semi-
autonomous agents are required that can identify, assess and 
react to network-centric cyberattacks in a timely manner [81]

This paper presents a review of the application of vari-
ous Artificial Intelligence techniques in Cybersecurity for 
analyzing, detecting, and combating different types of Cyber 
Attacks. It demonstrates how AI methods can be an efficient 
tool for enhancing cyber defense abilities by augmenting the 
intelligence of the defense systems. Lastly, the future scope 
and challenges of the application of AI in cybersecurity have 
been discussed and necessary conclusions are drawn.

Application of various technologies 
in cybersecurity

Various emerging technologies have served their purpose 
greatly in overcoming the limitations of conventional tech-
niques of cybersecurity. Big Data, Blockchain, Behavioral 
Analytics are examples of a few such technologies.

Big Data technology can be effectively applied in the field 
of cybersecurity for detecting Anomaly-based Intrusion and 
Fraud. Software architecture with cognitive algorithms is 
the basic requirement of Anomaly-based Intrusion detection 
techniques. Deviations from the learned model are detected 
by monitoring user activity, network traffic, or native system 
activity in a standard behavior-based solution. The models 
are usually divided into two classes (i) Legitimate and (ii) 
Abnormal Intrusion is considered to occur whenever there 
is a deviation to abnormal marks from a legitimate design 
[74]. In the case of Fraud detection using Big Data the two 
principal methods used are (i) Statistical and (ii) Artificial 
Intelligence [16]. One of the major areas where fraudulent 
practices are prevalent is in the health insurance system. 
Electronic health cards including smart chips implanted in 
them have been executed to combat fraud in health insur-
ance. Such e-Health cards generate an immense volume of 
data that need to be processed. Frequently occurring faults 
that are concealed inside enormous storehouses of data 
can be recognized and corrected by implementing big data 
analysis. Big data analytics technologies, such as business 
rules, social network analysis, database searches, anomaly 
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detection, and text mining, should be utilized to fight against 
health insurance fraud [22].

Lately, Blockchain technology has been the topic of 
enhanced scientific research and growth [88]. Due to the 
distinctive trust and security properties it possesses, block-
chain technology has fostered significant attention among 
industry practitioners, researchers, and developers. The most 
security-focused blockchain utilizations are in (I) IoT for: (i) 
Corroboration of devices to the network and the authentica-
tion of users to the devices [34, 45, 70, 88], (ii) Protected 
deployment of firmware by means of peer-to-peer spread of 
updates [17, 29, 53, 88], (iii) Threat detection and malware 
prevention [41, 42, 88], (II) Data Repository and Allocating 
for: (i) Warranting that the data cached in the cloud remain 
immune to unauthorized modification, (ii) Securely storing 
and maintaining the hash lists that allow the searching of 
data, (iii) Verifying that the data exchange from dispatch to 
receipt remains same [7, 25, 88, 97], (III) Network Protec-
tion: due to the increased use of conceptualized machines, 
software defined networks and containers for application 
deployment, blockchain provides verification of crucial 
data to be stored in a decentralized and strong manner [11, 
18, 23, 88], and (IV) Private User Data: which includes the 
protection of individual identifiable data being interacted 
with different functions and end-user settings for wearable 
Bluetooth devices [27, 37, 88], (V) Maneuvering and service 
of the World Wide Web for: (i) Assuring correctness of the 
wireless internet access point being attached to [66, 88] (ii) 
Assisting Navigation to the exact web page through precise 
DNS records [19, 88, 94], (iii) Reliably using web applica-
tions [88, 95], (iv) Interacting with others through safe and 
encrypted arrangements [10, 71, 88].

Behavioral Analytics utilizes User and Entity Behavior 
Analytics (UEBA) security solutions to recognize patterns 
of data transmissions in a network that deviates from the 
standard criteria. It confines the extent of managing huge 
quantities of information to detect as well as counterbalance 
threats within the network and predict, discover, and resolve 
errors by attaching technology with singular data points.

Of all the technologies, Artificial Intelligence has shown 
its potential application in cybersecurity by employing 
its various techniques in protection against various cyber 
threats, such as Intrusion Detection and Prevention, Denial 
of Service attack, Spam detection, Computer Worm Detec-
tion, Botnets, and so on.

