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Abstract: The effect of urbanization on the urban thermal environment (UTE) has 

attracted increasing research attention for its significant relationship to local climatic 

change and habitat comfort. Using quantitative thermal remote sensing and spatial statistics 

methods, here we analyze four Landsat TM/ETM+ images of Guangzhou in South China 

acquired respectively on 13 October 1990, 2 January 2000, 23 November 2005, and 2 

January 2009, to investigate the spatiotemporal variations in the land surface temperature 

(LST) over five land use/land cover (LULC) types and over different urban/rural zones. 

The emphases of this study are placed on the urban heat island (UHI) intensity and the 

relationships among LST, the normalized difference built-up index (NDBI), and the 

normalized difference vegetation index (NDVI). Results show that: (1) the UHI effect 

existed obviously over the period from 1990 to 2009 and high temperature anomalies were 

closely associated with built-up land and densely populated and heavily industrialized 

districts; (2) the UHI intensities represented by the mean LST difference between the urban 
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downtown area and the suburban area were on average 0.88, 0.49, 0.90 and 1.16 K on the 

four dates, at the 99.99% confidence level; and (3) LST is related positively with NDBI 

and negatively with NDVI. The spatiotemporal variation of UTE of Guangzhou could be 

attributed to rapid urbanization, especially to the expanding built-up and developing land, 

declining vegetation coverage, and strengthening of anthropogenic and industrial activities 

which generate increasing amounts of waste heat. This study provides useful information 

for understanding the local climatic and environment changes that occur during rapid 

urbanization.  

Keywords: urban heat island; urbanization; NDVI; NDBI; remote sensing; Guangzhou 

 

1. Introduction 

The urban thermal environment (UTE) is an integrated presentation of the thermal aspects of the 

overall urban environment resulting from urbanization and industrialization. UTE constitutes an 

important element of the urban eco-environment [1] and could potentially be altered by anthropogenic 

forces such as land use/cover change (LUCC) [2], municipal and industrial waste heat, air pollution, 

and other factors [3,4]. With the increasing trends of global urbanization and climate warming over the 

last 50 years, the potential impacts of human activities on the urban thermal environment have been 

attracting increased attention from many researchers [5–12]. Urbanization alters the thermal properties 

of the land, changes the energy budget at the ground surface, changes the surrounding atmospheric 

circulation characteristics, generates a great amount of anthropogenic waste heat, and leads to a series 

of changes in the urban environmental system [13]. Particularly for a large city with rapid expansion 

and population growth, there could be drastic changes in the urban thermal environment. These types 

of changes are usually represented by variations in the urban heat island (UHI), which is the 

phenomenon where higher atmospheric and surface temperatures occur in urban areas than in the 

surrounding rural areas due to urbanization [14].  

Satellite remote sensing provides a straightforward and consistent way to determine the thermal 

differences between urban and rural areas. Considerable research has been conducted in the use of 

remotely sensed information to detect thermal characteristics of urban surfaces [15–18]. In the exiting 

thermal remote sensing studies, much emphasis has been concentrated on the relationship between the 

brightness temperature or the land surface temperature (LST) and vegetation indices such as the 

normalized difference vegetation index (NDVI) [2,19–22] and the percentage of impervious surface 

area [23–25]. With economic development and increasing urbanization, the impact of LUCC on the 

urban thermal environment has drawn widespread concern from many scholars [18,21,23,26,27].  

Gallo et al. [28] assessed the influence of the urban environment on the observed minimum air 

temperatures by analyzing urban–rural differences for NDVI and surface temperatures. Kalnay and 

Cai [3] estimated the impact of urbanization and other land uses on climate change by comparing 

trends in observations with Reanalysis temperatures. Chen et al. [29,30] analyzed the mechanism of 

the thermal landscape in Shanghai and developed a system to estimate the spatial pattern of the thermal 

landscape and dynamic variety. Gong et al. [19] argued that low vegetation coverage over the land 
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surface is one of the main reasons for the UHI in Beijing; in particular, built-up areas had contributed 

greatly to the UHI and the anthropogenic influence had become increasingly great with the rapid growth 

of the urban population. Yang et al. [31] analyzed the spatial-temporal characteristics of the effects of the 

intensity and extent of the UHI of Nanjing city in relation to the change in land use via remote sensing 

and meteorological data. Huang and Xu [32] utilized the thermal band of the Landsat ETM+ imagery to 

study the distribution of the urban heat island for different land cover/use types in Fuzhou. Zha el al. [33] 

proposed a method of using the normalized difference built-up index (NDBI) to automatically extract 

urban areas from TM imagery; this method was applied by Chen el al. [2] to analyze the relationship 

between UHI and land use/land cover (LULC) in the areas of rapid urbanization in the Pearl River Delta 

region, South China. Zhang et al. [11] used recent Landsat imagery of Fuzhou in China to quantitatively 

determine the extent of urban land-use and urban surface thermal patterns, showing that the correlations 

between NDVI and LST (as determined by the brightness temperature) are rather weak, but there are 

strong positive correlations between the percentage of the impervious surface area (ISA), NDBI and LST. 

These studies suggest that it is effective to determine the relationship between the urban LULC and 

associated thermal environment characteristics by the use of remote sensing. 

Recent studies based on meteorological data [34,35] and remotely sensed images [23,36–43] have 

revealed that the mean temperature of Guangzhou has been increasing and there were obvious UHI 

effects in Guangzhou due to rapid urbanization. However, most of these studies were centered 

geographically on the urban downtown areas and were based on brightness temperature. Information 

regarding the spatiotemporal variation and intensity of the UHI of the whole Guangzhou city remains 

rather limited. The aim of this study is to utilize remote sensing and spatial statistics to quantify the 

impacts of rapid urbanization, especially the rapid expansion of built-up land/area, on the urban 

thermal environment in the whole city of Guangzhou. We focus on the intensity of the UHI effect and 

the correlation among LST, NDBI and NDVI to reveal quantitative impacts of urbanization on the 

urban thermal environment. 

