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ABSTRACT: Monthlong simulations targeting four Madden–Julian oscillation events made with several global model

configurations are verified against observations to assess the roles of grid spacing and convective parameterization on the

representation of tropical convection and midlatitude forecast skill. Specifically, the performance of a global convection-

permitting model (CPM) configuration with a uniform 3-km mesh is compared to that of a global 15-km mesh with and

without convective parameterization, and of a variable-resolution ‘‘channel’’ simulation using 3-km grid spacing only in the

tropics with a scale-aware convection scheme. It is shown that global 3-km simulations produce realistic tropical precipi-

tation statistics, except for an overall wet bias and delayed diurnal cycle. The channel simulation performs similarly, al-

though with an unrealistically higher frequency of heavy rain. The 15-km simulations with and without cumulus schemes

produce too much light and heavy tropical precipitation, respectively. Without convection parameterization, the 15-km

global model produces unrealistically abundant, short-lived, and intense convection throughout the tropics. Only the global

CPM configuration is able to capture eastward-propagating Madden–Julian oscillation events, and the 15-km runs favor

stationary or westward-propagating convection organized at the planetary scale. The global 3-km CPM exhibits the highest

extratropical forecast skill aloft and at the surface, particularly during week 3 of each hindcast. Although more cases are

needed to confirm these results, this study highlights many potential benefits of using global CPMs for subseasonal fore-

casting. Furthermore, results show that alternatives to global convection-permitting resolution—using coarser or spatially

variable resolution—feature compromises that may reduce their predictive performance.

KEYWORDS: Tropics; Convection; Forecasting; Cloud resolving models; Convective parameterization; Model

evaluation/performance

1. Introduction

Organized convection in the tropical atmosphere plays a key

role in driving Earth’s weather and climate. At short (hourly to

daily) time scales, convection is the dominant feature of local

tropical weather, ranging from diurnal land/sea breeze showers

(e.g., Kikuchi and Wang 2008) to organized, propagating

mesoscale convective systems (MCSs; e.g., Houze 2004). At

subseasonal to seasonal time scales (several days to several

months), organized convective systems, often associated

with convectively coupled equatorial waves (CCEWs), the

Madden–Julian oscillation (MJO; Madden and Julian 1972;

Zhang 2013), and/or sea surface temperature (SST) anom-

alies, can affect the weather in remote locations through

global-scale circulation anomalies (teleconnections) trig-

gered by their associated divergent flows (Wallace and

Gutzler 1981; Sardeshmukh and Hoskins 1988; Brunet et al.

2010). At longer climate time scales (annual to decadal),

tropical convection acts as a major control on Earth’s energy

budget and large-scale circulation due to cloud radiative effects

and vertical/horizonal moist static energy transport (e.g., Bony

et al. 2015).

With impacts across the full spectrum of spatial and tem-

poral scales, tropical convection must be properly represented

in global numerical prediction models to maximize global

forecast skill, especially beyond week 1. Unfortunately, con-

temporary numerical weather prediction (NWP) models and

global climate models (GCMs) often fail to realistically cap-

ture the characteristics of tropical convective phenomena (e.g.,

Lin et al. 2006; Seo et al. 2009; Brunet et al. 2010; Straub et al.

2010; Weaver et al. 2011) and, presumably, their global im-

pacts. The fairly coarse horizontal grid spacing (;9–25 km) in

current operational global models necessitates the parame-

terization of subgrid-scale convection, an approach that often

produces errors and biases in the models’ simulated convec-

tion, including poor representation of the diurnal cycle (Yang

and Slingo 2001; Guichard et al. 2004), near-ubiquitous light

tropical precipitation (DeMott et al. 2007; Stephens et al.

2010), and unrealistic MJO structure, variability, and/or

propagation (Kim et al. 2009; Kerns and Chen 2014; Kim et al.

2014; Jiang et al. 2015; Ahn et al. 2017). The sub-grid-scale

processes that are key to realistic representation of cumulus

clouds in the convective parameterizations, such as lateral

entrainment/detrainment rates (e.g., de Rooy et al. 2013) and

mesoscale convective organization (e.g., Mapes and Neale

2011; Park 2014; Ahn et al. 2019), remain highly uncertain.

Addressing such deficiencies in simulated tropical convection
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is necessary to properly predict their multiscale impacts in

weather and climate models.

Subseasonal prediction, which lies between typical NWP

and climate time scales, is especially challenging because

weekly-to-monthly forecast skill depends on predictability

supplied by both initial conditions (Lorenz 1963; Lorenz 1975)

and slowly evolving boundary conditions (Chu 1999). The

slowly evolving boundary conditions—chiefly, tropical SST

anomalies—are intrinsically more predictable than the com-

paratively chaotic atmosphere and transmit this predictability

to the atmosphere through surface fluxes and tropical con-

vection, the latter being sensitive to SST anomalies and gra-

dients (e.g., Graham and Barnett 1987; Lindzen and Nigam

1987). A subseasonal forecast model with unrealistic tropical

convection cannot properly communicate this predictive in-

formation from the ocean surface to the global atmosphere,

resulting in reduced extended forecast skill; moreover, in a

coupled model framework, SST prediction itself can degrade if

convective systems (and their feedbacks with the ocean) are

poorly simulated due to inadequate model physics (e.g., Fu

et al. 2017). Furthermore, a model with poorly simulated

convection may not gain the predictive benefits from another

slowly evolving signal: theMJO, which is a complex, multiscale

convective feature with an intraseasonal time scale. Current

operational subseasonal prediction systems, like the NWP

models and GCMs mentioned above, fail to realistically sim-

ulate tropical convection on hourly to seasonal time scales

(e.g., Ganai et al. 2015; Weber and Mass 2017), likely due to

their problematic parameterization of convection. A potential

consequence of this poor convective representation is that

these models lose skill before the theoretical limit of predict-

ability (Becker et al. 2014; Kim et al. 2014; Neena et al. 2014).

In recent years, researchers and forecasters have turned to

convection-permitting models (CPMs) to circumvent the is-

sues associated with convective parameterization. CPMs do

not parameterize deep convection, making use of fine hori-

zontal grid spacing (#4 km) to explicitly resolve atmospheric

motions associated with large cumuli (e.g., Weisman et al.

