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ABSTRACT

Planetary albedo (PA; shortwave broadband albedo) and its long-term variations, which are controlled in a

complex way by various atmospheric and surface properties, play a key role in controlling the global and

regional energy budget. This study investigates the contributions of different atmospheric and surface

properties to the long-term variations of PA based on 13 years (2003–15) of albedo, cloud, and ice coverage

datasets from the Clouds and the Earth’s Radiant Energy System (CERES) Single Scanner Footprint edition

4A product, vegetation product from Moderate Resolution Imaging Spectroradiometer (MODIS), and

surface albedo product from the Cloud, Albedo, and Radiation dataset, version 2 (CLARA-A2). According

to the temporal correlation analysis, statistical results indicate that variations in PA are closely related to the

variations of cloud properties (e.g., cloud fraction, ice water path, and liquid water path) and surface pa-

rameters (e.g., ice/snow percent coverage and normalized difference vegetation index), but their temporal

relationships vary among the different regions. Generally, the stepwise multiple linear regression models can

capture the observed PA anomalies for most regions. Based on the contribution calculation, cloud fraction

dominates the variability of PA in the mid- and low latitudes while ice/snow percent coverage (or surface

albedo) dominates the variability in the mid- and high latitudes. Changes in cloud liquid water path and ice

water path are the secondary dominant factor over most regions, whereas change in vegetation cover is the

least important factor over land. These results verify the effects of atmospheric and surface factors on

planetary albedo changes and thus may be of benefit for improving the parameterization of the PA and

determining the climate feedbacks.

1. Introduction

The planetary albedo of Earth, which is the ratio of

shortwave radiation reflected by Earth to the incoming

shortwave radiation at the top of the atmosphere, may

be considered a key parameter in regulating the global

climate system and its variability due to its substantial

role in controlling the global energy budget and surface

temperature (Stephens et al. 2015; Wielicki et al. 2005;

Donohoe and Battisti 2011). For example, a small change

of 0.01 in the planetary albedo corresponds to a change

in the shortwave net flux of 3.4Wm22, which would

approximately compensate for the radiative forcing of

double the amount ofCO2 in the atmosphere (IPCC2001;

Wielicki et al. 2005; Bender et al. 2006). Moreover,

Budyko (1969) found that small variations in the plane-

tary albedo could be sufficient for the development of

Quaternary glaciations. Although many studies have in-

dicated that the current albedo of Earth maintains a rel-

ative stable value (approximately 0.29) and displays a

high degree of hemispheric symmetry (e.g., IPCC 2001;

Loeb et al. 2009; Voigt et al. 2013; Stephens et al. 2015),

our understanding of albedo remains limited owing to an

incomplete understanding of its underlying physical pro-

cesses. Thus, existing models exhibit relatively large dis-

crepancies among simulations of the regional planetary

albedo (e.g., Halthore et al. 2005; Wild 2005). For ex-

ample, when analyzing albedo simulations from phase 3

of the CoupledModel Intercomparison Project (CMIP3),

Donohoe and Battisti (2011) found that the intermodel
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spread in albedo was predominantly due to the differ-

ences in the atmospheric albedo among the different

models. Therefore, a reasonable evaluation of the im-

pacts of different feedback processes (e.g., cloud and

surface properties) on the long-term albedo variability

would be very helpful for improving our understanding of

regional climate change and predicting how the planetary

albedo will respond to climate changes.

Generally, changes in the planetary albedo are com-

plicatedly controlled by both atmospheric and surface

properties, for example, the cloud fractional coverage,

cloud liquid water path, cloud ice water path, water

vapor, and atmospheric aerosol amounts (Klein and

Hartmann 1993; Held and Soden 2000; Christopher and

Zhang 2002; Bender et al. 2006; Guo et al. 2011;

Engström et al. 2015; Zhao and Garrett 2015; Lin et al.

2013; Xie et al. 2017), in addition to vegetation cover,

land use, desertification, and snow and ice cover (Myhre

and Myhre 2003; Zeng and Yoon 2009; Barnes and Roy

2008; Kashiwase et al. 2017). Joint influences from these

factors and their interactions can complicate the simu-

lations and predictions of planetary albedo. Further-

more, uncertainty in scene type can also complicate the

observed flux. Until now, many efforts have been made

to lessen the intermodel spread in albedo model simu-

lations, based on satellite observations or in situ mea-

surements (Qu and Hall 2005; Wang et al. 2006; Bender

et al. 2006; Kato et al. 2006; Engström et al. 2015;

Stephens et al. 2015; Loeb et al. 2016; Bender et al.