2. Study Area and Data 

2.1. Study Area 

The study area of the Guangzhou city (22°26′–23°56′N and 112°57′–114°03′E) is located in the 

central Pearl River Delta, north of the South China Sea (Figure 1), where dramatic urbanization and 

industrialization have occurred since the beginning of China’s economic reform and opening up. 

Guangzhou has experienced rapid economic development and population growth since the early 

1990s [44]. It saw an annual average GDP growth rate of 15.6% and an annual average urban 

population growth rate of 2.6% during the period from 1991 to 2007. With a residential population of 

10.05 million, a total area of 7,434.40 km
2
 and a built-up area of 843.70 km

2
 [45] in 2007, Guangzhou 

(GZ) is the third largest city in China and an important political, economic and cultural center in South 

China, which makes it an ideal region to study the UHI effect. Before 2005, the city was comprised of 

ten administrative districts, namely, Yuexiu (YX), Dongshan (DS), Liwan (LW), Fangcun (FC), 

Haizhu (HZ), Baiyun (BY), Tianhe (TH), Huangpu (HP), Huadu (HD) and Panyu (PY), and two 

subordinate county-level cities, Zengcheng (ZC) and Conghua (CH). To maintain the uniformity of the 
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extent of land throughout the duration of the study, we refer to the former eight districts (YX, DS, LW, 

FC, HZ, BY, TH and HP) as the urban downtown areas (DT), and the latter four districts/cities (i.e., 

HD, PY, CH and ZC) as the suburban/rural areas (SU) of Guangzhou because several rounds of 

adjustment of Guangzhou city’s administrative division had occurred. Thus, we can consistently 

compare the anomalies in the thermal environment and the changes in land use/cover of the urban and 

suburban/rural areas over time in spite of the adjustment of the administrative division of Guangzhou 

city. The built-up area refers to all of the urbanized regions in the entire city of Guangzhou, including 

its 12 administrative units. The terrain of the study area is high in the northeast and low in the south, 

with a mountainous region in the northeast, a hill and a basin in the central area, and the coastal 

alluvial plain of the Pearl River Delta in the south. There are many rivers, lakes, and abundant forest 

resources. Guangzhou has a typical subtropical coastal monsoon climate with an annual average 

temperature of 21.5 °C–22.2 °C, an annual average precipitation of 1,623.6–1,899.8 mm, and an 

annual average number of 149.2 rainy days. Normally, January is the coldest month with a mean 

temperature of 13.6 °C, and July is the hottest with a mean temperature of 28.6 °C in Guangzhou. 

Figure 1. Map of the study area showing the urban downtown area and rural area in 

Guangzhou, South China.  
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2.2. Data Source 

Three Landsat Thematic Mapper (TM) images from 13 October 1990 (acquisition time: 

approximately CCT 9:38 a.m.), 23 November 2005 (CCT 10:40 a.m.) and 2 January 2009 (CCT 10:36 

a.m.), and one Landsat Enhanced Thematic Mapper Plus (ETM+) image from 2 January 2000 (CCT 

10:45 a.m.) were selected for this study for their good imaging quality. To be succinct, the dates that 

the images were acquired are shortened to 1990, 2000, 2005 and 2009 respectively in the following 

text. These images (path 122/row 44) were downloaded from the USGS Earth Resource Observation 

Systems Data Center (http://glovis.usgs.gov) for free. Although we have thoroughly browsed the web-

based Landsat remote sensing sharing database, we are not able to find Landsat images taken on the 

same day of the years for this study because the area belongs to a subtropical monsoon climate with 

many cloudy and rainy days when a large number of the acquired images are covered by clouds by 

more than 10%. The Landsat images selected without clouds were all acquired under dry and adjacent 

seasons and clear sky conditions, two in the winters of 2000 and 2009, and two in the autumns of 1990 

and 2005 (Table 1). The radiometric and geometrical distortions were corrected to a quality level of 1G 

before delivery. Other ancillary data include the Guangzhou administrative map 2005 (1:256,000, prior 

to adjustment) which was used as the region of interest (ROI) of the study area, the Guangzhou 

topographic map (1:50,000), and the relevant meteorological data which were selected from the Global 

Daily Climatology Network (GDCN) datasets. One color composite of SPOT 5 images (2.5 m, 1 

January 2005) and Google Earth were used for training in the ROI selection for the LULC 

classification. The images were processed using ENVI 4.5 and ArcGIS 9.3 software, and data analysis 

and graphics were processed using SPSS 16 and Origin 8.0 software. 

Table 1. Several parameters of the selected remote sensing data and the associated 

meteorological conditions. 

Acquired  

Date 
Sensor 

Cloud 

(%) 

Tmean 

(K) 

Tmax 

(K) 

Tmin 

(K) 

DTR 

(K) 

Prcp 

(mm) 

Wmean 

(m/s) 

Vmean 

(km) 

1990/10/13 TM 0 298.0  303.2  293.5  9.7  0 5.7 7.2 

2000/1/2 ETM+ 0 292.4  300.0  285.7  14.3  0 1.9 3.0 

2005/11/23 TM 0 291.6  297.2  287.1  10.1  0 5.3 6.7 

2009/1/2 TM 0 284.5  291.2  279.2  12.0  0 4.2 5.6 

Cloud–percentage of cloud coverage; T–air temperature; DTR–diurnal temperature range, equal to Tmax minus Tmin; Prcp–

precipitation; W–wind speed; V–visibility. 

2.3. Image Preprocessing 

Although the selected images were geometrically corrected, the 1990 images cannot be overlaid 

with the others. All images were therefore further registered and rectified to a common Universal 

Transverse Mercator coordinate system (UTM, the north 49th zone) based on the image from 2005, 

and were resampled to a pixel size of 30 m for all bands (including 120 m and 60 m TIR bands) using 

the cubic convolution algorithm. The root mean square errors were less than 0.5 pixels (15 m) for all 

rectifications. The administrative map of Guangzhou was co-registered and digitalized with ArcMap. 