1997; Prein et al. 2015). Importantly, CPMs may not resolve

subgrid-scale turbulent features, which can be parameterized

by shallow cumulus schemes (Pilon et al. 2016). Because of

their dense grids and short time steps, CPMs are more com-

putationally expensive than traditional lower-resolution

models with cumulus schemes; therefore, many studies and

operational applications have utilized regional CPMs to reduce

the grid size. These regional models have demonstrated im-

provement upon many of the aforementioned shortcomings of

convective parameterizations bymitigating the erroneous rain-

rate distributions (e.g., Holloway et al. 2012), improving the

timing of the diurnal peak in precipitation (e.g., Prein et al.

2015), and simulating large-scale convective phenomena (such

as the MJO) with realistic propagation characteristics (e.g.,

Hagos and Leung 2011).

With increasing availability of computational resources,

several researchers have recently performed extended simu-

lations using global CPMs. Consistent with previous work us-

ing regional CPMs, these simulations have demonstrated that

global CPMs can improve tropical cloud and precipitation

characteristics (e.g., Inoue et al. 2008; Sato et al. 2009; Weber

and Mass 2019) and accurately produce an eastward-

propagating MJO (Miura et al. 2007; Miyakawa et al. 2014;

Miyakawa and Kikuchi 2018; Weber and Mass 2019). To more

robustly assess the benefits of global CPMs, the Dynamics of the

Atmospheric general circulation Modeled on Nonhydrostatic

Domains (DYAMOND) project has fostered an intercomparison

of global CPM simulations using different modeling systems and

computing architectures (Stevens et al. 2019); initial results con-

firm robust improvements to global precipitation, moisture,

and clouds.

Global CPMs are potentially of great value for subseasonal

prediction because, unlike limited-domain models, they simu-

late both local phenomena (e.g., organized tropical convec-

tion) and their remote impacts (e.g., teleconnections). Thus,

one might expect that better-simulated convection in a global

CPM would improve large-scale dynamical response, and thus

provide more skillful extended-range forecasts. Weber and

Mass (2019; hereinafter WM19), using 28-day global CPM

simulations of four MJO events, found evidence for such im-

provement, particularly in the third forecast week. Their

analysis of global 3-km simulations found evidence of im-

proved tropical and extratropical forecast skill when compared

to an operational extended forecast system. The work pre-

sented in this paper expands upon those results, using addi-

tional model configurations and diagnostic measures.

Beyond evaluating whether convection-permitting resolu-

tion can improve global forecasts, there is a fundamental

question to be addressed: which aspect of a CPM is most im-

portant for properly simulating convective dynamics and their

global response? Is it the high spatial resolution or the absence

of a cumulus scheme? Some work has explored this question,

mostly using regional models. For example, Holloway et al.

(2012) showed that omitting convective parameterization at

coarse (12 km) resolution can improve a model’s precipitation

rate distribution. Pilon et al. (2016) demonstrated that a 15-km

global model can produce a more robust MJO using micro-

physics alone compared to an identical model with a convec-

tion scheme. Takasuka et al. (2018) found that the initiation

and structure of the MJO are reasonably simulated in a global

aquaplanet model at 56-km resolution without a cumulus

scheme. Another question relates to the configuration of a

global CPM: can global forecast benefits be achieved by only

using convection-permitting resolution in the tropics, where

convection primarily resides? The answer to this question can

help determine the importance of high resolution in the ex-

tratropics and the relationship between extratropical and

tropical forecasts (e.g., Vitart and Jung 2010; Dias and Kiladis

2019). This work aims to address these questions using several

global CPM configurations.

This paper presents four monthlong cases simulated by a

global model using several different grid-spacing and cumulus

parameterization combinations, with the goal of appraising the

impact of horizontal grid spacing and convection scheme ap-

plication on simulated tropical precipitation, MJO propaga-

tion, and extended predictive skill. Section 2 details the model

configurations and the datasets and techniques used to verify

the simulations. Verification results with regard to tropical
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precipitation, the MJO, and extratropical forecast skill are

presented in section 3. Results are discussed in section 4 and

conclusions drawn by this study are outlined in section 5.

2. Data and methods

As outlined in WM19, the simulations presented here were

made using the Model for Prediction Across Scales (MPAS;

Skamarock et al. 2012), developed at the National Center for

Atmospheric Research (NCAR). TheMPASmesh is constructed

using centroidal Voronoi tessellations, encompassing a grid

comprising primarily hexagonal cells; this allows for the gen-

eration of a variable-resolution mesh, which can seamlessly

transition from high to low horizontal resolution without the

troublesome boundary issues associated with grid nesting

(Ringler et al. 2011). Most of the simulations presented in this

study were integrated on meshes with globally quasi-uniform

horizontal grid spacing, with one simulation taking advantage

ofMPAS’s variable-resolution capability. Other features of the

MPAS dynamical core include its implementation of C-grid

staggering for prognostic variables (ideal for representing di-

vergent flows; Skamarock et al. 2012) and high scalability.

Several MPAS (version 5.1) configurations were used to

investigate the characteristics of global CPMs. First, a ‘‘con-

ventional’’ model configuration (hereinafter, M15), designed

to qualitatively resemble operational NWP models like the

Global Forecast System (GFS) or European Centre for

Medium-Range Weather Forecasts (ECMWF) model, was

run with a globally uniform 15-km mesh and the experi-

mental new Tiedtke cumulus parameterization from the

Weather Research and Forecasting (WRF) Model, version

3.8.1. It should be noted that a newer version of the experi-

mental new Tiedtke scheme is available in newer releases

(WRFv3.9 1 and MPASv7.01) and features an improved

diurnal cycle over the version used here (Zhang and Wang

2017). The experimental new Tiedtke cumulus scheme was

chosen for the M15 configuration to emulate the ECMWF

operational model.

Next, a global CPM configuration (hereinafter, M3), repre-

senting the ‘‘next generation’’ of numerical modeling systems,

was configured with global 3-km grid spacing (more than

65 million cells in the horizontal dimensions) and no convection

scheme. These two MPAS configurations were compared with

each other and with the NCEP Climate Forecast System, ver-

sion 2 (CFSv2), in WM19 to assess how convection-permitting

resolution influences subseasonal prediction in a global model.