Discussing the use of conditionally classified 
“distributed” AI methods in cybersecurity

Farzadnia et  al. [36], proposed a novel hybrid method 
for Intrusion Detection System (IDS) using an Artifi-
cial Immune System (AIS). The system consisted of two 

defensive lines. The Dendritic Cell Algorithm (DCA) was 
used to make the first defensive line that was based on the 
Danger Theory (DT). The association of these dendritic cells 
with the detectors bolstered the efficiency of the detector and 
supported it in retaining the memory for an extended dura-
tion. The simulation of this sophisticated hybrid system was 
carried out in MATLAB. The dataset containing 9 sub-cate-
gories of attacks was given as input into the proposed model. 
The criterion for the evaluation of the model was Detection 
Rate, False Positive, False Negative, and Accuracy. The pro-
posed model outperformed other methods in terms of Detec-
tion Rate. The performance from all the three datasets for the 
proposed model was 98.7%, 99.1%, and 99.3%, respectively. 
Moreover, the proposed method also displayed a lower false-
positive rate compared to other systems.

Dutt et al. [35], proposed a two-layered immune system 
to monitor the network traffic and identify the intrusion 
within the network. The first layer of the proposed system 
was based on Statistical Modeling-based Anomaly Detection 
(SMAD) which worked as an Innate Immune System capa-
ble of detecting the first-hand vulnerabilities inside the net-
work. Adaptive Immune-based Anomaly Detection (AIAD) 
was considered as the second layer of the system. This layer 
collected the information from the Header portion and con-
sidered the activation of the T-cells and B-cells to provide 
efficient intrusion detection. The proposed model was tested 
using the data and real-time network traffic analysis. The 
system displayed a 96.04% true-positive rate and 7.8% false-
positive rate during the real-time network analysis, while in 
the case of the dataset the system displayed a 97.1% true-
positive rate and 2.79% false-positive rate.

Suliman et al. [83] presented AIS-based IDS and used 
KDD Cup 99 dataset. It targeted DOS and probing attacks 
including land, smurf, Neptune, IP sweep, satan, and port 
sweep attack connections. Next, 24 features that distin-
guished normal and attack connections and 256,454 connec-
tions were investigated in the training phase. Additionally, 
connection encoding was performed and the initial antibod-
ies were generated using the random number generator func-
tion. Following the fitness value calculation of the generated 
antibodies, the antibodies with the highest fitness value were 
cloned and then mutated based on a predetermined probabil-
ity. For selecting the number of testing connections, prob-
abilities of 0.2, 0.3, 0.4, and 0.5 were used which produced 
a true-positive rate of 96.9608%, 97.0204%, 98.4839%, and 
99.8631%, respectively. The result analysis manifested that 
with the probability selection of 0.2, the best-quality anti-
bodies were produced with a fitness value of 0.46 as com-
pared to the other selection probabilities taken.

Louati and Ktata [57], proposed a deep learning-based 
multi-agent system for intrusion detection. The KDD 9 
dataset was used for training the model. In the data pre-
processing phase, all the symbolic features were converted 
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into numeric values, and data normalization, and removing 
data with null attributes was performed. In the next phase 
of feature selection, Auto-encoders were used to reduce the 
dimension of the dataset. In the classification phase, two 
classifiers were used to ensure the efficiency of the system. 
Multilayer Perceptron with three hidden layers having 20, 
15, and nodes were used along with KNN classifier. The 
proposed method proved to be beneficial in detecting the 
intrusion. The Multilayer Perceptron achieved an accuracy 
of 99.73% while the KNN classifier was able to give 99.95% 
accuracy.

Liang et al. [56], proposed a multi-agent intrusion detec-
tion system to predict and prevent attacks in the IoT envi-
ronment. The system was based on Smart Efficient Secure 
and Scalable System (SESS). The system used a web portal 
for discovering the attacks from the network traffic. The 
SESS enabled the network administrator to monitor the IoT 
devices based on the traffic data. Furthermore, these data 
were collected and sent to the data process module where 
the first attack detection was executed which was based on 
feature classification. This dataset was divided into two parts 
namely the unidentified dataset and training dataset. The 
training dataset was used for training the detection agent 
while the unidentified dataset was used for analyzing the 
performance of the model. The proposed model achieved an 
accuracy of 98.85% by including certain parameters which 
outperformed various other methods.