2017). For example, Donohoe and Battisti (2011) used

the Clouds and the Earth’s Radiant Energy System

(CERES; Wielicki et al. 1996; Corbett and Loeb 2015)

flux data to quantify the relative contributions of the

surface and atmosphere to planetary albedo on a global

scale. Their results indicated that most of the observed

planetary albedo is caused by atmospheric reflection and

that the atmosphere attenuates the surface contribution

to the planetary albedo. By using the International

Satellite Cloud Climatology Project (ISCCP) D-series

flux dataset, Qu and Hall (2005) found that the in-

terannual variability in the planetary albedo within ice-

and snow-covered regions is mainly attributable to

variations in the surface albedo, but the atmospheric

processes can attenuate 90%of the surface albedo effect

on changes in planetary albedo. Pistone et al. (2014)

pointed out that changes in cloudiness appear to play a

negligible role in the observedArctic darkening and that

cloud albedo feedback may not be effective in offsetting

Arctic warming. In addition, several other studies have

focused mainly on the impacts of different atmospheric

and surface properties on the components of planetary

albedo (e.g., cloud and surface albedo). For example,

as considerable portions of the surface of Earth are

becoming greener as a result of climate change, causing a

rise in CO2 concentration and nitrogen deposition (Piao

et al. 2015), Forzieri et al. (2017) used the leaf area index

(LAI) to study the effects of vegetation changes on the

local climate and found that an increase in the LAI

contributed to a reduction in the surface albedo. In ad-

dition, some studies have also shown that the macro-

physical properties of clouds (e.g., the cloud fractional

coverage and cloud liquid water path) dominate the at-

mospheric albedo (Stephens 2005) and that changes in

the cloud fraction dominate changes in planetary albedo

(Loeb et al. 2007; Bender et al. 2017). However, most of

these studies are limited to specific locations, short in-

vestigation periods, or specific contributory variables.

Systematic studies concerning the statistical relationships

between long-term variations in the planetary albedo and

different contributory variables at the regional scale have

received far less attention.

To better understand the long-term variations in the

regional planetary albedo, two key questions must be

addressed in this investigation. First, what are the factors

that drive the temporal variability in the planetary al-

bedo at the regional scale? Second, which one of these

factors is more important? In the following study, we

will use multiple satellite datasets to build a regression

relationship between planetary albedo and various

variables to further quantify the relative contributions

of different factors to the observed variability in plane-

tary albedo. This paper is organized as follows. A brief

introduction to all of the datasets and methods used

in this study is given in section 2. Section 3a describes

the global characteristics of planetary albedo and the

difference between Aqua and Terra. Further analysis

regarding the impacts of atmospheric and surface pa-

rameters on long-term variations in planetary albedo

and the contribution evaluations are provided in section

3b. Finally, the conclusions and discussion are presented

in section 4.

2. Datasets and methods

In the following study, 13 years (from 2003 to 2015) of

data from multiple satellite datasets are collected to

analyze the impacts of different factors on the long-term

variability in regional-scale planetary albedo (PA).

a. Terra and Aqua

Terra was launched on 18 December 1999 and placed

into a near-polar, sun-synchronous orbit at an altitude of

705 km with a 1030 local time (LT) descending node.

Complementary to Terra, Aqua was launched on 4 May

2002, with a 1330 LT ascending node. Here, we use the

products from two instruments (CERES and MODIS)
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carried by the Terra and Aqua satellites to provide the

monthly mean radiative flux, cloud properties, and sur-

face vegetation index.

The CERES instrument can accurately measure the

top-of-atmosphere (TOA) radiances and convert radi-

ances into fluxes via the use of angular dependence

models (Su et al. 2015a,b). The instantaneous fluxes are

converted to daily mean fluxes using empirical diurnal

albedo models based on the cloud, atmosphere, and

surface conditions at the time of the observation

(Doelling et al. 2013; Loeb et al. 2018). In the following

study, the TOA outgoing SW flux (all sky) in the

CERES Single Scanner Footprint 1.08 (SSF1deg)

monthly edition 4A (Ed4A) dataset is used to calculate

the all-sky albedo. For clear-sky albedo, we use the clear-

sky TOA SW fluxes in the CERES Energy Balanced and

Filled (EBAF)monthly Ed4A dataset instead of CERES

SSF monthly product. This is because the EBAF product

combines bothTerra andAqua clear-skymeasurements,

and it also includes CERES subfootprint flux clear-sky

measurements and thus greatly increases the sampling

over those persistent cloud domains (e.g., the Southern

Ocean). However, the TOA outgoing SW flux (clear

sky) from CERES SSF1deg product is only used to

study the Terra and Aqua cloud albedo forcing differ-

ences in the section 2c. The CERES SSF1deg product

assumes that there is a solar zenith angle dependency

of the clear-sky albedos, and it also assumes that the

solar zenith angle dependency is symmetric about noon.