In this paper, two additional MPAS configurations are ana-

lyzed. A uniform 15-km mesh is used for a third configuration,

but with the convection scheme turned off (M15noCu), in or-

der to assess the role of cumulus parameterization at NWP-like

horizontal resolution. MPAS is run on a variable-resolution

‘‘tropical channel’’ mesh (Mchannel), with 3-km horizontal

grid spacing in the tropics (equatorward of 208N/S) smoothly

transitioning to 15-km spacing in the extratropics (Fig. S1 in the

online supplemental material); the scale-aware Grell–Freitas

convection scheme (Grell and Freitas 2014) was implemented

in Mchannel to deal with the range in grid cell size. All meshes

in these experiments used 55 vertical levels in a hybrid sigma

coordinate system. Table 1 provides a summary of these four

MPAS configurations.

The physics used in all MPAS configurations are identical,

aside from the convection schemes (as described above). This

set of physics constitutes the MPASv5.1 ‘‘convection per-

mitting’’ suite and includes the two-moment, five-species

Thompson microphysics scheme, the NOAA/NCEP–Oregon

State University–Air Force Research Laboratory–NOAA/Office

of Hydrology land surface model (Noah), Mellor–Yamada–

Nakanishi–Niño (MYNN) boundary layer and surface layer

parameterizations, Rapid Radiative Transfer Model for

global climate models (RRTMG) longwave and short-

wave radiation schemes, Xu–Randall cloud fraction, the

2D Smagorinsky subgrid-scale mixing scheme, and Yonsei

University (YSU) gravity wave drag. The MYNN and YSU

schemes are from version 3.6.1 of the NCAR Weather

Research and Forecasting (WRF) Model, while the rest are

from WRF version 3.8.1. All simulations were initialized

using NCEP Final Operational Global Analyses (interpo-

lated to the icosahedral MPAS mesh), which also provided

the lower boundary conditions (e.g., SST). SSTs were held

constant at their initial values to avoid giving the model

any future information, allowing for a strict assessment of

predictive power.

As described in WM19, four cases were simulated with

MPAS, all featuring significant intraseasonal phenomena

during boreal winter. All runs were integrated for 28 days in

order to capture the period of a typical subseasonal forecast

(weeks 1 through 4). The first case began on 22 November 2011

and captured the secondMJOof theDynamics of theMadden–

Julian Oscillation (DYNAMO) field campaign (Gottschalck

et al. 2013), which was well-observed by in situ and satellite

observations. Cases 2, 3, and 4 were initialized on 8 February

2013, 2 December 2003, and 8 December 2013, respectively.

All simulations were initialized at 0000 UTC. Each case ex-

hibited active MJO convection that propagated across the

Maritime Continent and some (e.g., case 4) also featured

strong extratropical intraseasonal circulation anomalies in the

TABLE 1. Description of the four MPAS configurations. Aside from the cumulus schemes detailed here, all physics is identical among the

simulations. Here, ID indicates identifier.

MPAS ID Grid spacing Cu scheme Time step Case(s)

M15 15 km global New Tiedtke 90 s All cases

M3 3 km global None 18 s All cases

M15noCu 15 km global None 90 s All cases

Mchannel 3 km in the tropics transitioning to 15 km Grell–Freitas 18 s Case 1 only
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Pacific–North America region. All MPAS configurations were

run for all four cases with the exception of Mchannel, which

was only integrated for case 1 due to limitations in computing

and storage resources.

In addition to being compared with one another, the MPAS

simulations are verified against several observational and

analysis datasets. Simulated precipitation is verified against

precipitation rates estimated by the Tropical Rainfall

Measuring Mission (TRMM) multisatellite 3 B42 product

(Huffman et al. 2007; TRMM 2011), while the model’s low-

level winds are compared with Cross-Calibrated Multi-

Platform (CCMP) wind estimates (Ricciardulli et al. 2017),

whose component datasets include TRMM satellite measure-

ments. Both TRMM and CCMP data are on a uniform 0.258

grid spanning the global belt equatorward of 508N/S. Globally

merged, 4-km-resolution infrared (IR) satellite data (Janowiak

et al. 2001) from the Climate Prediction Center (CPC) are used

to evaluate simulated cloud features. The flux equivalent

brightness temperatures are calculated from this IR dataset

[Wu andYan 2011, their Eq. (15)] to facilitate comparison with

simulated outgoing longwave radiation (OLR) brightness

temperatures. Extratropical surface forecasts are verified

against the NWS Automated Surface/Weather Observing

System (ASOS/AWOS) network in the United States. ERA5

reanalyses (Hersbach et al. 2020) from the ECMWF are used

to verify the dynamic and thermodynamic fields not included in

the observation-based datasets. MPAS data are conservatively

interpolated from its unstructured mesh to the respective grids

of the verification datasets.

Cold-top cloud systems in the merged IR dataset and the

MPAS hindcasts are tracked using a particle-tracking algo-

rithm called Trackpy. Brightness temperature data from all

datasets are first conservatively interpolated to a 0.1258 grid

and then smoothed with a uniform 0.58 filter. Features are

identified using a brightness temperature threshold of 208K

and a minimum area of 5000 km2 (following Williams and

Houze 1987 and Chen et al. 1996). Next, the feature centroids

(or ‘‘particles’’) are tracked in time using the widely used

Crocker and Grier (1996) algorithm, which uses interparticle

spacing to determine the most likely trajectory of each particle

given a maximum time step travel distance (here, capped at

roughly 30 kmh21). Splitting and merging tracks are com-

bined, and cloud tracks with durations less than 6 h are dis-

carded. The statistics of the tracked cloud systems shown in

section 3 are insensitive to small variations in the brightness

temperature threshold, minimum area/duration, and maxi-

mum time step travel distance.

