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Abstract 

Increased congestion during peak morning and afternoon periods in urban areas is increasing 
logistics costs. In addition, environmental, social, and political pressures to limit the impacts 
associated with CO2 emissions are mounting rapidly. A key challenge for transportation 
agencies and businesses is to improve the efficiency of urban freight and commercial vehicle 
movements while ensuring environmental quality, livable communities, and economic growth. 
However, research and policy efforts to analyze and quantify the impacts of congestion and 
freight public policies on CO2 emissions are hindered by the complexities of vehicle routing 
problems with time-dependent travel times and the lack of network-wide congestion data. 
This research focuses on the analysis of CO2 emissions for different levels of congestion and 
time-definitive customer demands. Travel time data from an extensive archive of freeway 
sensors, time-dependent vehicle routing algorithms, and problems-instances with different 
types of binding constraints are used to analyze the impacts of congestion on commercial 
vehicle emissions. Results from the case study indicate that the impacts of congestion or 
speed limits on commercial vehicle emissions are significant but difficult to predict since it is 
shown that it is possible to construct instances where total route distance or duration increases 
but emissions decrease. Public agencies should carefully study the implications of policies 
that regulate depot locations and travel speeds as they may have unintended negative 
consequences in terms of CO2 emissions. 
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1. Introduction 

Urban freight is responsible for a large share, or in some cities the largest share, of unhealthy 

air pollution in terms of sulphur oxide, particulate matter, and nitrogen oxides in urban areas 

such as London, Prague, and Tokyo (OECD, 2003, Crainic et al., 2009). The fast rate of 

commercial vehicle activity growth over recent years and the higher impact of commercial 

vehicles (when compared to passenger vehicles) are increasing preexisting concerns over their 

cumulative effect in urban areas. In particular, environmental, social, and political pressures 

to limit the impacts associated with carbon dioxide (CO2) emissions and fossil fuel 

dependence are mounting rapidly.  

A key challenge for transportation agencies is to improve the efficiency of urban freight and 

commercial vehicle movements while ensuring environmental quality, livable communities, 

and economic growth. Research in the area of city logistics has long recognized the need for a 

balanced approach to reduce shippers’ and carriers’ logistics cost as well as community’s 

traffic congestion and environmental problems (Taniguchi et al., 2003, Crainic et al., 2004).   

Although past and current research efforts into vehicle routing algorithms and scheduling are 

extensive (Cordeau et al., 2006) most research efforts have ignored freight-related 

environmental and social externalities. Furthermore, the body of research devoted to 

investigating the impacts of congestion on urban commercial vehicle operations and time-

dependent travel times is relatively scant. In the existing literature, there are no published 

congestion case studies involving CO2 emission levels, time-dependent vehicle routing 

problems, and a diverse set of customer constraints.    

This research focuses on the analysis of CO2 emissions for different levels of time-definitive 

customer demands using congestion data from an extensive archive of freeway and arterial 

streets and a time-dependent vehicle routing (TDVRP) solution method to design commercial 

vehicle routes.  To the best of the author’s knowledge, there is no published research on the 

impacts of congestion, land use, and travel speeds on CO2 emissions for commercial vehicle 

routing in networks with time-dependent travel speeds, hard time windows, and real-world 

time/distance data.   
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This research is organized as follows: Section 2 provides the necessary background and a 

literature review. Section 3 presents the mathematical formulation of the time-dependent hard 

time windows routing problem as well as an expression to calculate CO2 emissions. Section 4 

describes the Portland case study, its data sources, and the solution approach. Section 5 

presents and analyzes experimental results. Section 6 ends with conclusions.  

2. Background and Literature Review 

The literature review for this paper covers three main areas of research: (a) the effects of 

congestion and travel time variability on vehicle tours and logistics; (b) the impact of travel 

speeds on commercial vehicle emissions; and (c) time-dependent vehicle routing problems.  

Direct and indirect costs of congestion on passenger travel time, shipper travel time and 

market access, production, and labor productivity have been widely studied and reported in 

the available literature. The work of Weisbrod et al. (2001) provides a broad review of this 

literature. Survey results suggest that the type of freight operation has a significant influence 

on how congestion affects carriers’ operations and costs. For example, results from a 

California survey indicate that congestion is perceived as a serious problem for companies 

specializing in less-than-truckload (LTL), refrigerated, and intermodal cargo (Golob and 

Regan, 2001). These results largely agree with reports analyzing  the effects of traffic 

congestion in the Portland region (ERDG, 2005, 2007).  