In addition, note that the SSF product is a combina-

tion of CERES radiation data and coincident cloud

properties fromMODIS measurements (Sun et al. 2006;

Zhan and Davies 2016). Thus, this product includes

some cloud parameters [e.g., the daytime cloud area

fraction (CF), ice water path (IWP), and liquid water

path (LWP)], which can be used as cloud variables to

assess the impacts of different cloud properties on the

planetary albedo. It is worth noting that the time-

averaged cloud parameters in the Ed4 are weighted

by the cloud fraction. For example, the liquid and ice

cloud properties were temporally weighted by the cor-

responding liquid or ice fractions to determine the daily

or monthly mean (optical depth is the log of the optical

depth and cloud fraction weighted). This ensures that

the CF and LWP (or IWP) are the independent pre-

dictors of each other.

In addition, the CERES SSF dataset also provides the

surface ice/snow percent coverage (I/SPC) data from the

National Snow and Ice Data Center (NSIDC) (Nolin

et al. 1998). This parameter is particular important at

high latitudes and over the Tibetan Plateau, where snow

and ice significantly affect the surface albedo (Pistone

et al. 2014).

In addition to the snow/ice coverage, the local vege-

tation cover is also one of the most important factors

in evaluating the variations in the surface albedo (Betts

2000; Sandholt et al. 2002). Here, we utilize the MODIS

normalized difference vegetation index (NDVI) monthly

product (MYD13C2.006) to describe the surface vege-

tation cover with a spatial resolution of 0.058 3 0.058.

The NDVI has been proven to be a robust indicator

of the terrestrial vegetation productivity; it exhibits a

sensitive response to vegetation dynamics and thus is

considered as a useful tool for effectively reflecting the

vegetation cover (Tucker et al. 2005; Beck et al. 2006).

The quality of MODIS NDVI data is greatly improved

as a consequence of the narrow MODIS red and NIR

bandwidths (Huete et al. 2002). The definition of the

NDVI is as follows:

NDVI5
R

NIR
2R

red

R
NIR

1R
red

, (1)

where RNIR and Rred are the reflectances in the near-

infrared (NIR) and red bands, respectively. Higher in-

dex values typically indicate a wider vegetation cover in

a pixel.

b. CLARA-A2 dataset

In this investigation, we also use the monthly sur-

face albedo information with a spatial resolution of

0.258 3 0.258 from the Cloud, Albedo, and Radiation

dataset, version 2 (CLARA-A2) satellite product. The

CLARA-A2 product is retrieved by the Advanced Very

High Resolution Radiometer (AVHRR) operated on-

board polar-orbiting NOAA satellites as well as by the

MetOp polar-orbiting meteorological satellites oper-

ated by EUMETSAT. Compared with the CLARA-A1

(version 1) product, the CLARA-A2 product signifi-

cantly enhances the quality of the surface albedo esti-

mates through several important improvements (e.g.,

dynamic aerosol optical depths are used instead of a

constantAOD, andwind speed data are used to describe

the sea surface roughness and to retrieve the sea sur-

face albedo) (Karlsson et al. 2017). The improved sur-

face albedo product has been validated against in situ

albedo observations and compared with a MODIS

product (MCD43C3). This comparison showed that the

CLARA-A2 surface albedo product is in good agree-

ment with the surface albedo product from MODIS

(MCD43C3) at the global scale and that the differences

in the albedo estimates are less than 5% (Karlsson et al.

2017). Compared with the MCD43C3, an obvious ad-

vantage of the CLARA-A2 product is that albedo infor-

mation over water bodies can also be derived. In addition,

by checking time consistency (e.g., exclusively choosing
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afternoon satellite), the CLARA-A2 product achieves

relatively homogeneous observation conditions to

reduce the influence of orbital drift. And a major ef-

fort has been made to correct and homogenize the

basic AVHRR level-1 radiance record (Karlsson

et al. 2017).

c. Methodologies

In this study, the cloud albedo forcing acloud is roughly

estimated as follows:

a
cloud

5a
all-sky

2a
clear-sky

, (2)

where aall-sky and aclear-sky are the planetary albedo values

under all-sky and clear-sky conditions, respectively. Here,

it is worth noting that the cloud albedo forcing acloud also

includes some noncloud effects (e.g., aerosol direct radi-

ative forcing) (Erlick and Ramaswamy 2003). In addi-

tion, the accurate estimation of the clear-sky two-way

atmospheric transmittance T2 is rather difficult to ob-

tain based on current datasets used in our study. To do

this, we define the clear-sky reflected shortwave as

S
clear-sky

5 ST2
a
surface

, (3)

where S is the incoming shortwave at top of atmosphere

and asurface is the surface albedo. If aclear-sky is consid-

ered as

a
clear-sky

5 S
clear-sky

/S , (4)

then T2 can be roughly approximated as

T2
5a

clear-sky
/a

surface
. (5)

This parameter represents the atmospheric extinction

ability to solar radiation when radiation from the TOA

arrives at the surface and is then reflected back to the

TOA. The impacts of water vapor and aerosols on the

radiation are already included in the T2.