The borderlines of Guangzhou and its downtown areas (including the eight districts), the two suburban 

districts, and the two suburban counties were generated to create regions of interest (ROIs) which were 
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used as masks to obtain subset-images for LST analysis in each administrative zone. The FLAASH 

function of ENVI 4.5, which incorporates the MODTRAN4 radiation transfer code, was used to 

perform the atmospheric reflectance calibration. 

3. Methods 

3.1. Classification of Land Use and Land Cover 

A maximum likelihood algorithm was chosen as the supervised classification method because of its 

availability and the fact that it does not require an extended training process [46]. The supervised 

classification and assessment of accuracy were processed by ENVI 4.5. Throughout the study areas, 

the training polygons or regions of interest selected as representative of each class were digitized  

on-screen based on prior knowledge and visual interpretation; by this method, more than 200 training 

samples were selected for evaluation of signs of each LULC type. To obtain highly accurate LULC 

classifications, we used the SPOT 5 images (2.5 m) and Google Earth with the high-resolution remote 

sensing images to help select training ROIs of every LULC type. The LULC of Guangzhou was 

categorized into five types: built-up land (BL), woodland (WD), cultivated land (CL), water body (WT) 

and other land (TL). The built-up land is composed of urban and rural construction land, industrial and 

mining land, railways, roads and airport transportation lands. The woodland includes all types of forest 

and wood-covered land. The cultivated land is composed of arable land, cropland, grassland, greenbelt 

and garden lands. The water body consists of rivers, lakes and coastal wetland. The other land mainly 

comprises bare land, developing land, and the other unclassified lands.  

Table 2. User accuracy, overall accuracy, and kappa coefficients of land use/land cover 

(LULC) classification.  

Date 
User Accuracy (%) Overall 

Accuracy (%) 

Kappa 

Coefficient BL WD WT CL TL 

1990/10/13 99.37 72.04 100.00 98.15 99.34 91.30 0.88 

2000/1/2 99.88 91.69 99.60 61.83 74.66 86.52 0.83 

2005/11/23 94.67 84.15 99.89 66.21 84.46 87.08 0.84 

2009/1/2 100.00 97.71 100.00 99.52 90.42 98.29 0.98 

Note: BL – built-up land, WD – woodland, CL – cultivated land, WT – water body and TL – other land. 

The accuracy of the classified maps was verified using a random sampling method, where more 

than 100 samples were selected for each LULC type. Like the selection of training ROI for 

classification, the high-resolution images were also used to assess the accuracy of the classified maps. 

The classification accuracy of each land type was tested (Table 2). Among these types of land use, the 

water body and built-up land types had higher user classification accuracy than the other LULC types 

in all images, and the cultivated land type had lower user classification accuracy as a whole in the 

images from 2000 and 2005. The overall accuracies were approximately 91.30%, 86.52%, 87.08% and 

98.29% for the 1990, 2000, 2005 and 2009 classification maps, respectively. The kappa coefficients 

reached 0.88, 0.83, 0.84 and 0.98 for the four classification maps, respectively. These data indicate that 

the LULC classification results achieve relatively high accuracy and are adequate for this study. 
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3.2. Calculation of NDVI and NDBI 

The NDVI and NDBI indices were used to characterize the LULC types in the study region and to 

quantitatively study the relationship between the thermal environment field and urban expansion. 

NDVI has been generally used to express the density of vegetation [47], and NDBI has been recently 

employed as an indicator to represent the extent of urban built-up areas [2,33]. NDVI and NDBI were 

calculated according to Equations (1) and (2), respectively. 

4 3

4 3

b b
NDVI

b b





 (1) 

5 4

5 4

b b
NDBI

b b





 (2) 

where: b3, b4 and b5 are the digital number (DN) values of each pixel in the Landsat TM/ETM+ visible 

red band 3 (0.63–0.69 μm), near-infrared band 4 (0.76–0.90 μm), and middle infrared band 5  

(1.55–1.75 μm), respectively. 

3.3. Retrieval of Land Surface Temperature 

Two steps were taken to retrieve the land surface temperatures: (1) converting the spectral radiance 

to the at-sensor brightness temperature (i.e., black-body temperature); and (2) correcting for spectral 

emissivity [21]. First, the following atmospheric correction, Equation (3), was used to convert the 

digital number (DN) of the Landsat TM/ETM+ thermal infrared (TIR) band (10.44–12.42 μm) into the 

spectral radiance [48]. 

λL gain QCAL offset  
 (3) 

where: Lλ is the spectral radiance at the sensor’s aperture in W·m
−2

·sr
−1

·µm
−1

; gain is the rescaled gain 

in W·m
−2

·sr
−1

·µm
−1

 and offset is the rescaled bias in W·m
−2

·sr
−1

·µm
−1

 (the data product “gain” and 

“offset” is contained in the Level 1 product header or ancillary data record); and QCAL is the quantized 

calibrated pixel value in DN. Second, the spectral radiance was converted to the at-satellite brightness 

temperature (i.e., blackbody temperature, Tb) under the assumption of uniform emissivity for a 

relatively small region [48], using Equation (4). 

2
b

1 λln( / 1)

K
T

K L


  
(4) 

where: Tb is the effective at-satellite temperature in K; Lλ is the integrated band radiance 

(W·m
−2

·sr
−1

·µm
−1

) from Equation (3) above; and K1 and K2 are the pre-launch calibration constants 

chosen to optimize the approximation for the band pass of the sensor. For Landsat 7, K1 is 

666.09 W·m
−2

·sr
−1

·µm
−1

 and K2 is 1,282.71 K. For Landsat 5, K1 is 607.76 W·m
−2

·sr
−1

·µm
−1

 and K2 is 

1,260.56 K.  