Congestion has a significant impact on routes where delivery times are heavily restricted by 

customer time windows and schedules. In addition, there may be a fairly inelastic relationship 

between delivery costs and customer’s demand characteristics and levels. For example, 

Holguin-Veras et al. (2006) investigated the effects of New York City’s congestion pricing on 

LTL deliveries and found little changes because delivery times were determined by customer 

time windows and schedules. Figliozzi (2007, 2009a) analyzes the effects of congestion on 

vehicle tour characteristics using continuous approximations to routing problems.  Figliozzi 

(2007) analyzes how constraints and customer service time affect trip generation using a tour 

classification based on supply chain characteristics and route constraints. This work also 

reveals that changes in both vehicle kilometers traveled (VKT) and vehicle hours traveled 

(VHT) differ by type of tour and routing constraint.  Hard time windows are the type of 

constraint that most severely increases VKT and VHT. Figliozzi (2009a) models the effects of 

congestion and travel time variability on vehicle tour characteristics; analytical  and numerical 
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results indicate that travel speed reductions and depot-customer travel distances are the key 

factors that exacerbate the impacts of travel time variability. Quak and Koster (2009) utilized 

a fractional factorial design and regression analysis to quantify the impacts of delivery 

constraints and urban freight policies. Quak and Koster (2009) findings confirm previous 

results. Vehicle restrictions that affected customers with time window constraints did not have 

an impact on customer costs. However, vehicle restrictions are found to be costly when 

vehicle capacity is limited.  

There is an extensive literature related to vehicle emissions and several laboratory and field 

methods are available to estimate vehicle emissions rates (Ropkins et al., 2009). Research 

results indicate that CO2 is the predominant transportation greenhouse gas (GHG) and is 

emitted in direct proportion to fuel consumption, with a variation by type of fuel (ICF, 2006). 

For most vehicles, fuel consumption and the rate of CO2 per mile traveled decreases as 

vehicle operating speed increases up to an optimal speed and then begins to increase again 

(ICF, 2006). Furthermore, the relationship between emission rates and travel speed is not 

linear.  

Congestion has a great impact on CO2 vehicle emissions and fuel efficiency. In real driving 

conditions, there is a rapid non-linear growth in emissions and fuel consumption as travel 

speeds fall below 30 mph (Barth and Boriboonsomsin, 2008). CO2 emissions double on a per 

mile basis when speed drops from 30 mph to 12.5 mph or when speed drops from 12.5 mph to 

5 mph. These results were obtained using an emission model and freeway sensor data in 

California and weighted on the basis of a typical light-duty fleet mix in 2005. Frequent 

changes in speed, i.e. stop and go traffic conditions, increases emission rates because fuel 

consumption is a function of not only speed but also acceleration rates (Frey et al., 2008). 

Some researchers have conducted surveys that indicate that substantial emission reductions 

can be obtained if companies improve the efficiency of routing operations (Léonardi and 

Baumgartner, 2004, Baumgartner et al., 2008). Other researchers using queuing theory, 

Woensel et al. (2001) modeled the impact of traffic congestion on emissions and recommend 

that private and public decision makers take into account the high impact of congestion on 

emissions. From an operational perspective, carriers cannot take into account the impact of 

congestion on emissions unless time-dependent travel times are considered when designing 

distribution or service routes. While classic versions of the VRP, specifically the capacitated 

VRP (CVRP) or VRP with time windows (VRPTW), have been widely studied in the 
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available literature (Cordeau et al., 2006), time-dependent problems have received 

considerably less attention.  The Time Dependent Vehicle Routing Problem (TDVRP) takes 

into account that links in a network have different costs or speeds during the day. Typically, 

this time-dependency is used to represent varying traffic conditions. The TDVRP was 

originally formulated by Malandraki and Daskin (1992). Time dependent models are 

significantly more complex and computationally demanding than static VRP models. 

Approaches to solve the TDVRP can be found in the work of several authors (Malandraki, 

1989, Ahn and Shin, 1991, Jung and Haghani, 2001, Ichoua et al., 2003, Fleischmann et al., 

2004, Haghani and Jung, 2005, Donati et al., 2008, Figliozzi, 2009c). The reader is referred to 

Figliozzi (2009c) for an up-to-date and extensive TDVRP literature review and the 

description of benchmark problems.  

TDVRP instances are considerably more demanding than static VRP instances in terms of 

data requirements and computational time. However, solving more realistic TDVRP instances 

may indirectly achieve environmental benefits in congested areas because total route 

durations and distances can be reduced even though emissions are not part of the objective 

function (Sbihi and Eglese, 2007). Though the emissions problem is complex; as shown in 

Section 5, it is possible to construct instances where distance or duration increases but 

emissions decrease. Palmer (2008) studied the minimization of CO2 emissions utilizing real 

network data, multi-stop routes averaging almost 10 deliveries per route, and shortest paths of 

Surrey county in the U.K. However, Palmer’s methodology does not allow for time-dependent 

speeds or multi-stop routes. Figliozzi (2010) formulated the emissions vehicle routing 

problem (EVRP) with time-dependent travel times, hard time windows, and capacity 

constraints. In addition to the usual binary variables for assigning vehicles to customers, this 

is the first VRP with time windows formulation to include speed and departure time as 

decision variables and also present conditions and algorithms to determine efficient departure 

times and travel speeds. Figliozzi (2010) showed that a routing formulation and solution 

algorithm that takes into account congestion and aims to minimize CO2 emissions can 

produce significant reductions in emission levels with relatively small increases in distance 

traveled or fleet size. 