Al-Yaseen et al. [4], proposed a Multi-agent system to 
optimize the efficiency of the intrusion detection system 
for reducing the time taken to detect the attacks. The con-
ventional intrusion detection system analyzed the data that 
were collected from various sources with the help of sniff-
ers. The role of the sniffer was to store the collected data 
and also convert the raw data into a readable data format. 
These data were then sent for analysis and detecting whether 
they contained any malicious activity or not. A new method 
was proposed to reduce the processing time. This method 
was used to divide the data into a small subset of data and 
then evaluate them separately to them merge into one. The 
subsets of the data were processed parallelly. The system 
had many agents, namely Coordinator agent, Communica-
tion Agents, and Analysis Agent, that were used to analyze 
the data. The proposed method was able to perform better 
than Pure K-means in terms of accuracy and was also able 
to reduce the processing time up to 81% compared to Pure 
K-Means.

Shenfield et al. [78] proposed a new artificial neural net-
work for detecting malicious network traffic. The byte-level 
datum of the network traffic was converted into integer and 
then input into the artificial neural network. A continuous 
1000 bytes of data were taken as input into the ANN. The 
Neural Network was a Multi-Layer Perceptron having 1000 
nodes in the input layer, followed by two hidden layers 

having 30 nodes each and two nodes in the output layer. 
The ANN used tenfold cross-validation for evaluating the 
classifier. For training purposes, the maximum epoch was 
1000, and a learning rate of 0.01 was used. The Artificial 
Neural Network was able to achieve an accuracy of 98% with 
a precision of 97%. Moreover, the model manifested a 1.8% 
false-positive rate.

Al-Zewairi et al. [5], proposed a deep learning approach 
for network intrusion detection systems. A multi-layer feed-
forward artificial neural network was used for predicting the 
network intrusion. The dataset used for training the model 
was containing 45 features. The network had 5 hidden lay-
ers with a total of 50 neurons evenly distributed. The best 
activation function was found out by implementing 3 dif-
ferent activation functions with 2 different configurations. 
Next, the Rectified Linear Unit was used as the activation 
function for the neural network. After obtaining the optimal 
activation function, the proposed feed-forward multi-layer 
neural network was able to achieve 98.99% accuracy along 
with a low false alarm rate of 00.56%.

Zhang et al. [100], proposed an intrusion detection sys-
tem based on a genetic algorithm and deep belief network 
(DBN). Binary coding was used as an encoding method for 
all the nodes in the three hidden layers in the binary chromo-
some. The length of the chromosome used was 18 bits from 
which the first 6 bits were reserved for the 1st hidden layer, 
7–12 bits for the 2nd hidden layer, and 13–18 bits for the 
third hidden layer. Moreover, a selection operation was used 
to select the best chromosomes for the crossover and muta-
tion. The internal crossover was adopted for the proposed 
method. The fitness function for the model was chosen to 
optimize the model. The model manifested an accuracy of 
99.45%, 97.78%, 99.37%, and 98.68% for DoS, R2L, Probe, 
and U2R, respectively.

Azad and Jha [14], proposed an Intrusion Detection Sys-
tem that is based on a decision tree and genetic algorithm. 
The crossover operation was used to generate the new indi-
vidual from the parent. Furthermore, the mutation operation 
was used to maintain the genetic diversity between different 
generations. The proposed model manifested an accuracy 
of 99.99% with the lowest error rate of 0.01% and it outper-
formed the C4.5 decision tree and Naive Bayes (Tables 1, 
2, 3).

Examining the use of conveniently classified 
“compact” AI methods in cybersecurity

Zamir et al. [99], proposed a stacking model to detect phish-
ing websites. The phishing data set was selected and then fed 
into various feature selection algorithms, such as informa-
tion gain, gain ratio, Relief—F, and recursive feature elimi-
nation, to analyze the top features of the data set. Next, the 
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strongest features and weakest features were combined into 
a new feature N1 and N2, respectively. The features were 
trained with various Machine Learning classifiers with Prin-
cipal Components Analysis. The stacking of the model was 
based on combining the highest performing classifiers. The 
stacking 1 model (Neural Network + Random Forest + Bag-
ging) outperformed all other classifiers in terms of accu-
racy by manifesting 97.4% accuracy followed by stacking 
2 (KNN + Random Forest + Bagging) at 97.2% accuracy. 
The results manifested the improvement in the classifica-
tion accuracy by stacking the highest performing classifiers.