The temperature values obtained above are referenced to a black body. Therefore, corrections for 

the spectral emissivity (ε) became necessary according to the nature of the land cover [37]. The 

emissivity-corrected land surface temperatures were then computed using the Artis and Carnahan 

Method [49] as shown in Equation (5). 
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b
s

b1 (λ / ) ln

T
T

T  


   
(5) 

where Ts is the land surface temperature (K), λ is the wavelength of the emitted radiance (for which the 

peak response and the average of the limiting wavelengths (λ = 11.5 μm) [50] will be used);  ρ = hc/σ 
(1.438 × 10

−2 
m·K); σ is the Stefan-Boltzmann constant (5.67 × 10

-8
 W·m

−2
·K
−4

 = 1.38 × 10
−23 

J·K
−1

); h 

is Planck’s constant (6.626 × 10
−34

 J·s); c is the velocity of light (2.998 × 10
8
 m·s

−1
); ε is the land 

surface spectral emissivity of the Landsat TM/ETM+ band 6, which is closely related to NDVI. The 

proposed method uses different values for the emissivity for different values of the NDVI [51–53]:  

(a) When NDVI < 0.05, ε = 0.973, but for water body, ε = 0.995 [54];  

(b) When NDVI > 0.70, ε = 0.99;  

(c) When 0.05 ≤ NDVI ≤ 0.70, ε is computed using Equation (6). 

ε = 0.004Pv + 0.986 (6) 

where Pv is the vegetation proportion obtained by Equation (7). 

Pv = [(NDVI − NDVIs)/(NDVIv − NDVIs)]
2
 (7) 

where NDVIv and NDVIs are the NDVI values of the vegetation and soil, respectively. Because of the 

lack of spectral measurements of the study area, NDVIv is assigned a value of 0.70, and NDVIs is 

assigned a value of 0.05 to estimate the vegetation coverage. 

Following the above procedure, the land surface temperature (LST, Ts) of each pixel on the thermal 

infrared (TIR) images was derived from the geometrically corrected TM TIR (band 6) images from 13 

October 1990, 25 November 2005 and 2 January 2009, and ETM+ TIR (band 6L) image from 2 

January 2000. 

3.4. LST Normalization and UHI Intensity 

In general, it is not appropriate to directly compare the urban surface thermal environment represented 

by the land surface temperatures (LST) between multiple date periods due to seasonality and the  

inter-annual variability of the atmospheric conditions [54]. An LST normalization method, shown as 

Equation (8), is used to reduce the influence of using images from different temporal dates [54].  

s min

max min

i
i

T T
U

T T




  (8) 

where Ui is the LST of pixel i on the TIR image after normalization, also called the urban thermal 

environment index (UTEI); Tsi is the initial LST in degrees Kelvin of pixel i retrieved from the Landsat 

satellite images; Tmin is the minimum LST, and  Tmax is the maximum LST on the whole retrieved 

image. To reduce the influence of abnormal values on the UHI intensity, Tmin, Tmax and Tmean are 

statistically computed by removing the extreme values at the 99.99% confidence level.  

According to the UTEI values (0 ≤ Ui ≤ 1), we equally classified the UTEI distribution in five 

zones: the very low temperature zone (0 ≤ Ui < 0.2), the low temperature zone (0.2 ≤ Ui < 0.4), the 

moderate temperature zone (0.4 ≤ Ui < 0.6), the high temperature zone (0.6 ≤ Ui < 0.8), and the very 

high temperature zone (0.8 ≤ Ui ≤ 1). The area where Ui is greater than or equal to 0.6 and less than 
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or equal to 1.0 (0.6 < Ui ≤1.0) was defined as the UHI distribution zone. That is, the combination of 

zone 4 and zone 5 was called the UHI distribution zone. Accordingly, the spatial distribution and 

variation of UHI can be easily analyzed from one UTEI thematic map.  

Additionally, we introduced an improved urban heat island index (UHII), which was defined as 

Equation (9), to describe variations of intensities in the UHI effect from the multi-date remotely sensed 

data, similar to the urban heat island ration index (URI) proposed by Xu and Chen [54], but not being 

divided by 100. The UHII can be used to study the temporal variations of the UHI intensity retrieved 

from multi-date images. Generally, the greater UHII, the stronger is the UHI effect. 

1

1 n

i i

i

UHII w P
m 

   (9) 

where UHII is the urban heat island index, m is the level number of normalization (m = 5 in the present 

study), n is the level number of the UHI fields (n = 2), i is the level of UHI, w is the weight value 

which is the number of level i (w = 4 or 5), and P is the percentage of level i. 

The intensity of the UHI effect is measured as the difference between the peak temperature found 

inside the urban area and the background rural temperature [55]. Accordingly, we defined a mean 

intensity of the UHI effect (Im) to analyze the anomalies of UHI over the period from 1990 to 2009, as 

in Equation (10), similar to the study method on UHI based on meteorological data. 

m u rI T T   (10) 

where Im is the mean intensity of UHI (K) in the study area, Tu is the mean LST (K) in the urban 

downtown area or the built-up land, and Tr is the mean LST (K) in the suburban/rural areas or the other 

land types except the built-up land, detailed below in Section 4.3.2. 

4. Results and Discussions 

4.1. Urban Expansion Analysis Based on Land Use/Cover Change 

Urbanization is one of the strongest forces that drive land use/cover changes (LUCC) and impact 

climate warming [3]. It is possible to analyze the LUCC to reveal the degree of urbanization of a city 

using remote sensing. It is assumed that the area of built-up land (BL) could be taken as the urbanized 

area on the classification map to study the urban expansion of Guangzhou city. The extent of built-up 

area can be extracted from the LULC thematic maps (as shown in red in Figure 2). From Figures 2 and 3, 

it can be determined that the urban built-up area of Guangzhou city expanded rapidly and its land 

use/cover pattern changed greatly from 1990 to 2009. The results indicate that the urban built-up area 

of Guangzhou was 380.83 km
2 

in 1990, 575.48 km
2
 in 2000, 738.45 km

2
 in 2005, and 869.82 km

2
 in 

2009. The extent of the built-up area increased 184.04 km
2 

from 1990 to 2000 and 281.20 km
2
 from 

2000 to 2009. During this 19-year period, the urban built-up area had expanded by 51.1% (1990–2000), 

51.1% (2000–2009) and 128.4% (1990–2009). The corresponding average annual growth rates are 

4.2% (1990–2000), 4.7% (2000–2009), and 4.4% (1990–2009). 