To the best of the author’s knowledge, there is no published work simultaneously integrating 

in a case study problems with time-dependent speeds, distinct depot locations, hard time 

windows, real-world network and congestion data, and commercial vehicles emissions.  
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3. Notation and Problem Formulation 

Unlike the formulation presented by Figliozzi (2010), in this research travel speeds are not 

optimized to reduce emissions but introduced as decision variables to represent restrictions 

due to freight policy measures, congestion, or time windows. Hence, carriers in this research 

continue “business as usual” without internalizing the costs of emissions. 

 Using a traditional flow-arc formulation (Desrochers et al., 1988) and building upon a 

formulation of the TDVRP with time windows (Figliozzi, 2009b)b), the vehicle routing 

problem studied in this research can be described as follows. Let ( , )G V A=  be a graph where

{( , ) : , }i jA v v i j i j V= ≠ ∧ ∈  is an arc set and the vertex set is 0 1( ,...., )nV v v += . Vertices 0v  

and 1nv +  denote the depot at which vehicles of capacity maxq  are based.  Each vertex in V  

has an associated demand 0iq ≥  , a service time 0ig ≥ , and a service time window [ , ]i ie l ; in 

particular the depot has 0 0g =  and 0 0q = . The set of vertices 1{ ,...., }nC v v=  specifies a set of

n  customers. The arrival time of a vehicle at customer ,i i C∈  is denoted ia and its departure 

time ib . Each arc ( , )i jv v  has an associated constant distance 0i jd ≥  and a travel time

( ) 0i j it b ≥  which is a function of the departure time from customer i . The set of available 

vehicles is denoted K . The cost per unit distance traveled is denoted dc . A binary decision 

variable k
ijx  indicates whether vehicle k travels between customers i  and j .  A real decision 

variable k
iy  indicates service start time if customer i  is served by vehicle k ; hence the 

departure time is given by the customer service start time plus service time k
i i ib y g= + .  

In the capacitated vehicle routing problem with time windows (VRPTW) it is traditionally 

assumed that carriers minimize the number of vehicles as a primary objective and distance 

traveled as a secondary objective without violating time windows, route durations, or capacity 

constraints. The problem analyzed in this research follows this traditional approach; however, 

CO2 emissions are also computed to analyze emissions tradeoffs due to policy restrictions, 

time windows, or congestion levels.   

Problem Formulation 

The primary objective is fleet size minimization as defined by (1) and the secondary objective 

is the minimization of distance traveled and route duration costs. 
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The constraints are defined as follows: vehicle capacity cannot be exceeded (3); all customers 

must be served (4); if a vehicle arrives at a customer it must also depart from that customer 
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(5); routes must start and end at the depot (6); each vehicle leaves from and returns to the 

depot exactly once, (7) and (8) respectively; service times must satisfy time window start (9) 

and ending (10) times; and service start time must allow for travel time between customers 

(11). Decision variables type and domain are indicated in (12) and (13).   

Emissions Modeling 

CO2 emissions are proportional to the amount of fuel consumed which is a function of travel 

speed and distance traveled among other factors. In this research it is assumed that the weight 

of the products loaded does not significantly affect CO2 emission levels in relation to the 

impacts of travel speeds. To incorporate recurrent congestion impacts and following a 

standard practice in TDVRP models, the depot working time 0 0[ , ]e l  is partitioned into M  

time periods 1 1, , ..., MT T T=T ; each period mT  has an associated constant travel speed 0 ms≤  

in the time interval [ , ]m m mT t t= .   

For each departure time ib   and each pair of customers i  and j , a vehicle travels a non-

empty set of speed intervals 1( ) { ( ), ( ),..., ( )}m m m p
ij i ij i ij i ij iS b s b s b s b+ += where ( )m

ij is b  denotes the 

speed at departure time, ( )m p
ij is b+  denotes the speed at arrival time, and 1p + is the number of 

time intervals utilized. The departure time at speed  ( )m
ij is b  takes place in period mT , the 

arrival time at speed  ( )m
ij is b  takes place in period m pT + , and 1 m m p M≤ ≤ + ≤ . 

For the sake of notational simplicity the departure time will be dropped even though speed 

intervals and distance intervals are a function of departure time ib .The corresponding set of 

distances and times traveled in each time period are denoted 1( ) { , ,..., }m m m p
ij i ij ij ijD b d d d+ +=  and 

1( ) { , ,..., }m m m p
ij i ij ij ijT b t t t+ += respectively.  