Dada et al. [30], examined the implementation of vari-
ous machine learning methods for email spam filtering. The 
study reviewed the advantages and drawbacks of various ML 
methods, namely clustering techniques, Naive Bayes classi-
fier, Neural Network, Firefly Algorithm, Rough Set classi-
fier, SVM, Decision Tree, C4.5 Algorithm, Logistic Model 
Tree Induction, Ensemble classifier, and deep learning algo-
rithms for the spam filtering. The study outlined the prob-
lems in the existing Machine learning techniques, such as 
the classifiers being inefficient in reducing the false-positive 
rate, incapability of classifying in a real-time environment 
and thus resulting in data streams, inefficiency in updating 
the feature dynamically, the inability to classify spam emails 
which are in form of images. Moreover, the study recom-
mended deep learning and deep adversarial learning as some 
of the techniques to overcome the existing difficulties faced 
by various machine learning classifiers.

Ubing et al. [92], presented the improvement in accuracy 
of detecting phishing websites through feature selection 
algorithm and ensemble learning. The dataset having 30 
features was used in the study, and a random forest regressor 
was used as a feature selection algorithm that eliminated 21 
least important features. These 9 features were then trained 
and tested by the ensemble learning which consisted of 
SVM, Gaussian Naive Bayes, KNN, Logistic Regression, 
Gradient Boosting, Multilayer Perceptron, and Random For-
est classifiers. The proposed model manifested an accuracy 
of 95.4% with the least false negative. The model outper-
formed a majority of individual classifiers in terms of accu-
racy. The usage of multiple models proved beneficial as it 
was not biased towards one particular model and each model 
influenced the final ensemble prediction.

Çavuşoğlu [26], proposed a novel combination of differ-
ent machine learning techniques along with feature selection 
methods that yielded high accuracy in intrusion detection. 
The NSL-KDD dataset was pre-processed and then two dif-
ferent datasets were obtained using two different approaches 
of feature selection algorithm to get the most important fea-
tures from the dataset. These datasets were then divided 
into sub-parts according to the type of attack and evalua-
tion was performed with a cross-fold validation technique. 
Accuracy, Detection Rate, True Positive Rate, False Positive Ta
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Rate, F—Measure, and Matthews Correlation coefficients 
were considered as a criterion for the evaluation process. 
The proposed hybrid layered model outperformed all other 
methods of the past.

Alkasassbeh and Almseidin [8], demonstrated the impor-
tance of Knowledge Discovery in Databases for training and 
testing different machine learning classifiers. The database 

was pre-processed and 21 types of different attacks were cat-
egorized into four groups (DOS, PROBE, R2L, U2R) with 
different occurrences having a total of 41 features. Further-
more, in the training phase, J48 Tree, Multilayer Percep-
tron, and Bayes Network were used as classifiers. The J48 
Tree outperformed the other classifiers by manifesting an 
accuracy of 93.1% with the lowest root mean squared error, 

Table 3   Summary of possible challenges in applying AI techniques in cybersecurity and their potential solutions

Challenges Solutions

With the use of Machine Learning algorithms, fuzzing attacks can be 
intensified by allowing the attackers to identify zero-day vulnerabili-
ties in an application or software

1. The software vendors or companies can offer fuzzing as a service 
which can make the deployment of the software safer

2. AI fuzzing tools, such as Google's ClusterFuzz or Microsoft Security 
Risk Detection, can be utilized by companies to detect the vulnerabili-
ties at a faster pace

Cyber offenders such as hackers can use AI techniques to fight 
security arrangements by modeling adaptable attacks and creating 
intelligent malware programs. Such programs can collect knowledge 
of what prevented the attacks and then learn to execute success-
fully in subsequent attacks and self-propagate. Also, hackers use 
AI technologies to create malicious malwares which are capable of 
mimicking trusted system components

1. It is important to have the ability and skill to practice higher and 
optimal AI methods in cybersecurity than the offenders have [69]. 
For instance, AI-enabled automated network and system analysis 
can prove to be a superior choice to fight the command and control 
(C2) tactics used by the attackers to penetrate system defenses. Such 
automated data management ensures constant monitoring of systems 
for quick identification of attempted attacks

2. An AI-based cybersecurity system could work on a history of user 
interactions and conclude the expected behavior that is difficult to 
exploit

AI-enabled security systems are less efficient in protecting widespread 
distributed systems such as IoT that include multiple interactions 
and higher execution rates. The distributed systems increases the 
vulnerabilities for unexpected results and failures due to high data 
transfer rates

1. With the use of the neural network techniques, such as LAYENT 
and ObfNet, that have high analytical speed and power, it could help 
in privacy preservation and intrusion detection in distributed systems 
[96]

2. Significant research could be carried out to understand the perfor-
mance tradeoffs and the operating environment of the IOT systems 
before implementing AI security techniques