3. Results

The various MPAS configurations exhibit a diverse repre-

sentation of clouds and convection. Figure 1 shows IR bright-

ness temperatures over South America during case 1 at a

forecast lead time of 21 h. The widespread convection over

Peru, Bolivia, and Brazil seen in the GOES-13 satellite mea-

surements (left panels) is reproduced in each simulation, but

with varying degrees of fidelity. M15 produces a broad, nearly

uniform swath of high cloud over the region while M15noCu

features more scattered, popcorn-like structures. The cloud

systems in M3 and Mchannel more closely resemble the intri-

cate, banded structure seen in the satellite image. There are

notable differences between theMPAS configurations over the

tropical ocean (upper right corner of each panel); M3 captures

the observed scattered, small-scale cloud features, while the

other configurations produce more widespread convection.

The cloud features poleward of 208S (e.g., the weak baroclinic

system off the coast of Brazil) are nearly identical among the

MPAS simulations.

a. Tropical precipitation characteristics

The impacts of turning off convective parameterization and

of varying horizontal grid spacing are evaluated by comparing

tropical precipitation statistics in the varying model configu-

rations. It is also important to consider the distribution and

variability of tropical moisture in the various experiments be-

cause the properties of convection are highly sensitive to en-

vironmental humidity (Sherwood 1999; Sherwood et al. 2004;

Bretherton et al. 2004; Peters and Neelin 2006; Neelin et al.

2009; Holloway and Neelin 2010; Rushley et al. 2018). Thus,

any differences/errors in a model’s tropical precipitation

characteristics may be related to moisture and/or deficiencies

in the precipitation–moisture relationship.

Figure 2 shows normalized tropical precipitation rate dis-

tributions for all four cases for both TRMMmeasurements and

theMPAS simulations. As noted inWM19,M15 produces light

rain too frequently and heavy rain too infrequently. In con-

trast, M15noCu exhibits the opposite problem: excessive heavy

rain and too little light rain. M3 matches the TRMM precipi-

tation distribution quite well. Mchannel, like M3 (both of

which use convection-permitting resolution in the tropics),

matches observations fairly well, although with slight a bias

toward heavier rain rates. The zonal mean accumulated pre-

cipitation (Fig. 3) reveals that MPAS simulations overpredict

precipitation for most latitudes, with the greatest over-

prediction in the northern subtropics and midlatitudes pole-

ward of 408N or S. The overproduction of total tropical

precipitation (10%–15% bias) in M3 and Mchannel, despite

their realistic distribution of rain rates, suggests that the model

simply produces precipitating tropical systems of various in-

tensities too frequently (see Fig. 8). The differences between

the CPMs’ favored precipitation regimes and those of the

15-km simulations is best seen in rain-rate histograms (not

normalized as in Fig. 2). Figure 4a shows the number of grid

points within a range of rain-rate bins for TRMM and the

MPAS simulations. At a glance, this distribution looks similar

to that in Fig. 2, except the positive precipitation bias inM3 and

Mchannel is now apparent. Displaying this information as a

ratio relative to TRMM (Fig. 4b) reveals the regime-sensitivity

of the models’ precipitation biases. As hypothesized above, the

positive precipitation bias in M3 and Mchannel is not due to a

tendency toward particular rain rates; both configurations

produce rain, at all intensities, roughly 2–5 times as frequently

as in TRMM. This is not the case in the 15-km simulations.M15

produces very light precipitation ;7 times as frequently as in

TRMM, and heavy precipitation at;1/10th the rate.M15noCu

performs reasonably for low rain rates but simulates heavy rain
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10–20 times as often as in TRMM. The rain-rate statistics are

robust across the four cases (separate lines of each color in

Figs. 2 and 4), so only the mean of the four cases will be shown

hereinafter, to minimize clutter.

Analyzing a model’s diurnal cycle of precipitation provides

further insights into the model’s ability to trigger convection

realistically. The local-hour diurnal composites of tropical

precipitation for TRMM measurements and the MPAS simu-

lations (Fig. 5) suggest that the onset of diurnal convection is

sensitive to model grid resolution and convective parameteri-

zation. Over the ocean (Fig. 5a), themorning (evening) diurnal

maximum (minimum) in precipitation is triggered roughly 3 h too

early in M15, while the other three MPAS configurations match

the observed diurnal phase quite well (although M15noCu

overestimates the amplitude). The diurnal cycle over land

(Fig. 5b) is 3–4 h out of phase in M15, with the afternoon peak

overamplified. M3 and Mchannel improve the timing of this

peak by about 2 h, resulting in a diurnal maximum that is slightly

out of phase with observations and overamplified. Interestingly,

M15noCu, using a relatively coarse grid and no convective pa-

rameterization, simulates a terrestrial diurnal cycle whose phase

and amplitude correspond quite well with observations.

Figure 6a indicates that the distribution of tropical precipi-

table water varies by model configuration. M3 and M15noCu

slightly underestimate tropical moisture (M15noCu more so),

while Mchannel slightly overmoistens tropical atmosphere.

Specifically, M15noCu exhibits an unrealistically large fraction

of grid points with moderate precipitable water values in the

30–50-mm range, but too few points with higher (.55mm)

values. M3, whose mean precipitable water also indicates a dry

bias, does not exhibit such a preference for intermediate col-

umn moisture values. The positive moisture bias in Mchannel

is a result of too many values in 55–65mm range. The mean

tropical precipitable water in M15, in contrast to the other

MPAS configurations, matches that of ERA5 quite well de-

spite the model producing too many values in the 50–60-mm

range. Separating these distributions into their contributions

from ‘‘raining’’ and ‘‘nonraining’’ grid points (Fig. 6b) suggests

that the dry moisture bias in M3 and M15noCu is equally

present within and outside of convection. Biases in other

configurations, however, are sensitive to the presence of con-

vection. M15, for example, is far too dry in nonprecipitating

grid points. This, along with its much smaller fraction of rain-

free tropical grid points (see text in Fig. 6b), suggests that M15

FIG. 1. Brightness temperature snapshot over SouthAmerica at 2100UTC 22Nov 2011. Both of the left panels show data from the CPC

global merged IR satellite product, for ease of comparison. The other four panels are simulated OLR brightness temperatures from the

four MPAS configurations, as labeled.
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triggers convection far more readily (and in drier environ-

ments) than the other configurations. Mchannel is also too dry

in nonprecipitating regions and too moist within precipitating

features (which accounts for its overall bias shown in Fig. 6a).