For heavy duty vehicles, the Transport Research Laboratory has developed a function that 

links emissions, distance traveled, and travel speeds for heavy duty trucks (TRL, 1999): 

3
0 1 2 3 2

1[ ( ) ( )]
( )

l l l
ij ij ijl

ij

s s d
s

α α α α+ + +        (14) 

With a the appropriate conversion factor the output from (14) can be converted from CO2 tons 

per unit of distance (kilometers or miles) to fuel efficiency (diesel consumed per kilometer or 
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mile) since fuel consumption and CO2 emissions are closely correlated (ICF, 2006). The 

coefficients  0 1 2 3{ , , , }α α α α  = {1576.0; -17.6; 0.00117; 36067.0} are parameters for the heavy 

duty truck type. For other vehicle types, e.g. medium or light duty trucks, there may be other 

polynomial terms (TRL, 1999). These parameters are likely to change over time as technology 

and engines evolve; however, the CO2 percentage changes and tradeoffs analysis presented in 

Section 5 are likely to remain valid unless there are dramatic changes in the shape of the 

speed-emissions curve. The optimal travel speed that minimizes emissions per mile is 

assumed to be the speed *s , which for expression (14) the value is *s ≈44 mph or 71 kmh.   

Expression (14) outputs CO2 emissions in Kg/km when the speed is expressed in km/h. As 

congestion increases, the amount and cost of emissions increases dramatically. In addition, 

below free-flow travel speeds, real-world stop and go conditions further increase emissions 

(Barth and Boriboonsomsin, 2008). Figure 1 depicts the change in emissions between steady-

state and real-world congested conditions.  CO2 emission rates under real-world congested 

conditions can be up to 40% higher than emission rates under steady-state conditions.   

 

Figure 1. CO2 emissions as a function of average speed - Barth and Boriboonsomsin (2008) 

The volume of emissions generated by travelling from customer i  to customer j  and 

departing at time ib   is denoted ( )ij iv b : 

( )ij iv b = 3
0 1 2 3 2

0

1[ ( ) ( ) ]
( )

l p
l l l l
ij ij ij ijl

l ij

s s s d
s

α α α α
=

=

+ + +∑      (15) 
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Expression (15) provides a simple yet good approximation for real-world CO2 emissions vs. 

travel speed profiles.  Acceleration impacts are not considered because detailed speed profiles 

will be required; however, to account for the emission rate increases in stop-and-go traffic 

conditions, the term 0 ( )l
ijsα  could be adjusted. 

Speed Constraints 

Travel speeds are limited by speed limits or congestion. As indicated by constraint (16), a 

vehicle traveling between two costumers ,i j cannot exceed the travel speed for that link in 

period of time l . 

l l l
ij ij ijs s s≤ ≤            (16)  

In addition, travel speeds are also limited by road characteristics. To represent different road 

characteristics between two customers ,i j  the segment of distance ijd  is partitioned into a set 

of ( , )R i j  segments that for the partial distance set: 

 1 2 ( , ){ , , ..., }R i j
ij ij ijr r r  such that 

' ( , )
'

' 1

l R i j
l

ij ij
l

d r
=

=

= ∑  

Each segment 'l
ijr  has an upper and lower speed bounds. Combining speed constraints due to 

time of the day and road section we obtain the more general constraint expression (17) for 

time of day l and section 'l  between customers ,i j : 

, ' , ' , 'l l l l l l
ij ij ijs s s≤ ≤            (17)

  

4. Portland Case Study 

Considered a gateway to international sea and air freight transport, the city of Portland has 

established itself both in name and trade as an important component of both international and 

domestic freight movements. Its favorable geography to both international ocean and 

domestic river freight via the Columbia River is also complimented by its connection to 

Interstate-5 (I-5), providing good connectivity to southern California ports and international 

freight traffic from Mexico and Canada (EDRG, 2007).  Recent increases in regional 
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congestion, however, have hindered considerably freight operations and brought about a 

substantial increase in delivery costs (Conrad and Figliozzi, 2010).  

Figure 2.  Depots and Customer Locations (base map sourced from Google maps1)   

The I-5 freeway corridor provides the main north-south freight corridor and is used by most 

carriers delivering in downtown Portland, regional through traffic, and many commuters.  

Land use patterns are used to locate two carrier’s depots in warehousing/industrial areas that 

are located in relatively central and suburban locations respectively. The I-5 freeway corridor, 

even under congested conditions, provides the shortest distance and time path between the 

urban and suburban depot and downtown Portland. Freeway, arterial, and local segments are 

established for each path as required by expression (17). 

                                                 
1 Google Maps at http://maps.google.com  

Central 
Depot

City Customers with 
hard time windows

Central 
Depot

Suburban 
Depot 
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 Figure 2 also shows the relative location of downtown Portland, the I-5 corridor, the central 

depot, and the suburban depot. Experimental results described in Section 5 utilize the central 

and suburban depot locations shown in Figure 2 as well as an intermediate depot location (not 

shown in shown in Figure 2) located between the central customers and the suburban depot. 