The implementation of AI in cybersecurity could be challenging 
if system robustness, system resilience, and system responses to 
attacks are not carefully designed and managed [84]

1. Novel ML algorithms could be developed that specify what a system 
is expected to do and how it should withstand and carry out further 
execution in response to different attacks

2. Research in AI-architectural structures could be done to devise man-
ageable standards and methods to draw analysis on the behavior of a 
system under attack conditions

Another challenge that arises while utilizing AI methods in cybersecu-
rity is in automated systems such as in autonomous vehicle softwares 
where systems work well when they are used with similar data to 
what they were trained on and fail when the data are different

1. Measures can be taken that ensure trustworthy decision-making of 
the automated AI system. These measures could include defining 
performance metrics, developing explainable and accountable AI 
systems, improving security-related training and reasoning, and proper 
management of training data

AI-enabled technology facilitates the preservation of the anonymity 
of attackers by manipulating the data for misclassification of the 
attacker’s actual identity. In such situations, inspecting the cyber-
crimes becomes challenging

1. The creation and deployment of more dependable identity detec-
tion systems that use artificial immune system algorithms which are 
capable of continuous and dynamical learning could help to overcome 
this challenge

AI systems can have effective applications in the security of large net-
works only if massive databases containing information on network 
vulnerabilities are accessible

1. This entails an orderly investment in acquisition, storage and mainte-
nance of data regarding network vulnerabilities which can lead to the 
development of enormous standard databases [69]

Sometimes the security measures such as detecting adversarial attacks 
may lack access to proper datasets and thus the timely detection of 
the security threat is not met

1. Synthetic training data could be made more realistic to overcome this 
difficulty

2. Poisoning-resilient data could be fetched and used
AI systems are trained on search heuristics to form an optimal plan 

that decodes an attacker’s strategy but the challenge lies in managing 
the plan generation process

1. With the integration of intelligent and adaptive sensors/detectors, a 
plan should be generated when the attack is in its early stages. This 
will enable the defenders to take preventive actions by managing the 
available defensive resources

2. Plan generation and plan recognition could be done in an interleaved 
manner
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whereas the Multilayer Perceptron achieved an accuracy of 
91.9% and Bayes Network with 90.73% accuracy.

Rani and Goel [72], presented an Expert System design 
that could identify the kind of attacks that can occur in a 
system, the symptoms it shows, and propose appropriate 
countermeasures. Visual Studio 10.0 framework was used 
to execute the system and ASP.NET in handling interfaces 
and SQL server 2008 in handling databases. Rules were han-
dled within the dot net framework at the backend. The user 
entered the observed symptoms and attack types in a prompt 
given by the attack identifier. The system then guided the 
countermeasures to resolve the attack existing in the sys-
tem. This model served as a means for cyberattacks security 
awareness among internet users.

Atymtayeva et  al. [12], discussed an Expert System 
approach by developing a method of formalizing Informa-
tion Security (IS) knowledge to create a knowledge base 
for expert systems so that it can facilitate the automation of 
some Security implementation and evaluation jobs in the 
process of Information Security audit. A high-level com-
position of the knowledge base for IS was built by formal-
izing a method of IS assessment and decision-making which 
included examining IS standards and inferring key concepts 
from them. Next, the construction of system workflow was 
done where the key concepts recognized in the previous step 
could properly function together. Finally, a scheme for the 
population of the knowledge base was developed in which 
the lower-level concepts and sub concepts were derived.

Naik et al. [63], proposed a dynamic fuzzy rule inter-
polation-based honeypot for detecting and predicting the 
fingerprinting attacks on the honeypots. For the prediction 
of such attacks, Principal Component Analysis was used for 
reducing the least important features. The fuzzy inputs of 
the model including Abnormal TCP Packets, ICMP requests, 
ICMP packet size, and the UDP requests, displayed five 
fuzzy sets of output classified as Very Low, Low, Medium, 
High, and Very High that represented five security levels of 
the fingerprinting attack. The proposed model was then com-
pared with five different methods, namely SinFP3, NetScan-
Tools, Nmap, Xprobe2, and Nessus. The proposed method 
was able to improve the accuracy, detection, and sensitivity 
by dynamically enriching the system’s own knowledge base.