M3—which, like Mchannel, uses convection-permitting resolution

in the tropics—exhibits an opposite-signed moisture bias within

precipitating features, signifying that the Grell–Freitas scheme

inMchannel has significant impacts on its convection/moisture.

Overall, these results indicate that theMPASconfigurations have a

diverse representation of the sensitivity of simulated convec-

tion to environmental moisture, the environmental moistening

by the convection, or both.

b. Simulated convective features

The variability of tropical precipitation characteristics

among the different MPAS simulations suggests that the

anatomy and/or behavior of convective systems is also config-

uration dependent. To explore this issue, individual convective

systems, identified using the cloud brightness temperature

feature-tracking algorithm outlined in section 2, are tracked in

both observations and the simulations over the Indo-Pacific

warm pool region in order to reconcile the precipitation sta-

tistics documented above with the behavior of simulated con-

vective features. The evolving spatial distribution of these

systems for case 1 (Fig. 7) indicates that the frequency and

propagation characteristics of deep convective systems vary

substantially among the MPAS configurations. The tracked

objects in the satellite observations reveal a spatially heteroge-

neous distribution of convective systems, including the gradual

eastward propagation of the MJO-associated convective clouds

(seen in the west-to-east transition from purple/blue colors to

green/yellow/red colors).

Various properties of the tracked (6-h minimum duration)

cold cloud features are shown in Fig. 8. M15noCu stands out as

an outlier, with its convective clouds being too short-lived,

small, and stationary compared to satellite observations (and

the other MPAS simulations). The other MPAS configura-

tions’ cloud systems are more similar to the satellite observa-

tions, but with a few subtle differences. For example, M15 does

not produce as many small convective systems as seen in M3,

Mchannel, and the satellite observations. Furthermore, the

propagation characteristics of these systems—their total

distance traveled, total speed, zonal speed, and meridional

speed—are most accurately captured by M3. Whether the

improved cloud-system propagation in M3, or the stationarity

of the systems in M15noCu, is due to the storms’ internal dy-

namics or the large-scale flow (e.g., that associated with the

MJO) remains to be determined. In summary, the behavior of

the cloud systems in M15noCu reveals fundamental flaws in its

representation of convection while the cloud features inM3 are

most realistic, both in morphology and propagation.

While none of the MPAS simulations are able to replicate

the spatiotemporal distribution of the tracked cloud systems

(Fig. 7), M15 seems to be the only configuration that does

not overestimate the number of these propagating features

(Fig. 9). Indeed, the number of cloud systems in all MPAS

simulations except M15 is too high compared to observations

(Fig. 9a). M15noCu, in particular, produces far too many deep

convective clouds compared to observations and other model

configurations. If the 6-h minimum duration requirement is

removed from the tracking algorithm, allowing for 1-h duration

convective systems, the count distribution is subtly altered

(Fig. 9b); M15 and M15noCu still produce the smallest and

largest number of convective systems, respectively, but the

relative number of systems in these 15-km simulations—when

compared with observations, M3, and Mchannel—increases.

That is, the 15-km simulations unrealistically favor very short-

lived convective features. The general overproduction of

deep convective systems in the convection-permitting simu-

lations—which might be associated with the lack of air–sea

coupling (see section 4)—is consistent with the positive tropi-

cal precipitation biases in these configurations, as posited in

section 3a.

For subseasonal time scales, the tropical convective

phenomenon of primary concern is the MJO. Precipitation

Hovmöller diagrams for each case (Fig. 10) reveal that the fi-

delity of eastward-propagating MJO convection is sensitive to

model configuration. For each of the four cases, a broad region

of moderate-to-heavy precipitation slowly propagates east-

ward from the Indian Ocean (;708E) to at least the eastern

Maritime Continent (;1308E) in the TRMM satellite mea-

surements (Fig. 10, first column). This packet of MJO con-

vection is entirely absent in all four of the M15 simulations

(Fig. 10, second column), which favor stationary or even

westward-propagating large-scale convection. M15noCu

(Fig. 10, third column), which produces heavy and moderate

precipitation too frequently (as discussed above), also largely

fails to reproduce the eastward-moving MJO convection,

FIG. 2. Probability density of various rain rates binned every

0.5mmh21. The first day of each 28-day period is excluded from

analysis to remove model spinup effects, and only tropical (158S–

158N) grid points are considered. The colors represent the different

MPAS configurations, with TRMM measurements in black. The

four lines for each data source (except Mchannel) are generated

from the four separate cases. Axes are logarithmic.
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instead favoring stationary and near-ubiquitous precipitation.

In contrast to the 15-km simulations, M3 (Fig. 10, fourth col-

umn) generally produces an eastward-propagating MJO pre-

cipitation signal similar to that observed by TRMM, with the

exception of case 2. Interestingly, Mchannel (Fig. 10, fifth

column), which also uses 3-km grid spacing in the tropics, does

not capture the eastward propagation of the DYNAMOMJO,

stalling convection in the IndianOcean. In summary, the global

CPM configuration is able to accurately simulate the con-

vectively coupled eastward-propagating signal of the MJO,

consistent with Miura et al. (2007) and Miyakawa and Kikuchi

(2018), while the other MPAS simulations feature unrealistic

tropical intraseasonal variability.

c. Extratropical prediction performance

In section 1 it was hypothesized that errors in the location,

intensity, or other characteristics of organized tropical

convection might degrade associated teleconnections and

therefore extratropical prediction skill. Figure 11 shows the

weekly averaged 500-hPa geopotential height anomalies in the

FIG. 3. (top) Zonally averaged accumulated precipitation by latitude and (bottom) percent differences with respect

to TRMM measurements for (left) the four-case total and (right) only case 1. Line colors are as in Fig. 2.

FIG. 4. (a) As in Fig. 2, but showing grid point counts instead of probability densities and using bin widths of

0.25mmh21. (b) Ratio of the MPAS histograms in (a) to the corresponding TRMM histograms for each case.
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Pacific–NorthAmerican (PNA) region for week 3 of each case.