The intermediate depot is located on I-5 at a distance that is approximately 1/3 of the distance 

between the central customers and the suburban depot. The central, intermediate, and 

suburban depots are located in areas with warehousing or related land uses or commercial 

activities. 

Travel Speed Data 

Time-dependent travel speed data comes from 436 inductive loop detectors along interstate 

freeways in the Portland metropolitan area. Traffic data is systematically archived in the 

Portland Oregon Transportation Archived Listing (PORTAL). A complete description of this 

data source is given by Bertini et al. (2005). The travel speeds used in this research are 

calculated from 15 minute archived travel time data averaged over the year 2007 along the I-5 

freeway corridor spanning from the Portland suburb of Wilsonville to Vancouver, 

Washington. In addition, Portland State University had access to truck GPS location and time 

data that can be used to calculate travel speeds (Wheeler and Figliozzi, 2009). Figure 3 

compares a typical week of average time-dependent travel time data using sensor data from 

PORTAL and GPS base data for a section of Interstate 5; historical travel time speeds based 

on sensor data are a good proxy for truck travel speeds. 

Figure 3 also shows that free-flow travel speeds, around 60 miles per hour, take place at night 

– mostly between 9 pm and 6 am. Some commercial vehicles travel at speeds as high as 70 or 

75 miles per hour. This research assumes that travel speeds between 6 am and 9 pm are a 

function of time of the day. The base scenario, uncongested travel times, assumes a constant 

time dependent speed of 65 miles per hour in the freeways and 30 miles per hour in the 

arterial network.  Travel speed on arterials is based on speed limits during uncongested hours 

and estimating congested travel times based on patterns observed in the Portland area (Wolfe 

et al., 2007). The percentage of local street travel is relatively small and mostly limited to 

connections between customers and freeways/arterials. Local speed is assumed to have a 

constant value of 10 miles per hour.  
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fewer customers per route than problem sets R2, C2, and RC2 respectively. Demand 

constraints are binding for C1 and C2 problems whereas time-window constraints are binding 

for R1, R2, RC1, and RC2 problems. In this research the Solomon customer time windows 

are made proportional to the assumed normal business hours between 8 am and 4 pm so the 

original demand and time window constraints are maintained. Customer locations have been 

scaled to fit Portland downtown area but the relative spatial distribution among customers has 

been preserved.   

Solution Algorithm     

The time-dependent vehicle routing problems are solved using the route construction and 

improvement algorithm described in detail in Figliozzi (2009c). This approach, also denoted 

IRCI for Iterated Route Construction and Improvement has also been successfully applied to 

VRP problems with soft time windows (Figliozzi, 2009b). As in previous research efforts 

with a exploratory and policy motivation (Quak and de Koster, 2007), the focus of this 

research is not on finding optimal routes for simpler problems (i.e. constant travel times 

problems) but on approximating carriers’ route planning as well as possible and capturing the 

trade-off between congestion, depot locations, customer characteristics, and CO2 emissions in 

the case study area.  

The TDVRP solution algorithm consists of a route construction phase and a route 

improvement phase, each utilizing two separate algorithms (Figure 4). During route 

construction, the auxiliary routing algorithm  repeatedly determines feasible routes using a 

greedy insertion approach with the construction algorithm  assigning customers and 

sequencing the routes. Route improvement is done first with the route improvement algorithm 

 which compares similar routes and consolidates customers into a set of improved routes. 

Lastly, the service time improvement algorithm  eliminates any time window violations, 

and then reduces the route duration without introducing additional early or late time window 

violations; these tasks are accomplished by using the arrival time and departure time 

algorithms  and , respectively, and re-sequencing customers as needed. It is with these 

algorithms that the travel time data are inserted into the solution algorithm. 
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Figure 4: Solution method of the iterative route construction and improvement (IRCI)
algorithm. 
 

Although the application of the TDVRP algorithm does not change, it is necessary to develop 

a travel speed and an emissions calculation sub-algorithm to estimate CO2 levels as a function 

of the customer sequence, departure time, and road type. The speeds for each time period and 

path sections as well as the CO2 emissions calculation are calculated as shown in Algorithm 

. After initializing the variables (line 1), the algorithm calculates a departure time that 

satisfies time window constraints (lines 2 to 5). Line 6 introduces the loop condition that 

ensures that the distance between customers is reached.  Lines 7 and 8 ensure that the correct 

section and time period are selected respectively. Line 9 sets the travel speed to the highest 

feasible value and line 10 calculates the arrival time after completing the current segment. 

Lines 11 to 14 calculate emissions if the current segment can be completed in the current 

interval of time. Otherwise new time periods are utilized until the segment is completed (lines 

15 to 23) and emissions are accumulated in line 20. This process is repeated for all road 

segments between the two customers until all emissions are properly accounted for. 