Naik et al. [64], proposed fuzzy hashing- and fuzzy rule-
based methods, to augment the efficiency of the YARA rules 
for detecting the malware. The first proposed method used 
fuzzy hashing which was enhanced by the YARA rules when 
the existing YARA rules failed to detect the file as mal-
ware. The hashing methods used for the rules were SSDEEP, 
SDHASH, and mvHASH-B. These methods yielded greater 
accuracy for all the different types of ransomware. Out of 
all the three hashing methods, SSDEEP fuzzy hashing 
method proved to be beneficial in terms of improving the 
overall accuracy. The second proposed method focused 

on improving the effectiveness of YARA rules during the 
execution phase. The proposed method augmented the rule 
triggering condition of the Fuzzy Hash Matching. The Fuzzy 
Hash Matching was combined with the String matching con-
dition of the YARA rules for the overall extension of the 
accuracy.

Naik et al. [65], proposed a computational intelligence 
honeypot system that was capable of predicting and dis-
covering the attempted fingerprinting attack. The proposed 
intelligent system used two approaches Principal Component 
Analysis which was used to select the most important fea-
tures for the prediction, and Fuzzy Inference System (FIS) 
which was used to correctly correlate the selected features by 
the Principal Component Analysis. In the FIS the three most 
important features were given as fuzzy inputs that yielded 
effective and optimized rules. The accuracy of the proposed 
computational intelligence system was then compared with 
five other fingerprinting attack detecting techniques. The 
system classified the attack into High, Medium, and Low 
attack levels. The system manifested 0% failure in detecting 
the attempts of fingerprinting attacks which outperformed 
other techniques.

Challenges and future scope

The emergence of AI in cybersecurity can be beneficial but 
challenging too [84–86].

Therefore, major challenges in the application of AI in 
cybersecurity can be: (i) designing an Artificial Intelligence 
system that does not have any negative effects while execut-
ing the task of cybersecurity, (ii) satisfying that the given AI 
system has a scalable overlooking, and (iii) overcoming the 
situation where, as more research progresses into new tech-
nologies, AI started growing smarter and self-developing, 
thereby replacing humans [73]. Although computational 
intelligence methods have been extensively applied in the 
area of computer security and forensics, Privacy and Power 
are some of the ethical and legal issues that arise as technol-
ogy expands [79].

Nevertheless, AI provides a wide future scope for its 
implementation in cybersecurity. Several research works 
and experiments are going on with the aim to trace the ill-
effects of the utilization of AI. Moreover, several attempts 
are being made to find solutions to such ill-effects before 
there is a position to implement the techniques of Artificial 
Intelligence in the real world [79]. Several used cases are 
being tested for ensuring the proper application of AI in 
cybersecurity with attacks on networks leading all kinds 
of attacks. The application of fuzzy rule-based expert sys-
tems has been a topic of prime attraction for researchers. 
They are keen to compare the performance of this sys-
tem with other meta-heuristics like ANN, Fuzzy Neural 
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Networks, Genetic Algorithm or general statistical tech-
niques, such as linear and non-linear regression. The fuzzy 
rule-based approach is examined particularly to investi-
gate if it has potential benefits in managing cybersecurity 
threats [40]. In respect to the scenario of ever-increasing 
cyber-crimes, the viruses and worms that infect and cause 
harm to cyberspace are also intelligent. This lays down 
the scope to expand intelligent sensors that can track the 
harmful actions of such intelligent viruses and worms and 
can ultimately aid to curb their growth [79]. Apart from 
this, data mining techniques also have a great scope in 
identifying some attack connections. This would attach 
more scientific reasons for the search space of a genetic 
algorithm [39]. Extensive AI applications for cyber threat 
detection have started outpacing prediction and response 
by a wider edge.

Conclusion

Through this study, it can be observed that AI is re-
defining every aspect of cybersecurity. The introduction 
of AI techniques in login securities has started making 
the CAPTCHA technology inefficient and obsolete. The 
practical implementations of AI techniques in analyzing 
and detecting any cyberattack in a computer system have 
proved their promising potential in the betterment of the 
field of cybersecurity. The cost of detection and response 
to breaches in cyberspace is seen to be reduced signifi-
cantly. Moreover, the average time taken to detect the 
threat and anomaly is observed to be decreased with the 
intervention of AI methods into the conventional detec-
tion process. Additionally, the accuracy and spontaneity 
of the detection process are improved with the aid of AI 
methods that help in improving the input, providing an 
improvised procedure for cybersecurity, and so on. Apart 
from contributing to the detection process, Intelligence 
systems can also be designed to warn and make the user 
cognizant of the possible cyberattacks and threats their 
computer system is vulnerable to.
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