The PNA region is particularly impacted by MJO convection

as associated Rossby wave propagate beyond the tropics (e.g.,

Mori and Watanabe 2008). For this particular projection, the

MPAS configurations exhibit varying degrees of success in

capturing the anomaly patterns seen in the ERA5 reanalysis;

this skill is quantified by the spatial anomaly correlation co-

efficient shown in the upper right corner of each panel. Grid

cells are area-weighted (by the cosine of latitude) for the req-

uisite variance and covariance calculations.

A summary of the correlation coefficients for all four weeks

of the simulations is shown in Fig. 12. During forecast week 1,

all MPAS configurations perform comparably well due to the

dominance of initial conditions and lack of error growth at such

short lead times and large spatial scales. In week 2, the average

skill of the four cases (denoted by the dashed lines) exhibits

more spread among the MPAS configurations, with M3 per-

forming slightly better than M15 and M15noCu. The largest

difference among the model configurations is seen in week 3,

where the averageM3 correlation coefficient exceeds 0.5, while

M15 and M15noCu both show an average score around 0.25.

By week 4, deterministic predictability has diminished, and the

forecasts generally score below 0.25. M3 slightly outperforms

the other configurations in week 4, though this is chiefly due to

its high case 1 correlation score (0.33). Average values for

Mchannel are not shown, as there is only one case available

for this configuration; Mchannel performed comparably to M3

for case 1 despite the differences in its simulated tropical

convection (noted in the previous section). These results are

insensitive to changes in the area of the domain used for the

correlation calculation. For example, if the entire Northern

Hemisphere (poleward of 208N) is considered, M3 still shows

the largest improvement over the 15-km simulations during

forecast week 3 (not shown). It is worth noting that the three

cases (1, 3, and 4) in which M3 outperformed the other con-

figurations’ extratropical predictions are the same three cases

with a robust, realistic eastward-propagating MJO in M3.

For case 2, M3 exhibited neither an improved MJO nor

more skillful extratropical prediction compared to the other

forecasts.

To identify whether these differences in upper-level forecast

performance impact surface weather predictions, the MPAS

simulations were verified against Automated Surface Observing

Systems (ASOS) stations throughout the United States for all

four cases. There were 748 sites across the United States that

had hourly data available for all four 28-day time periods.

FIG. 5. Tropical precipitation rates composited by local hour. The first day of each 28-day

period is excluded from all datasets to remove model spinup effects, and only tropical (158S–

158N) grid points are considered. The diurnal cycles over (a) ocean and (b) land grid points are

shown separately. The diurnal cycles are averaged across the four cases (i.e., the four lines of

each color in Fig. 2), except for Mchannel. The mean of each diurnal composite is removed.
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MPAS output fields were linearly interpolated to the ASOS

sites and four variables were verified: 2-m temperature, mean

sea level pressure (MSLP), 10-m wind speed, and hourly pre-

cipitation. The distributions of week-3 mean absolute errors

for these variables for the MPAS simulations are shown in

Fig. 13. Unsurprisingly, the largest errors inMSLP in the 15-km

simulations are near the complex terrain of the Rocky

Mountains, while the largest errors in precipitation occur

where its natural variability is largest—in the Pacific Northwest

and throughout the eastern United States. Wind speed

exhibits a more spatially uniform error pattern, while the

temperature error patterns vary between the MPAS configu-

rations. With the exception of precipitation in the Pacific

Northwest, the M15noCu forecasts generally do not improve

upon, or perform worse than, the M15 predictions. For MSLP,

M3 hindcasts produce much smaller errors than the 15-km

simulations, especially in the vicinity of mountain ranges; the

bulk of this improvement come from the reduction of a nega-

tiveMSLP bias inM15 andM15noCu (not shown), presumably

linked to resolution of the terrain in the different configura-

tions. The precipitation errors are also reduced in M3 com-

pared to M15 and M15noCu, with the largest reductions

occurring in the aforementioned regions of high natural vari-

ability. In M3, temperature errors are also lower in the

southeastern United States, but are increased in the upper

Midwest. This increase in error is largely due to erroneous

upper Midwest cold air outbreaks in M3 during weeks 3 and 4

of cases 1 and 2 (not shown). Wind speed errors are generally

reduced in M3 as well, especially near terrain or coastlines.

Mchannel, which is excluded from Fig. 13 because it only

sample one of the four cases, exhibits error distributions similar

to the 15-km simulations, though with larger temperature and

precipitation errors, even when only case 1 is considered (not

shown). These maps, while partially contaminated by transient

errors (e.g., synoptic systems) due to the small four-case sam-

ple size, do serve to highlight error characteristics that are

robust across all four cases: namely, M3’s improvement in

forecasts of precipitation in the Pacific Northwest, MSLP near

FIG. 6. Probability density of precipitable water binned every 4mm. The first day of each

28-day period is excluded from analysis to remove model spinup effects, and only tropical

(158S–158N) grid points are considered. Shown are the distributions for (a) all tropical points

and (b) distributions split into raining (solid; rain rate . 0.5mmh21) and nonraining (dashed;

rain rate5 0mmh21) points. The distributions are averaged across the four cases (i.e., the four

lines of each color in Fig. 2), except for Mchannel. Text in the top-left of (b) details the number

of points used in these separated distributions (as percent of total tropical grid points). Colored

triangles at the bottom of (a) and (b) represent themeans of the distributions, averaged over all

four cases (except for Mchannel).
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terrain, and surface wind speed throughout most of the

United States.

To identify how errors evolve with lead time, time series

of the mean absolute errors of the weekly averaged vari-

ables over the entire United States are compared among the

MPAS configurations (Fig. 14). In agreement with the

upper-level verification, M3 exhibits a statistically signifi-

cant improvement in low-level pressure, precipitation, and

wind speed forecasts in week 3 (and even week 4). There are

fewer significant differences between the forecasts’ skill at

early lead times, or for temperature and wind speed in

general. For these particular cases, M3 exhibits the curious

behavior of error reduction after week 2 (for pressure,

precipitation, and wind speed), which is likely due to the

combined effect of week 2/3 error saturation (e.g., Weber

andMass 2017) and poor sampling of various flow regimes in

these four cases. Such sampling issues serve as motivation

for running and verifying additional global convection-

permitting simulations.