Remote Sens. 2012, 4                            

 

2042

Figure 2. Land use and land cover spatial variations in Guangzhou from 1990 to 2009. 

 

Figure 3. Land use/cover changes (LUCC) statistics of Guangzhou from 1990 to 2009. 

 

4.2. Spatiotemporal Variation in the Urban Thermal Environment 

To investigate the intensity and variation of the UHI effect, we focused our analysis on the 

spatiotemporal patterns and intensity of the UHI effect within each individual image. The Density 

Slice function in ENVI was used to display the extent of UHI using the UTEI thematic map with 10 

uniformly spaced ranks in different colors. Thus, the five levels of the temperature zones can be 

displayed clearly, and the intensity of the UHI effect can be quantified in the individual thermal image 

and then compared between different temporal images [54]. This method provides not only the 

magnitude of the land surface temperature variation of the entire metropolitan area but also the spatial 

extent of the surface heat island effects. The results show that the LSTs of Guangzhou ranged from 

289.3 to 304.8 K, 286.6 to 301.8 K, 283.7 to 300.5 K, and 276.9 to 298.8 K, with a mean value of 

295.2 K, 292.5 K, 291.7 K and 286.9 K in 1990, 2000 2005, and 2009, respectively, at the 99.99% 

confidence level. 
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The spatial variation in the UTEI over different zones could reveal the variation in the UHI. It was 

found that changes in the UTEI distribution can be predominantly related to the expansion of built-up 

land during the study period in Guangzhou. High UTEI, shown in red, was mainly distributed in the 

urban built-up area and partly in the harvested land and bare land in 1990, largely in the harvested land 

and bare land in 2000, and considerably in the urban built-up area and developing land, and partly in 

the harvested land and bare land in 2005 and 2009. Compared with Figures 2 and 4, it can be seen that 

the UHI distributions in 1990, 2005 and 2009 were concentrated on the built-up and developing areas, 

connecting mainly with the built-up land (BL) and other land (TL) types. The UHI pattern changed 

greatly from 1990 to 2009. The hot spots or UHI were found mainly in the built-up areas including 

densely populated districts such as the Liwan, Yuexiu and Tianhe districts, expressways and other 

main transportation lines, and especially in the heavy industry zones with high energy-consumption 

and large heat-releasing enterprises. For example, a strong UHI effect can be seen in Figure 4 at the 

locations of the Zhujiang Steel Works Corporation in the Fangcun district, the Yuancun Cogeneration 

Plants in the Huangpu district, and the Guangzhou Pearl River Power Plant in the Panyu district, which 

is currently the largest coal-fired power generation enterprise in Guangzhou. The new Baiyun Airports 

also had high temperatures in the 2005 and 2009 images. As urbanization expanded, new hot spots 

appeared in the eastern, southeastern and southern parts of Guangzhou, for example, in the Zengcheng 

city, the Huangpu and Panyu (the south part of which was divided into Nansha after 2005) districts 

from 1990 to 2009. There were some hot spots evident in the Panyu (Nansha) and Zengcheng zones in 

2005 and 2009, but these hot spots were not discernible in 1990 and 2000. The new hot spots occurred 

likely because of the rapid development of heavy industries such as petrochemical, machine-building 

and automobile industries in these regions after 2000. Our analysis suggests that heavy industrial 

activities could worsen the urban thermal environment through massive land development and waste 

heat releases and could cause obvious UHI effects. In contrast, there is an apparent “cool valley” which 

can be clearly identified on the maps of 2005 and 2009 at the 30 m resolution scale (Figure 4(c,d)) at the 

site of the Guangzhou International Fair Center (also known as the “Canton Fair”), the second greatest 

fair center in the world, which was built up completely and opened in 2004. The appearance of this 

“cool valley” is very likely because the designated land surface spectral emissivity value ε of 0.973 

(see Equation (5)) is much greater than the actual emissivity of the great Canton Fair buildings with 

their polished silver-gray arc-shaped roofs of massive metal materials (Figure 5). An overestimated 

emissivity may result in lower retrieval temperatures than expected. Because of the lack of the true 

emissivity value, we could not further retrieve the emissivity-corrected temperature. Nevertheless, the 

emissivity of land surface objects is crucial in determining the temperature of land surface. Some 

suitable construction materials and reasonable building design (such as “white roofs”) could also play 

an important role in lowering the LST and mitigating the UHI effect. The analysis results (Figure 6) 

show that the downtown area (DT) had the highest mean temperatures among the five zones (DT, PY, 

HD, ZC and CH) in 1990, Huadu (HD) had the highest mean temperature in 2000 and Panyu (PY) had 

the highest mean temperature in 2005 and 2009. This finding indicates that the highest intensity of 

UHI may not always exist in the downtown area of Guangzhou (i.e., the eight old districts). 
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Figure 4. Urban thermal environment index (UTEI) maps showing the distribution of 

urban heat island (UHI) in Guangzhou from 1990 to 2009. 

 

Figure 5. Photo of the Guangzhou (Pazhou) International Fair Center. Image downloaded 

from http://www.21cantonfair.com/en2004/pzzg/index.asp. 

 

According to our calculations based on Equation (8), the UTEI varied at ranges of 0.00 to 0.99, 0.02 

to 1.00, 0.01 to 1.00, and 0.01 to 0.98, with means of 0.38, 0.39, 0.43 and 0.46 in 1990, 2000 2005, 

and 2009, respectively, at the 99.99% confidence level (Table 3), showing a rising trend in the mean 

UTEI from 1990 to 2009 over the study period. We defined the UHI distribution zone as the 

combination of zone 4 and zone 5 where 0.6 ≤ UTEI < 0.8. The areas of the very high temperature 

zone (zone 5) were 1.57, 2.69, 3.91 and 5.00 km
2
, accounting for 0.02%, 0.04%, 0.06% and 0.07% of 

the whole city in 1990, 2000, 2005 and 2009, respectively, showing an increasing trend from 1990 to 

2009. The areas of the high temperature zone (zone 4) were 187.39, 88.68, 314.52 and 359.27 km
2
, 

occupying 2.64%, 1.25%, 4.42% and 5.06% of the whole city in the four dates, respectively, indicating 

an increasing trend from 1990 to 2009 with an exception in 2000 due to a severe cold snap that 

occurred the day the image was taken. Because the area of zone 4 was much greater than that of zone 5, 

the UHII was influenced mainly by zone 4. Consequently, the variation in UHII had a similar trend as 

the area of zone 4, with values of 2.13, 1.04, 3.59 and 4.12 on the four dates, indicating an increasing 

trend from 1990 to 2009 with an exception in 2000, as illustrated in Figure 4. 
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Figure 6. The variations in the land surface temperature (LST) over different zones in (a) 

1990, (b) 2000, (c) 2005 and (d) 2009. 