The planetary albedo is known to be affected by the

variations in surface properties, which are determined

by the land use (e.g., urbanization) as well as changes in

the snow/ice and vegetation covers (e.g., desertification,

forest cover changes) (National Research Council 2005;

Wang et al. 2006). In this study, the I/SPC and NDVI

(i.e., only for land areas, except for in polar regions) are

used as proxies for representing the surface properties.

Note that the surface albedo (SA) is considered a sur-

face parameter only if both the NDVI and I/SPC fail to

pass the t test. The atmospheric parameters include

cloud properties and the atmospheric two-way trans-

mittance T2. Recent studies have shown that cloud

variability, especially the macrophysical cloud proper-

ties (i.e., the LWP and CF), dominate the variability of

PA (Stephens et al. 2015; Seinfeld et al. 2016). As a re-

sult, the LWP, IWP, and CF are considered as cloud

parameters in the following analysis. In addition, by

performing collinearity diagnostics, we assess the strength

and sources of collinearity among these variables at each

grid and find that the predictors used in our study are al-

most noncollinear over all the regions (see Fig. S1 in the

online supplemental material).

Because the stepwise regression method can effec-

tively filter the predictors with collinearity and remove

insignificant variables, we use this method to perform a

multilinear regression analysis in each grid to construct

a stable relationship between the planetary albedo

anomalies and predictors and for further assessing the

contributions of different variables to the planetary al-

bedo anomalies. Figure 1 provides the valid sample

number of the monthly parameters during 2003–15.

(Note that Fig. 1 is based on the same regional monthly

sampling as those of all Figs. 3–7, except Figs. 3c and 3d.)

It is clear that the number of months sampled exceeds

144 months at mid- to low latitudes and tends to de-

crease with the latitude. At high latitudes, approxi-

mately half of the data (72 months) are usable. To avoid

the bias of seasonally averaged values caused by the

FIG. 1. The valid sample number of the monthly parameters during 2003–15.
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missing month in a season, we use the monthly means

(i.e., 1-month increment) of different parameters to

perform the following analysis.

Prior to the regression analysis, all of the variables

are interpolated into a 18 3 18 grid to match the CERES

grid size. Next, we select the predictor variables for

each grid by calculating the temporal correlations be-

tween planetary albedo anomalies and different pa-

rameters’ anomalies. If the confidence level of the

temporal correlation between two variables is less than

90% (i.e., p . 0.1), the variable is excluded. Note that

the monthly anomalies of different predictors are al-

ready deseasonalized and that their long-term trends are

removed and normalized. For details regarding the data-

processing workflow, please see Fig. 2.

The multilinear regression model in Fig. 2 is built

based on the following formula (Qu et al. 2015; McCoy

et al. 2017):

Da5
›a

›X1
DX11

›a

›X2
DX21 � � � 1

›a

›Xi
DXi1 c , (6)

where c is a constant term; X1, X2, . . . , Xi are the pre-

dictor variables; i is the number of predictor variables;

and Da is the planetary albedo anomaly. We use the

stepwise method to remove the insignificant terms from

multilinear models based on their statistical significance

in the regression process (confidence level . 90%).

Furthermore, the relative contribution of each variable

to the regional planetary albedo anomaly can be derived

from the following formula (Huang and Yi 1991):

R
j
5

1

m
�
m

i51

"

A2
ij

 

�
a

j51

A2
ij

!#

,

,

(7)

where m is the length of the data series, a is the number

of independent variables, Aij 5 bjxij, bj denotes the re-

gression coefficients of each term, xij represents the

predictor variables, and j is the number of predictor

variables. Finally, we also calculate the coefficient of

determination R2 and root-mean-square error (RMSE)

between the observed and predicted planetary albedo

anomalies in order to evaluate the performance of the

regression models.

3. Results

a. Global characteristics

Figures 3a and 3b show the global distributions of the

averaged planetary albedo and cloud albedo forcings,

respectively, during 2003 to 2015. Loeb et al. (2007)

found that the main source of tropical albedo variability

is attributable to cloudiness variations associated with

the El Niño–Southern Oscillation (ENSO) phenome-

non. However, the strongest El Niño since 1998 began in

FIG. 2. The data-processing flow.
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late 2015. It means that the variation of planetary albedo

during the time period between 2003 and 2015 may be

independent of the large climate forcing (e.g., El Niño).