4. Discussion

While many of the results shown in this exploratory study

require more cases to reach statistically meaningful conclu-

sions, there are several differences among the MPAS configu-

rations that are robust across all four simulationperiods andprovide

useful insights. For example, the precipitation/moisture

statistics (Figs. 2–6) and cloud-system tracking (Figs. 7–9)

suggest that the fundamental nature of simulated tropical

convection varies considerably among the different MPAS

configurations. The most dramatic case is M15noCu (15-km

grid spacing with no cumulus parameterization), which pro-

duces excessive amounts of very intense (consistent with

Holloway et al. 2012), small-scale, short-lived convection.

FIG. 7. All cloud-system tracks for case 1, with a minimum duration of 6 h. Colors indicate the

starting date of the track.
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The rapid growth and decay of the abundant, transient convec-

tive systems in M15noCu (Fig. 8) is suggestive of conditional

instability of the second kind (CISK), which prefers very small

scales (Lindzen 1974). In this configuration, environmental

moisture perturbations trigger convection which, because of

the minimum 15-km plume width, is associated with excessive

vertical motion and thus surface convergence; this unrealisti-

cally strong surface moisture convergence intensifies/deepens

the convection until vertical motion profile becomes top-heavy

(and normalized gross moist stability is positive), at which

FIG. 8. Kernel density estimates of various tracked cloud-system properties over all four cases (only case 1 for

Mchannel). Observations are from the CPC global merged IR satellite product. Otherwise, line colors are as

in Fig. 2.

FIG. 9. Total number of tracked cloud systems across all four cases (colors). Counts are shown for tracks with (a) the

standard 6-h minimum duration and (b) with no required minimum duration.
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point the system rapidly decays due to the intense precipitation

and minimal moisture import. This overactive CISK-like in-

stability in M15noCu produces short-lived convective plumes

and inhibits organization.

The convective plumes in M15, on the other hand, are

parameterized by the experimental new Tiedtke cumulus

scheme. The tropical convection in the M15 configuration, like

in M15noCu, is too frequent (see text in Fig. 6b) but also too

weak (the opposite problem as inM15noCu). The precipitation

in M15 is excessively frequent even compared to M15noCu,

whose runs produced 2 times as many precipitation-free grid

points (see text in Fig. 6b). Consistent with previous work on

models with parameterized convection (e.g., Stephens et al.

2010), M15 produces near-ubiquitous very light precipitation,

possibly associated with parameterized entrainment that re-

sults in erroneously undiluted, and thus abundant, shallow

cumulus.

Turning to the convection-permitting simulations, the

tropical convection in M3 and Mchannel more closely resem-

bles observed convection. The precipitation intensity, diurnal

FIG. 10. Time–longitude (Hovmöller) diagrams of precipitation rate averaged between 108S and 108N during cases (top) 1, (topmiddle)

2, (bottom middle) 3, and (bottom) 4 for precipitation data from the (left) TRMM, (left center) M15, (center) M15noCu, (right center)

M3, and (right) Mchannel.
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cycle, and cloud-system properties are well captured by these

two configurations, albeit slightly better in M3. Both configu-

rations, however, produce too much precipitation associated

with too many convective cloud systems. Importantly, the

convection-permitting runs (M3 and Mchannel), while biased

in overall precipitation, do not erroneously favor heavy or light

precipitation regimes like the 15-km simulations do, as shown

in the rain-rate histograms (Fig. 4). It is possible that the du-

ration, intensity, and/or frequency of tropical convection in

these simulations may have been erroneously amplified by the

lack of surface flux feedbacks caused by the fixed SSTs (Hirons

et al. 2018), which would account for the general overabun-

dance of convective systems (Fig. 8) in the CPM configurations

and the associated positive precipitation bias (Fig. 3). This bias

could, of course, also be related to deficient satellite precipi-

tation retrievals, as pointed out by Stevens et al. (2019), whose

global CPMs exhibit a similar overproduction of tropical pre-

cipitation when verified against satellite measurements (their

Fig. 5). The variability among the model configurations and

differences in simulated convection’s sensitivity to the envi-

ronment (e.g., moisture, as suggested by Fig. 6) will be detailed

in a future paper.

The MJO is a crucially important phenomenon for global

subseasonal forecasting and, while the prediction of this fea-

ture has improved in recent years, models have yet to leverage

its full predictive potential (e.g., Kim et al. 2018). The inability

of the M15 and M15noCu configurations to capture the east-

ward propagation of the MJO (Fig. 10) may be related to the

unrealistic behavior of their simulated tropical convective

features. The 15-km models’ preference for westward-

propagating large-scale organized convection suggests either

an affinity for convectively coupled equatorial Rossby wave

activity or a lack of Kelvin waves. As both Rossby and Kelvin

waves are reflected in the dynamical signal of the MJO (Wang

et al. 2018), a model’s unrealistic preference for certain types of

convectively coupled equatorial wave signals might hamper its

ability to capture the MJO. Comparing the structure and var-

iability of convectively coupled equatorial waves within these

MPAS simulations is an objective of future work.

As noted above (and in WM19), M3 captured the eastward

propagation of the MJO in three out of the four cases, sug-

gesting more realistic variability and structure of its convective

features. Interestingly, Mchannel, which otherwise features

tropical convection properties similar to those in M3, does not

fully predict the MJO’s eastward propagation in case 1. While

Mchannel does simulate the first Kelvin wave in this DYNAMO

MJO event, the second wave fails to develop/propagate

as it does in observations and M3. There are only two dif-

ferences between the Mchannel and M3 configurations: 1)

Mchannel features a nonuniform channel mesh (Fig. S1 in

FIG. 11. Weekly averaged 500-hPa geopotential height anomalies in the PNA region for the third week of cases (left) 1, (left center) 2,

(right center) 3, and (right) 4 for anomaly data (calculated with respect to the CFSR 30-yr climatology) from (top) ERA5, (top middle)

M15, (middle) M15noCu, (bottom middle) M3, and (bottom) Mchannel. Area-weighted pattern correlation coefficients between each

dataset and the ERA5 reanalysis within the domain are shown in the top right of each panel.
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the online supplemental material) and 2) Mchannel im-

plements the scale-aware Grell–Freitas convection scheme

while M3 has no convective parameterization. This suggests

that the degradation of Mchannel’s MJO is either due to

subtropical/extratropical processes (e.g., Liebmann andHartmann

1984; Vitart and Jung 2010) that are less-resolved inMchannel,

or due to the Grell–Freitas scheme, which functions as a

shallow cumulus scheme at high resolution (Fowler et al. 2016).