 

 

 
Tmin is the minimum temperature (K), Tmax is the maximum temperature (K), and Tmean is the mean temperature (K). The 

zones denote GZ – Guangzhou citywide, DT - downtown area, PY – Panyu, HD – Huadu, ZC – Zengcheng, CH – 

Conghua and SU – suburban area. One standard deviation of the mean temperature (Tmean) is marked. 

Table 3. Statistics of the urban thermal environment index (UTEI) and urban heat island index (UHII). 

Date Citywide Zone 4 Zone 5  

UHII 
Para. Min Max Range Mean SD Area (km

2
) Percent Area (km

2
) Percent  

1990 0.00 0.99 0.99 0.38 0.10 187.39 2.64 1.57 0.02  2.13 

2000 0.02 1.00 0.98 0.39 0.10 88.68 1.25 2.69 0.04  1.04 

2005 0.01 1.00 0.99 0.43 0.11 314.25 4.42 3.91 0.06  3.59 

2009 0.01 0.98 0.98 0.46 0.10 359.27 5.06 5.00 0.07  4.12 

Min – minimum UTEI, Max – maximum UTEI, range – maximum UTEI minus minimum UTEI, Mean – maximum 

UTEI, SD refers to one standard deviation of the mean temperature (Tmean), UHII – urban heat island index. 

4.3. Impact of LULC on the Land Surface Temperature 

4.3.1. Characteristics of Land Surface Temperature by LULC  

The distinctive land surface temperature patterns are associated with the thermal characteristics of 

the land cover types [23,56]. It is necessary to further study the changes of temperature by LULC for 

studying the effect of urbanization on the local thermal environment. Therefore, we obtained the 

thermal signatures of each land use/cover type utilizing the statistical tool of ENVI with ROI masks of 
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each LULC type in the same year. The mean temperature of each LULC type was derived by 

averaging all corresponding pixel values. The results are shown in Table 4 and Figure 7. It was found 

that the built-up land (BL), which was mainly linked with the residential, commercial, and industrial 

areas, exhibited the highest mean surface temperature over the study period 1990–2009, followed by 

other land (TL), which was usually composed of bare and developing lands in 1990, 2005 and 2009. 

The woodland (WD), which were mostly located in the mountains, had the lowest mean surface 

temperature among all of the LULC types in 1990, 2005 and 2009, and the water body type had the 

lowest mean surface temperature in 2000. The highest standard deviation of the other land (TL) in 

1990, 2000 and 2005 also shows the greatest temperature fluctuation over the corresponding LULC 

region. The detailed analysis of the LST over LULC within the whole Guangzhou city indicates that 

high population densities and frequent human activities could be the main contributors to the intensity 

of the UHI. This analysis suggests that the urban expansion of built-up and developing/bare lands, or 

so-called urban land development, could raise the land surface temperatures by replacing natural 

vegetation with non-evapotranspirating surfaces such as asphalt and concrete. Therefore, it is feasible 

to alleviate the UHI effect by optimizing land development and planning for land use and adding 

natural vegetation areas. 

Table 4. Statistics of the land surface temperature (K) by different land use/land cover 

types in Guangzhou from 1990 to 2009. 

Date 1990/10/13  2000/1/2 

Para. Tmin Tmax RTR Tmean SD  Tmin Tmax RTR Tmean SD 

BL 292.5 303.2 10.7 297.2 1.2  291.0 296.4 5.4 293.5 0.8 

WD 289.0 299.1 10.1 294.2 1.3  286.7 298.5 11.7 292.4 1.4 

TL 291.7 308.9 17.3 296.9 1.3  283.8 303.6 19.9 292.6 1.6 

WT 293.2 300.3 7.1 295.3 1.0  287.1 297.4 10.3 289.6 1.0 

CL 292.1 299.8 7.7 295.1 1.2  289.3 298.5 9.2 293.2 1.1 

 

Date 2005/11/23  2009/1/2 

Para. Tmin Tmax RTR Tmean SD  Tmin Tmax RTR Tmean SD 

BL 288.5 298.1 9.6 294.2 1.2  280.0 297.5 17.5 289.2 1.6 

WD 283.8 296.2 12.4 290.3 1.7  278.3 292.6 14.4 285.4 2.0 

TL 283.6 303.1 19.5 294.2 1.9  280.0 296.7 16.7 288.4 1.0 

WT 287.0 294.8 7.8 291.5 1.0  281.7 290.3 8.5 287.6 1.0 

CL 287.6 298.1 10.5 292.6 1.2  281.8 294.5 12.7 287.9 1.1 

RTR means the temperature difference between the maximum temperature (Tmax) and minimum temperature (Tmin) in an 

individual land type. SD refers to one standard deviation of the mean temperature (Tmean). Tmin, Tmax, Tmean and SD were 

all statistically computed by removing the extreme values outside the 99.99% confidence level. 
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Figure 7. The variations in the LST over different land use/land cover types in (a) 1990, 

(b) 2000, (c) 2005 and (d) 2009. 

 

 

 
BL – built-up land, WD – woods land, CL – cultivated land, WT – water body and TL – other land. One standard 

deviation of the mean temperature (Tmean) is marked. 