Generally, the global distribution of PA is in agreement

with the findings of Donohoe and Battisti (2011). The

mean PA ranges from 0.1 to 0.75 and tends to increase

with the latitude. The geographical distribution of

the PA is associated with the land–sea, cloud, and snow-/

ice-cover distributions (Wielicki et al. 2005; Bender et al.

2006). For example, the PA is relatively large (.0.5) at

high latitudes (poleward of 608) in two hemispheres ow-

ing to the presence of wide ice sheets, which enhance the

surface albedo. In particular, the PA exceeds 0.65 over

Antarctica and Greenland, and the highest planetary al-

bedo (.0.7) is predominantly located over northwestern

Antarctica. The variation of PA in the Southern Hemi-

sphere (SH) is much less than that in the Northern

Hemisphere (NH) due to the differences in the land–sea

distribution. The PA at low latitudes (between 308N and

308S) ranges from approximately 0.1 to 0.4. Compared

with land, the values of the planetary albedo over the

ocean are smaller and range from approximately 0.1 to

0.25. Lower PA values (,0.2) are predominantly located

over subtropical oceans, where low-altitude cumulus

clouds are frequently observed. Based on Fig. 3b, we can

see that the cloud albedo forcing value over the ocean is

larger than those values over the high-PA regions (e.g.,

ice-covered or semiarid/arid zones) since there is greater

contrast between ocean and cloud reflectance than land

and cloud reflectance because oceans have the darkest

surface reflectance. Here, we also provide the global

distributions of the PA and cloud albedo forcing differ-

ences between Aqua and Terra (Figs. 3c,d), respectively.

Note that the Terra and Aqua cloud albedo forcing dif-

ferences are calculated based on the CERES SSF prod-

uct. Figure 3c shows that those obvious negative

differences in PA were mainly located in typical marine

stratocumulus regions (e.g., the Californian, Canarian,

Namibian) owing to the decrease in the amounts strato-

cumulus clouds observed from dawn to afternoon

(Garreaud and Muñoz 2004). Over the Tibetan Plateau,

South Africa, the northern part of South America, and

the western part of North America, the PA during the

afternoon is noticeably larger than those valuesmeasured

during the morning. This difference may be linked to the

land afternoon convection (Yang et al. 2004). Indeed,

Fig. S2 indicates that the CF and IWP during the after-

noon are higher than those results found during the

morning. By checking the cloud albedo forcing, we find

that the global pattern of cloud albedo forcing difference

is very similar to the result of the PA difference, except

over the higher Southern Ocean latitudes. This means

that the small differences of PA over the subtropical

oceans are mainly caused by the weak contrast of cloud

FIG. 3. Global distributions of the annual mean (a) planetary albedo and (b) cloud albedo forcing acquired from

Aqua during 2003–15. The global distributions of the (c) planetary albedo and (d) cloud albedo forcing differences

between Aqua and Terra are also shown.
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albedo forcing, which is because the differences of the

macrophysical cloud properties (e.g., CF, LWP, and

IWP) between Aqua and Terra are small between two

instantaneous observation times (see Fig. S2). Over the

Southern Ocean, the cloud albedo forcing during the af-

ternoon is obviously larger than those values observed

during morning, but PA exhibits a weak difference. The

obvious positive difference of cloud albedo forcings over

this region is mainly due to the lower planetary albedo

under clear-sky condition during the afternoon. In addi-

tion, the differences of PA are small in the mid–high

latitudes because the amount of convection is limited

owing to the small amount of solar incident radiation. In

the following study, it is noted that the Aqua and Terra

observation datasets show similar results with regard to

the regression analysis and contribution calculations;

thus, only the statistical results from Aqua are presented

in the current study.

The question then arises as to which one of the factors

dominates the long-term variations in the PA over dif-

ferent regions. To address this issue, we first analyze the

temporal correlations between the anomalies of PA and

the surface albedo (and cloud albedo forcing) anomalies

at a global scale (see Fig. 4). Note that the anomalies of

each grid are already deseasonalized and detrended.