According to   the vehicles travel at the fastest possible speed as permitted by congestion 

and road type.  
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Algorithm   
Data:  
T and S : time intervals and speeds 

, , ,i j i iv v a b : two customers ,i jv v  served in this order in route k , ia  is the current arrival 

time at customer i  and ib  the proposed departure time 
START 

initialize 0,D ← 0,t ← ( ) 0ij iv b ←  1 

if  ib < max( , )i i ie a g+  then 2 

 max( , ) ,i i i i ib e a g t b← + ←  3 

else it b←  4 
end if   5 
while ijD d≤  do 6 

find min( ')k such that
'

'

1

k
k

ijD r≤∑   7 

find k such that k kt t t≤ ≤   8 
, 'k k

ijs s←  9 
'

' /k
k ija t r s← +  10 

if  'k ka t<  then 11 

( ) ( )ij i ij iv b v b← + formula (15) with speed 'kks , distance 'k
ijr  12 

' ', max( , ),k k
ij i k ijd r t b t D D r← ← ← +  13 

end if   14 
while 'k ka t>   do 15 

'( ) kkkd d t t s← − −   16 

'( ) kkkD D t t s← + −  17 
1, '

1, ', k k
k k ijkt t s s +
+← ←  18 

' 1, '/k k ka t d s +← +  19 

( ) ( )ij i ij iv b v b← + formula (15) with speed 1, ' ,k ks + distance 20 

' 1, '1(min( , ) )k k kka t t s ++ −  21 

1k k← +  22 
end while  23 

end while24 
END 
Output:   

'ka , arrival time at customer j 

( )ij iv b =  CO2 emissions between customers ,i j   for a departure time ib  
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5. Experimental Results 

Three basic scenarios are developed: (1) “uncongested” or base case, (2) “congested” case, 

and (3) uncongested case but limiting travel speed to 44 miles per hour in freeways – the most 

efficient travel speed in terms of vehicle CO2 emissions – and 30 miles per hour in local 

networks. The latter case (3) is denoted “speed limit-uncongested” case. The average results, 

i.e. the averages per Solomon problem type, per routing class and for the central depot are 

presented in Tables 1 and 2. Table 1 compares the base “uncongested” case (1) against the 

“congested” case (2). In Tables 1, 2, 3, and 4 the percentage change shown takes the 

uncongested situation as a base. For example, a positive % in the row of routes (or emissions 

levels) indicates that the average number of required routes (or emissions levels) has 

increased.  

R1  R2  C1  C2  RC1  RC2 

Vehicles  14.9%  22.2%  0.0%  0.0%  13.8%  17.4% 

Distance  10.0%  ‐2.3%  0.0%  0.0%  8.3%  ‐1.0% 

Duration  43.9%  42.6%  40.4%  27.3%  40.1%  43.9% 

Emissions  18.2%  4.2%  1.0%  0.8%  17.0%  8.6% 

Table 1. Central Depot, Uncongested vs. Congested Case 

In Table 1 route durations have an increase across the board due to congestion and longer 

travel times. Fleet size increases in instances R1, R2, RC1, and RC2 because time windows 

are the binding constraints. However, fleet size does not change for C1 and C2 problems 

because vehicle capacity is the binding constraint and the existing fleet of vehicles can serve 

the same number of customers even under congested conditions. The percentage increase in 

CO2 emissions greatly varies across problem types. The highest CO2 increase is found in R1 

and RC1 problems where customers have tight time windows and larger fleet sizes.     

Table 2 compares the “speed limit-uncongested” case against the “uncongested” case. In all 

cases, the percentage change utilizes the uncongested situation as a base. As expected, 

duration increases across the board because speed limits have been reduced along the freeway 

sections. However, it can be observed in Table 2 that emissions may decrease significantly 

when speed limits are imposed without significantly increasing fleet size, e.g. type R2.   In 

other problems, a CO2 emissions reduction is achieved with an increase in fleet size and a 
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reduction in distance travel, e.g. type R1.  The departure time from the depot is also affected 

by the speed limit. To reach the first customer within the time window, an earlier departure 

time may be needed if freeway speeds are reduced or if it is necessary to travel during a 

congested time period. Hence, traffic congestion or speed limits will have different impacts if 

customer time windows and depot location require the usage of congested time periods or 

time periods where speed limits are binding.  

   R1  R2  C1  C2  RC1  RC2 

Vehicle  7.4%  0.7%  0.0%  0.0%  0.0%  1.1% 

Distance  ‐5.5%  0.0%  0.0%  0.0%  ‐0.8%  ‐0.5% 

Duration  4.6%  9.7%  38.0%  24.1%  8.0%  8.3% 

Emissions  ‐13.9%  ‐4.5%  ‐25.5%  ‐17.3%  ‐4.6%  ‐4.3% 

Table 2. Central Depot, Uncongested vs. Speed Limit-uncongested Case 

The average results per routing class and for the suburban depot are presented in Tables 3 and 

4. Table 3 compares the base “uncongested” case (1) against the “congested” case (2). In all 

cases, the percentage change shown takes the uncongested situation as a base. As observed in 

the central depot results, route durations have an increase across the board and fleet size does 

not change for C1 and C2 problems because vehicle capacity is the binding constraint and the 

existing fleet of vehicles can serve the same number of customers even under congested 

conditions. The percentage increase in CO2 emissions is in all cases greater than the increases 

in fleet size or distance traveled because more time is spent travelling on congested network 

links.  