4.3.2. UHI Intensity 

In this study, the mean intensity of UHI (Im) was calculated by subtracting the mean temperature of 

the suburban/rural area from that of the urban downtown area, a method that is generally applied in the 

study of atmospheric UHI. As mentioned in Section 2.1, we refer to Panyu, Huadu, Zengcheng and 

Conghua as the suburban/rural areas. The results of the analysis indicated that the intensities of the 

UHI represented by the mean LST difference between the urban downtown area and the suburban area 

(UHID-S) were on average 0.88, 0.49, 0.90 and 1.16 K on 13 October 1990, 2 January 2000, 23 

November 2005 and 2 January 2009, respectively. The intensity of UHI fluctuated slightly from 1990 

to 2009 at different urban-rural extents (Figure 8(a)). The intensity of UHI expressed by the mean LST 

difference between the urban downtown area and Conghua (UHID-C) were the highest in 1990, 2005 

and 2009; however, that expressed by the mean LST difference between the urban downtown area and 

Panyu (UHID-P) was the highest in 2000. It is evident from Figure 8a that the intensity of UHI 

expressed by the mean LST difference between the urban downtown area and Panyu (UHID-P) was 

negative in 2005 and 2009, as were the intensities of UHI expressed by the mean LST difference 

between the urban downtown area and Huadu (UHID-H) and Zengcheng (UHID-Z) in 2000. This is likely 

due to the differences in vegetation coverage, crop cultivation, and atmospheric and meteorological 

conditions when the images were acquired. Consequently, the mean LST of Panyu in 2005 and 2009, 
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and that of Huadu in 2000 were higher than expected. However, it was interesting to discover that 

there was an increasing tendency of UHI as expressed by the differences of the mean LSTs between 

the urban downtown area and Huadu (UHID-H), Zengcheng (UHID-Z), Conghua (UHID-C), and the 

suburban and rural area (UHID-S), or the whole city (UHID-G) from 2000 to 2009 in seasons closer to 

one another. Therefore, it is better to use remote sensing data that are from seasonal dates and 

atmospheric conditions that are as near or same as possible to effectively study the variation in the 

intensity of UHI over time. 

Figure 8. Variations in the intensity of the UHI represented by differences between (a) the 

downtown area and the other zones (i.e., Panyu (D-P), Huadu (D-H), Zengcheng (D-Z), 

Conghua (D-C), Guangzhou citywide (D-G), and the suburban area (D-S)) and (b) the 

built-up land and the other LULC types (i.e., woodland (B-F), other land (B-T), water body 

(B-W), cultivated land (B-C), and Guangzhou citywide (B-G)).  

 

We also analyzed the LST differences between the built-up land and all the other types of lands. As 

shown in Figure 8(b), the intensity of the UHI effect of the mean temperature difference between the 

built-up land and woodland (UHIB-F) was the most significant, and that between the built-up land and 

other land was the lowest in the 1990, 2005 and 2009 LST maps. The highest UHI as signified by the 

mean LST difference between the built-up land and the woodland occurred in 2000 because the mean 

temperature of the water bodies in 2000, particularly within the Pearl River Estuary, was the lowest of 

all the study dates. This finding suggests that the built-up land could contribute to UHI much more 

than the woodland, the water bodies and the cultivated land, and that urbanization would worsen the 

urban thermal environment to some degree. Our analysis is in agreement with the results of the study 

by Weng (2001) in the Zhujiang Delta, China [23]. The present results show that the UHIs determined 

by the mean LST differences between the built-up land and the whole city of Guangzhou were on 

average 2.04, 1.03, 2.43 and 2.34 K on 13 October 1990, 2 January 2000, 23 November 2005 and 2 

January 2009, respectively, fluctuating at a magnitude of 1.40 K, and that the UHIs represented by the 

mean LST differences between the built-up land and woodland were on average 1.88, 3.89, 2.67 and 

1.66 K on the four dates, respectively, fluctuating at a magnitude of 2.23 K. 
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4.3.3. Variation in the Regional Temperature Range  

To further study the temperature bias of different regions, a regional temperature range (RTR) index, 

similar to the diurnal temperature range (DTR, equal to the difference of the daytime maximum 

temperature minus the nighttime minimum temperature of one day), was used to quantitatively describe 

the variation of the urban thermal environment in a city. We defined the RTR as the difference of the 

maximum temperature minus the minimum temperature in a certain region on one TIR image. Although 

it may not be entirely free of the perturbation from atmospheric and terrain effects on the spectral 

radiance in images from different dates, a RTR may carry information on urban warming and UHI 

evolution. We hypothesize that an increase in the RTR over time could indicate a warming trend at a 

certain confidence level, which is similar to what a decline in the DTR indicates. A greater RTR 

implies that there would be a greater temperature change potential and a stronger trend in the intensity 

of UHI. Figure 9(a) shows that the RTR had a climbing trend in each zone (DT, PY, ZC and CH), 

excluding the Huadu district. The RTR of Huadu (HD) declined continuously from 1990 to 2005 but 

rose in 2009. The reason for the decline in RTR in Huadu from 1990 to 2005 may be because of the 

gradual reduction in the area of wetlands (with low LST) in Huadu since 1990. This suggests that the 

downtown area (DT), Panyu (PY), Zengcheng (ZC) and Conghua (CH) contributed to the urban heat 

island effect and climatic warming during the study period, while Huadu played a cooling role from 

1990 to 2005 and a warming role in 2009 in the urban climatic change of Guangzhou. The downtown 

area was more vulnerable to UHI effects due to its greater RTR in 2009. In addition, Figure 9b shows 

that the TL had the highest RTR value of all the LULC types in 1990, 2000 and 2005, and that the 

RTR increased from 2000 to 2009 in the BL, WD and CL types, which appears to indicate a warming 

tendency in Guangzhou. This finding suggests that built-up (BL) and other land (TL) land could likely 

contribute the most to urban climatic warming because they mainly comprise the developed, 

developing and bare lands with low spectral emissivity and heat capacity. Interestingly, the RTR of 

WT also showed a rising trend during the period 1990-2009 if 2000 is excluded. The increasing 

sequence of the RTR in land type is other land (TL) > built-up land (BL) > woods land (WD) > 

cultivated land (CL) > water body (WT) in 1990, TL > WD > WT > CL > BL in 2000, TL > WD > 

CL > BL > WT in 2005, and BL > TL > WD > CL > WT in 2009. The TL always had the highest RTR 

of the five LULC types from 1990 to 2005 and the built-up land had the highest RTR of the five LULC 

types in 2009. 