Statistical results indicate that the temporal correla-

tions between the PA and surface albedo anomalies are

almost positive all over the world, except over the cen-

tral and western Pacific, which may be caused by the

small magnitude of the surface albedo oscillations (see

Fig. S10). The correlation coefficients increase with in-

creases in latitude. At high latitudes, especially over the

Arctic and Southern Ocean, these correlations are equal

to or greater than 0.6, indicating that long-term changes

in the PA are remarkably consistent with the changes in

surface albedo. For the cloud albedo forcing anomalies

(Fig. 4b), it is clear that the obvious positive temporal

correlations are mainly located at those regions between

608S and 608N, especially over the oceans, where these

correlations are almost above 0.9. Meanwhile, negative

temporal correlations between PA and cloud albedo

forcing anomalies can be found in regions where the

surface albedo anomalies are significantly positively

correlated with the planetary albedo anomalies (e.g., the

higher Southern Ocean latitudes). Over these regions,

cloud fraction anomalies are out of phase with snow and

ice albedo anomalies (see Fig. S11), indicating that

surface albedo feedback diminishes (Qu and Hall 2005).

By using the CERES SSF product, Kato et al. (2006)

found that the effect of decreased Arctic sea ice on al-

bedo might be compensated for by an increase in cloud

cover due to enhanced evaporation from the sea surface.

Thus, they concluded that any ice-albedo feedback

could be dampened due to an increased cloud cover.

Hence, whether climate simulations capture this feature

is critical for high-latitude regions.

b. Regression coefficients and contribution

calculation

Figures 5a–g show the global distributions of the re-

gression coefficient of each variable based on stepwise

multiple linear regression models acquired from Eq. (6).

Those regions without values indicate that the corre-

sponding variable is not considered a predictor variable

in the regression model (i.e., it fails to pass the t test). In

addition, if both of the surface parameters (i.e., the

NDVI and I/SPC) fail to pass the confidence test, the

surface albedo anomaly is considered as a predictor

variable when its confidence level exceeds 90%. From

Figs. 5a–g, we can see that the coefficients from the re-

gression model vary among the different variables and

regions. The cloud properties (e.g., CF, LWP, and IWP)

show positive coefficients, which means that larger

CF, LWP, and IWP will enhance PA. High coefficients

FIG. 4. Temporal correlations between planetary albedo anomalies and (a) surface albedo anomalies and (b) cloud

albedo forcing anomalies from the Aqua measurements. Grid boxes with correlation coefficients significant at

the 90% confidence level are dotted. The correlations are based on deseasonalized and detrended monthly planetary

albedo anomalies and corresponding surface albedo anomalies and cloud albedo forcing anomalies.
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(e.g., .0.6) for CF are mainly located at tropical and

subtropical regions, while the maximum values of the

regression coefficients for LWP and IWP are concen-

trated in the Southern Ocean and Pacific warm pool,

respectively. For SA, NDVI, and I/SPC, the coefficients

only focus on some special regions. For example, a

negative coefficient for NDVI can be found for a land-

mass at high latitude in the NH, where the increased

vegetation trends reduce the surface albedo (Bonan

2008; Li et al. 2018). The positive correlation between

I/SPC anomalies and PA anomalies is extremely ap-

parent over the higher SouthernOcean latitudes and the

Arctic. This means that wide I/SPC covers enhance the

PA. However, for Antarctica the variation of I/SPC over

this region is small enough that the correlation between

the I/SPC and PA anomalies is insignificant. However,

Fig. 5g indicates that the surface albedo anomalies have

positive correlations with the anomalies of PA over

Antarctica. Recent studies have indicated that Antarc-

tica experienced a positive phase of the Antarctic Os-

cillation index (AAO) trend during the period of 1983 to

2009, which means that the whole of the South Pole

exhibits a cooling trend and an increasing snowfall and

ice mass when there is a strong polar vortex (Seo et al.

2016). Because of the fact that the albedo of snow varies

with the snow condition during and after snowfall (Dang

et al. 2016), we therefore speculate that the surface al-

bedo anomalies over Antarctica are possibly caused by

the changes in snow density.

Figure 5f shows that reduced T2 is associated with

increased PA over the land of NH. It may be linked with

the effect of aerosol on the radiation. Higher aerosol

loading may decrease the transparency of the atmo-

sphere to solar radiation and enhance the reflected solar

radiation under clear-sky conditions. Finally, it shows a

weak negative regression coefficient over the land of the

NH. In addition, we also provide the confidence interval

range (a 5 0.1) for each of the regression coefficients

(see Figs. S3–S9). Furthermore, the R2 and the RMSE

values between the observed and regressed PA anom-

alies are given in Figs. 5h and 5i. Again, note that our

analysis is based on deseasonalized and normalized

anomalies by removing the long-term trends in every

grid. Statistical results indicate that the regressionmodel

FIG. 5. (a)–(g) The global distributions of the regression coefficients of each predictor variable based on the stepwise multiple linear

regression model. Those regions without values mean that the variable in that region is not considered as predictor variable in the regression

model. (h),(i) The global distributions of R2 and RMSE, respectively, between the observed and regressed planetary albedo anomalies.
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can capture changes in the observed long-term PA

anomalies in most regions. Almost all of the R2 values

are greater than 0.4, particularly at the low latitudes,

where the R2 is greater than 0.7.