   R1  R2  C1  C2  RC1  RC2 

Vehicles  15%  21%  0%  0%  14%  17% 

Distance  14%  15%  0%  ‐1%  13%  12% 

Duration  49%  51%  29%  63%  46%  48% 

Emissions  23%  28%  8%  9%  21%  23% 

Table 3. Suburban Depot, Uncongested vs. Congested Case 
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Table 4 compares the “speed limit-uncongested” case against the “uncongested” case for the 

suburban depot. In all cases, the percentage change shown is taking the uncongested situation 

as a base. As expected, duration increases across the board. It can be observed, again, in Table 

4 that emissions may decrease significantly when speed limits are imposed without increasing 

distance traveled or fleet size, e.g. type C2. In other problems, an emissions reduction is 

achieved with a slight increase in fleet size or distance traveled, e.g., R1 and RC1 problems 

respectively. Comparing Tables 2 and 4 it seems that emissions percentage decreases are 

higher for the central depot; to explain this decrease is necessary to look at the type of road 

utilized by the vehicles and the timing of the depot departure in relation to the congested 

travel periods. Emissions reductions, keeping travel distance constant, can be explained by 

two factors: (a) the proportion of travel at the optimal speed on the freeway and (b) the 

proportion of travel on non-freeway segments. Customer time windows and depot locations 

can affect both factors.  

R1  R2  C1  C2  RC1  RC2 

Vehicles  1%  0%  0%  0%  1%  0% 

Distance  ‐1%  0%  0%  0%  1%  0% 

Duration  12%  10%  13%  25%  14%  11% 

Emissions  ‐4%  ‐2%  ‐1%  ‐17%  ‐3%  ‐2% 

Table 4. Suburban Depot, Uncongested vs. Speed Limit-uncongested Case 

Travel speed changes can have unexpected consequences even if customer time windows are 

not included in the analysis. The following example illustrates potential unexpected changes 

in emissions when speed limits are imposed. Let’s assume a freeway speed of 50 mph and a 

non-freeway (local streets) speed of 25 mph. For the sake of simplicity, let’s also assume that 

the optimal emissions travel speed is 44 mph producing an emission level of 1.00 unit; at 40 

or 50 mph the emissions level is 1.10 units (10% higher per mile traveled) and at 25mph the 

emissions level is producing 1.30 units (30% higher per mile traveled). Let’s assume that a 

route “A” visits all costumers traveling 20 miles on freeways and 10 miles on local streets. If 

freeway speeds were to increase above 50 mph, total emissions in route “A” would increase 

unless. If a speed limit on freeways is introduced, route “B”, the total amount of emissions 

will drop to 33 units (5.7%). However, if there is a route duration constraint of 50 minutes 

route “B” is not feasible and the next best feasible option, route “C”, has a longer duration and 
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distance traveled than route “A”. However, total emissions are reduced to 33.2 units (5.3%) 

because the proportion of freeway travel has increased. Furthermore, if the objective function 

is to reduce fleet and distance, a suboptimal choice from the emissions perspective will be 

made if route “D” (with longer travel distance) but less emissions is not chosen. If the 

reduction of freeway speed is more than it is required (congestion), the results are even worse 

than in the initial starting point (compare route “E” vs. route “A”). Hence, policies that aim to 

reduce CO2 emission levels by reducing speed limits will be more successful if (a) freeway 

travel speeds are at the optimum emissions speed level, (b) the imposition of a speed limit 

does not increase the proportion of distance traveled in local roads, and (c) the overall 

distance traveled does not increase. When time windows are present, the analysis is more 

difficult because the departure time from the depot is also constrained by the speed limit or 

the timing of the congested period (to reach the first customer within the time window, an 

earlier departure time may be needed if freeway speeds are reduced or if it is necessary to 

travel during a congested time period).  