If the latter is responsible for the lack of propagation in

Mchannel’s MJO, that would contradict recent literature that

suggests that the parameterization of shallow convection in a

CPM is beneficial to its MJO representation (Pilon et al. 2016).

While understanding is limited about whyM15, M15noCu, and

Mchannel failed to simulate the MJO, the success of M3 may

help elucidate the necessary processes for the propagation of

the MJO in nature. It should be noted that, while M15 did not

skillfully predict the MJO in the four cases shown here, some

operational systems like the ECMWF model are able to

predict its eastward propagation fairly well using convective

parameterization (e.g., Vitart 2017). Comparison of global

CPMs against a greater range of NWP/GCM systems is needed

before declaring the ubiquity of the benefits of convection-

permitting resolution.

For the extratropics, the hindcast performance results pre-

sented here are suggestive and motivate the need for more

cases. In an operational configuration, an ensemble of forecasts

would be necessary to quantify the uncertainty in these long-

term predictions. In the limited realizations shown here, the

M3 predictions of large-scale extratropical circulation were, on

average, more skillful than the 15-km simulations, particularly

in forecast week 3. Moreover, the three cases where M3

exhibited superior extratropical week-3 skill (cases 1, 3, and 4)

were the same three cases in whichM3 simulated an organized,

eastward-propagating MJO that was missing from the other

simulations. While this may of course be coincidence, it does

suggest a link between simulated tropical convection and

subseasonal extratropical hindcast performance as hypothe-

sized in section 1 and in agreement with previous studies (e.g.,

FIG. 12. Spatial pattern correlation scores for weekly averaged 500-hPa geopotential height

anomalies over the PNA region (shown in Fig. 11). The four different cases are represented

vertically, and each week of the 28-day case period is represented horizontally. Anomaly

correlation coefficients are computed for each MPAS configuration (colors) and are verified

against ERA5. Dashed horizontal lines represent the average anomaly correlation across all

four cases for each forecast week. No average is shown for Mchannel, which was only run for

case 1. Note that the y-axis range varies for each week, with 0 indicated by a solid black line.
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Vitart and Jung 2010; Dias and Kiladis 2019). This week-3 skill

improvement is also seen at the surface, in addition to other

prediction enhancements in the vicinity of topography and

coastlines.

5. Conclusions

Monthlong simulations with a global 3-km convection-

permitting model are compared to observations, an NWP-

like 15-km global model, a 15-km configuration without a

convection scheme, and a 15/3-km ‘‘tropical channel’’ sim-

ulation in order to determine the impacts of grid spacing and

cumulus parameterization on tropical convection and sub-

seasonal forecast skill in a global model. As reported in

WM19, the global 3-km simulations outperform the NWP

configuration with regard to the representation of tropical

precipitation statistics, propagating convective phenomena like

the Madden–Julian oscillation, and subseasonal extratropical

hindcast skill. In addition, the two ‘‘reduced resource CPM’’

configurations—which forego the cumulus scheme at coarse

resolution or utilize high resolution only in the tropics, re-

spectively—are less skillful than the full global CPM. The

15-km simulations without a convective parameterization

simulate unrealistically abundant, short-lived, and intense

convection that fails to organize into anMJO; the extratropical

prediction skill of this configuration, like the NWP setup, is

lower than that of the global CPM. The tropical channel model

largely reproduces the realistic tropical precipitation statistics

seen in the global CPM but fails to fully capture the MJO’s

eastward propagation.

The results presented here not only demonstrate the

promise of global CPMs for extended weather and climate

prediction, but also highlight the shortcomings of alternatives

that are less computationally expensive. It is shown that high

spatial resolution and the absence of a deep convection

scheme, together, conspire to accurately simulate tropical

FIG. 13. Mean absolute errors of the (left) M15, (center) M15noCu, and (right) M3 configurations for week 3 of all four cases, verified

against weekly averaged hourly ASOS observations. Errors averaged across all stations are shown in the bottom right of each panel.
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convection (and its associated teleconnections) in a global

model. The effects of parameterizing shallow convection on

organized features like the MJO remain unclear, as the

channel mesh simulation (whose parameterization functions

as a shallow scheme at high resolution) exhibits a degraded

MJO compared to the global CPM, contrary to prior re-

search. It is currently unknown how sensitive the results

shown here are to the type and version of the physics (e.g.,

microphysics) and dynamical core used, motivating the need

for more global CPM simulations. Indeed, the preliminary

finding of this study—that global convection-permitting

models improve the representation of tropical convection

and global predictive skill when compared to traditional

NWP models—can only be validated with a very large sam-

ple of simulations using a variety of modeling systems and

physics. The Dynamics of the Atmospheric general circula-

tion Modeled on Nonhydrostatic Domains (DYAMOND;

Stevens et al. 2019) campaign is an excellent first step toward

this goal.

While the operational implementation of a global CPM for

subseasonal applications is currently unfeasible because of

computational, input/output, node interconnect, and storage

limitations, it is appropriate to evaluate the potential benefits

of high-resolution global forecasts, since computer resources

will continue to grow. With increased efforts to build upon this

study and DYAMOND in the coming years, the benefits of

global CPMs for weather and climate forecasting can be

documented in preparation for the time when sufficient re-

sources become available.
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FIG. 14. Mean absolute error of weekly averaged MPAS forecasts across all ASOS stations.

Thin lines represent the four different cases, and thick lines show the four-case average (the

thick line only shows case 1 forMchannel). Dots indicate where forecast errors are significantly

(p # 0.05) different from all other forecasts.
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