Finally, we quantify the contribution rates of different

variable to the PA anomalies based on Eq. (7). Figure 6

shows the global distributions of the contributions

for each predictor variable. Furthermore, the global

FIG. 6. The global distributions of the relative contributions of (a) CF, (b) LWP, (c) IWP, (d) NDVI, (e) I/SPC,

(f)T2, and (g) SA to PA from the stepwise multiple linear regressionmodels. Those regions without values indicate

that the variable is not considered as a predictor variable in the regression model.

1 NOVEMBER 2018 J I AN ET AL . 8713

Unauthenticated | Downloaded 08/27/22 03:00 PM UTC



distributions of the dominant factor and its contribu-

tion rate are shown in Fig. 7. Figures 6a and 7a clearly

show that the CF anomalies dominate the PA anoma-

lies, especially over the oceans at middle and low lati-

tudes, where its contributions even exceed 70%. This

means that climate models need to reasonably simulate

the total cloud fraction for improving the prediction of

PA in a warmer climate. However, many studies have

shown that the reliable simulation of the total cloud

fraction in the climate models is strongly dependent on

the representation of cloud overlap properties, which is

obviously dependent on the observation techniques

used (Huang et al. 2005; Li et al. 2011, 2015). At high

latitudes, however, it is clear that both the anomalies in

CF and I/SPC (or SA) are important to the change of

PA. Compared with the CF, the contributions from

LWP and IWP anomalies are both secondary (see

Figs. 6b,c and Figs. 7a,b). For most of the regions at

middle and low latitudes, the contributions of the LWP

and IWP anomalies are less than 30%, except for those

in the stratus/stratocumulus, lower Southern Ocean

latitudes, and the western Pacific warm pool, where the

contributions from the LWP and IWP may reach 40%.

Previous studies have verified that the obvious differ-

ences in the albedo feedbacks over the Southern Ocean

found using different models are mainly caused by the

inconsistent poleward redistribution of the cloud liquid

water content (Tsushima et al. 2006; Hu et al. 2010)

and, therefore, result in climate model errors in the

predicted TOA fluxes over the Southern Ocean are

the largest (Trenberth and Fasullo 2010). Based on

CloudSat and CALIPSO cloud observations, Mason

et al. (2014) indicated that mid-topped clouds are re-

sponsible for biasing the absorbed shortwave radiation

in climate models. Indeed, our results indicate that the

effect of LWP anomalies on the PA anomalies is non-

negligible over the lower Southern Ocean latitudes.

This means that models need to discriminate the cloud

phase over this region more reliably, especially with

regard to supercooled water clouds (Hu et al. 2010).

The contributions from T2 anomalies are more obvi-

ous over land than over ocean. As stated in the above

analysis, the contributions of T2 may be related to water

vapor and aerosol loading. For the NDVI anomalies

(Fig. 6d), we find that their contributions to the PA

anomalies over most of the land regions are below 20%.

Park et al. (2015) suggested that vegetation greening is

observed in response to regional warming in the NH,

indicating that vegetation feedback processes (e.g.,

surface albedo) would be strengthened. A recent finding

by Li et al. (2018) verifies that the greening trend at high

latitudes made a greater contribution to the decline in

surface albedo in the NH (i.e., Siberia), which has

experienced a pronounced decrease in surface albedo

due to the increase in the extent of evergreen conifer

forest cover resulting from the warming over the past

FIG. 7. The global distributions of (a) dominant and (b) secondary factors that explain the long-term variability of

planetary albedo and their corresponding relative contributions acquired from Aqua.
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several decades (Kharuk et al. 2005, 2007; He et al.

2017). However, our results indicate that the contribu-

tion (,10%) from the changes in vegetation cover

plays a limited role in the long-term variations of the PA

over landmass. Even so, the response of the PA to the

vegetation changes over the arid and semiarid regions

(e.g., the western United States) is still noteworthy. On

the one hand, Forzieri et al. (2017) showed that an in-

creasing vegetation trend contributed to a reduction in

surface albedo and to evaporation-driven cooling in arid

regions. An enhanced evaporation could additionally

decrease the soil moisture and, therefore, lead to de-

sertification (Huang et al. 2017). On the other hand,

Huang et al. (2017) noted that dry soils and smaller leaf

areas contributed to an increase in the surface albedo

and a reduction in transpiration, thereby further in-

tensifying drought.