Route  Speed 
Emission 
Factors  Distance   Total 

Freeway  Local  Freeway  Local  Freeway  Local  Distance  Duration  Emissions 

A  50.0  25.0  1.1  1.3  20.0  10.0  30.0  48.0  35.0 

B  44.0  25.0  1.0  1.3  20.0  10.0  30.0  51.3  33.0 

C  44.0  25.0  1.0  1.3  26.0  5.5  31.5  48.7  33.2 

D  44.0  25.0  1.0  1.3  27.1  4.5  31.6  47.8  33.0 

 E  40.0  25.0  1.1  1.3  28.5  3.0  31.5  50.0  35.3 

Table 5. Route comparisons when speed and duration constraints are introduced 

Important emission reductions can be obtained by optimizing travel speeds. However, it 

should be clear that depot location has a significant role on total level of emissions. To better 

illustrate this point a new depot, the intermediate depot, is added approximately 1/3 of the 

way between the central area and the suburban depot. To simplify comparisons, there are no 

changes in vehicle fleet size and local distance in Tables 6 and 7 because vehicles in the 

intermediate and suburban depots are allowed to depart earlier and return later. In addition, 

depots time windows are relaxed so that the same routes are followed. In both Tables 6 and 7, 

the percentage changes utilize the central depot case (uncongested and congested respectively) 
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as a reference point Vehicle percentage change is not shown as the fleet sizes are kept 

constant to facilitate comparisons.  

  R1  R2  C1  C2  RC1  RC2 
In
te
rm

ed
ia
te
 

D
ep

ot
 

Distance  137%  105%  136%  111%  137%  110% 

Duration  111%  58%  108%  65%  110%  63% 

Emissions  112%  93%  111%  96%  111%  96% 

Su
bu

rb
an

  
D
ep

ot
 

Distance  555%  425%  550%  450%  554%  445% 

Duration  449%  233%  436%  263%  446%  256% 

Emissions  327%  272%  325%  283%  327%  281% 

Table 6. Urban vs. Intermediate and Suburban Depot (Uncongested conditions)  

 
  R1  R2  C1  C2  RC1  RC2 

In
te
rm

ed
ia
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D
ep

ot
 

Distance  137%  105%  136%  111%  137%  110% 

Duration  98%  53%  95%  59%  97%  58% 

Emissions  141%  108%  140%  114%  141%  113% 

Su
bu

rb
an

   
D
ep

ot
 

Distance  555%  425%  550%  450%  554%  445% 

Duration  371%  202%  361%  227%  368%  221% 

Emissions  464%  356%  459%  376%  463%  372% 

Table 7. Urban vs. Intermediate and Suburban Depot (Congested conditions)  

As expected, distances and durations increase across the board if the depot is moved away 

from the customer service area. In all cases, distance increases more than duration because 

there is a higher proportion of faster freeway travel when the depot is located farther away. 

Emission percentage increases are smaller than distance percentages increases in the 

uncongested case because fast freeway travel produces fewer emissions than slow travel in 

local/arterial roads. However, in some congested cases emissions can grow faster than 

distance traveled (Table 7, intermediate depot). In this case, for the intermediate depot, the 

vehicles are forced to travel the freeway during the most congested time periods (to serve the 

early morning customers (around or before 8 am) or after serving the late afternoon customers 

(around or right after 4 pm). However, for the suburban depot the location is so far that even 
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when vehicles are forced to travel the freeway during the most congested time periods part of 

the freeway travel takes place under uncongested conditions.  

The results presented in this section highlight the fact that the impact of congestion on 

commercial vehicle emissions may be difficult to forecast. Easier to interpret results are 

obtained if time windows can be partially relaxed so that the same routes are compared. 

However, some general trends can be observed in all cases. It is clear that uncongested travel 

speeds tend to reduce emissions on average. Unfortunately, this is not always the case and in 

some cases the opposite trend could be observed if free flow speeds are increased beyond the 

optimal emissions travel speed.  

6. Conclusions 

This research focused on the analysis of CO2 emissions for different levels of congestion and 

time-definitive customer demands. The case study used travel time data from an extensive 

archive of freeway sensors, time-dependent vehicle routing algorithms, and problems-

instances with different customer characteristics. The results indicate that congestion impacts 

on commercial vehicle emissions are highly significant though difficult to predict, for 

example, it is shown in this researc that it is possible to construct instances where total route 

distance or duration increases but emissions decrease. Hence, public agencies and highway 

operators must carefully study the implications of policies that limit travel speeds or increase 

speed limits as they may have unintended negative consequences in terms of CO2 emissions. 

If travel speeds are reduced to a speed that is “optimal” from an emissions perspective, 

emissions can be reduced without a significant increase in fleet sizes or distance traveled if 

the utilization of arterials or local streets does not increase. In addition, the type of objective 

function (distance, duration, or emissions based) used may affect the results.  

As a general finding, suburban depots and tight time windows tend to increase emissions on 

average though the emission increases are affected by several factors such as duration of the 

congested period, percentage of freeway travel time traveled under congested conditions, and 

the difference between free-flow, optimal, and congested speeds. From a land use planning 

and policy perspective, reserving areas for warehousing and distribution activities close to 

distribution or service areas may significantly decrease commercial CO2 emissions, especially 

as congestion levels increase.  However, these benefits are not to be expected across the board 

and may heavily depend on depot locations as well as network and customer demand 
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characteristics. Further research is needed to explore alternative policies to minimize 

emissions in congested areas without increasing logistics costs or decreasing customer service 

levels.     
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