The relative contributions of I/SPC and SA are shown

in Figs. 6e and 6g, respectively. Statistical results clearly

show that the contributions from I/SPC and SA anom-

alies are dominant over the higher Southern Ocean

latitudes, Arctic, and Antarctic, respectively. Over the

higher Southern Ocean latitudes, the contribution from

I/SPC exceeds 40%, whereas the contributions are

smaller than 30% over other land in the mid–high lati-

tudes. Pistone et al. (2014) concluded that cloud albedo

feedback is playing an insignificant role in the observed

Arctic warming. However, our statistical results show

that the both CF and I/SPC anomalies are very impor-

tant to the long-term change of PA over the Arctic. This

result is consistent with that of the study of Qu and Hall

(2005), who found that the interannual variability in the

PA over the cryosphere is dominated by surface albedo

changes, but the atmospheric damping effect due to

cloud fluctuations can significantly attenuate these sur-

face changes by as much as 90%.

4. Conclusions and discussion

The planetary albedo, which is controlled in a com-

plex way by various atmospheric and surface properties,

plays a key role in regulating the global and regional

energy budgets. However, our incomplete understand-

ing of the related physical processes (e.g., cloud process)

means that the reliable simulation and reproduction of

PA in the climate models remain challenging (Bender

et al. 2006). To improve the simulation of PA and pre-

dict how the planetary albedo will respond to climate

change, one of the remaining issues is determining which

factor dominates the temporal variability of the plane-

tary albedo based on observations, especially at a re-

gional scale. As a result, this study utilizes 13 years

(2003–15) of data from multiple satellite datasets to

evaluate the contributions of atmospheric and surface

parameters to the long-term variations of the gridded

planetary albedo.

By performing a temporal correlation analysis be-

tween the planetary albedo anomalies and surface al-

bedo (and cloud albedo forcing) anomalies, we find that

the variations in planetary albedo show an obvious pos-

itive correlation with the cloud albedo forcing anomalies

over the regions between 608S and 608N, whereas the

negative correlations are mainly located over the Arctic

and high-latitude Southern Ocean. Meanwhile, surface

albedo anomalies also exhibit an apparent positive cor-

relation with planetary albedo anomalies at high lati-

tudes. Based on a stepwise multiple linear regression

analysis, our statistical results indicate that the varia-

tions in planetary albedo are closely related to the var-

iations in cloud properties (e.g., cloud fraction, ice water

path, and liquid water path), ice/snow percent coverage,

and NDVI; however, their temporal relationships vary

among the different regions. Generally, the regression

model is able to capture the observed planetary albedo

anomalies for most regions. The contribution calculation

shows that the variations of cloud properties, especially in

CF, dominate the long-term variations in the PA over the

most of global areas. This conclusion is consistent with

the results of previous studies (e.g., Seinfeld et al. 2016).

Aside from those of CF, the contributions of I/SPC and

SA anomalies are dominant over the high latitudes of the

Southern Ocean and part of the Antarctic regions, re-

spectively. In addition, the effects of LWP and IWP are

nonnegligible, and their contributions are the second-

most important factor globally, except for in the Arctic

and Antarctic regions.

At present, the model simulation of PA still suffers

from some uncertainties. For example, by using the

multimodel dataset from phase 3 of the Coupled Model

Intercomparison Project (CMIP3) and two satellite

datasets [the Earth Radiation Budget Experiment

(ERBE) and CERES], Bender et al. (2006) found that

seasonal variations in the PA are captured to some ex-

tent by models that span the storm tracks, whereas the

albedo is not well reproduced by models spanning the

entire oceans. They speculated that this bias may be due

to the poor simulation of the solar angle by the models.

Meanwhile, they also noted that the poor simulation of

cloud in models is responsible for the failure to re-

produce the seasonal PA variations over the subtropical

arid regions. In addition, Stephens et al. (2015) showed

that the reflected energy simulated by the CMIP5

models failed to reproduce the observed hemispheric

symmetry, and the modeled global albedo values were

systematically higher (by almost 10%) than those from

CERES observed during the boreal summer months.
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This bias has persisted fromCMIP3 (Bender et al. 2006).

These studies clearly showed that the uncertainties in

the simulation of PA are closely related to the cloud and

surface parameters, especially CF. In future work, the

inclusion of the cloud overlap assumption, which con-

siders the effects of dynamic factors, in the models

should improve the simulation of the total cloud fraction

and reduce the bias of PA caused by CF (Di Giuseppe

and Tompkins 2015). However, over the semiarid (or

high pollution) regions, vegetation cover and aerosol

loading need to be further considered for improving

the parameterization of the planetary albedo and de-

termining climate feedbacks over these regions (Huang

et al. 2014).
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