4.4. Correlation Analysis of LST and NDBI, NDVI 

The relationship between the LST and vegetation indices, such as NDVI, has been considerably 

documented in the literature [2,23,57]. The urban thermal environment is closely related to the 

reduction in surface transpiration caused by a decrease in vegetation coverage. Previous studies 

indicated that the NDVI could be taken as an indicator of the representative vegetation coverage and 

land surface radiance temperature [57]; whereas the NDBI has been used in the extraction and 

mapping of the built-up area [33]. Both NDVI and NDBI were considered as relating closely to UHI 

by Chen et al. [2] who proposed two bivariate regression models between the NDVI, NDBI and the 

brightness temperature. Although Sun et al. [58] revealed that the NDVI and NDBI were effective 
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indicators for quantifying the impacts of LULC on the LST, it is necessary to further analyze the 

correlation among the LST, NDBI and NDVI to better understand the impacts of urban expansion and 

vegetation change on the urban thermal environment.  

Figure 9. The variations in the regional temperature range (RTR) over different zones (a) 

and LULC types (b). 

 

As shown by Figure 10, higher LSTs are usually found in the areas of lower NDVI values and 

higher NDBI values because of the absence of vegetation cover or the predominance of high-density 

urban areas, including commercial, industrial, and some residential developments. To further study the 

quantitative relationship among the LST, NDBI and NDVI, we took the 1990 image as an example. 

Four profiles from the urban downtown area to Huadu-Panyu, Conghua, Zengcheng, and Huangpu (i.e., 

HD–GZ–PY, GZ–HP, GZ–ZC and GZ–CH profiles, as shown in Figure 1 in red bold lines) were 

selected for analysis. We first analyzed the relationships between the three variables, and then placed 

the emphasis on the multiple correlations between the LST and the other two variables. The results of 

the multiple correlation and regression analyses by combining all cases (n = 9,160) from the four 

profiles indicate that LST presents a positive correlation with NDBI (R
2
 = 0.53, p < 0.001) and a 

negative correlation with NDVI (R
2
 = 0.37, p < 0.001), and that NDBI correlates weakly and 

negatively with NDVI (R
2
 = 0.29, p < 0.001). These results are consistent with Ma et al. [42]. Based 

on these, we further studied the correlation of the NDBI, NDVI and LST by the multivariate statistics 

method (Table 5).  

Table 5. The parameters of a multivariate linear regression of the LST, NDBI and NDVI 

from four profiles. 

Profile NDBI NDVI Constant R
2
 F p Number of Samples 

HD-GZ-PY 5.23 −2.92 296.83 0.60 2148.53 0.00 2,809 

GZ-HP 3.98 −1.78 297.12 0.43 382.00 0.00 1,029 

GZ_ZC 4.98 −1.68 297.08 0.53 1244.91 0.00 2,224 

GZ-CH 7.21 −2.42 296.87 0.64 2572.25 0.00 2,918 

Combined 5.23 −2.92 296.83 0.60 6807.01 0.00 9,160 
HD–GZ–PY refers to a profile from Huadu to the Guangzhou downtown area and to Panyu, GZ–HP refers to a profile 

from the Guangzhou downtown area to Huangpu, GZ–ZC refers to a profile from the Guangzhou downtown area to 

Zengcheng, and GZ–CH refers to a profile from the Guangzhou downtown area to Conghua, as showed in Figure 1. 
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All profiles consistently show that higher LSTs are generally located in the areas of higher NDBI, 

otherwise lower LSTs are usually found in the areas of higher NDVI, and that the LST correlates 

closely with NDBI and NDVI, as shown in Figure 10. A multivariate linear regression analysis among 

the NDBI, NDVI and LST combining all cases (n = 9,160) from the four selected profiles presents a 

very close relationship as shown by Equation (11).  

5.23 2.92 296.83LST NDBI NDVI      (11) 

The correlation coefficient (R
2
 = 0.60, p < 0.001) from the multivariate linear regression is greater 

than those of two simple linear regressions, R
2
 = 0.53 for LST-NDBI and R

2
 = 0.37 for LST-NDVI, 

respectively. The available statistical eigenvalue (F = 6,807.01) proves the good reliability of the 

analysis model. This finding implies that Equation (11) could be used to monitor the quantitative 

relationship of the three variables of LST, NDBI and NDVI in the area of the Guangzhou city. Further 

work will be undertaken to test its availability and usability in multi-temporal images. 

Figure 10. The correlation among NDBI, NDVI and LST (Ts) from four profiles in 

Guangzhou city in 1990.  

 

The curves are smoothed by the moving average method. NDBI is the dark yellow line, NDVI is the 

blue line and LST (Ts) is the red line. ba – Baiyun Airport, bm – Baiyun Mountains, cp – cogeneration 

plant, pr – the Pearl River, sw – Steel Works and jm – Jiulian Mountains. 

5. Conclusions 

In this study, quantitative remote sensing technology and spatial/multivariate statistics methods 

were used to study the impacts of rapid urbanization on the urban thermal environment of Guangzhou, 

South China. The results indicate the following overall characteristics of the thermal environmental 

changes of the city: (1) The urbanization process in Guangzhou had a great impact on its thermal 

environment with obvious UHIs during the period from 1990 to 2009; the mean temperatures were 

higher in urban areas than in the surrounding suburban/rural areas over the entire period; high 

temperature anomalies were closely associated with built-up land and densely populated and heavily 

industrialized districts. (2) The UHI effect intensities calculated by the mean LST differences between 

the urban downtown area and the suburban/rural area were on average 0.88, 0.49, 0.90 and 1.16 K on 
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13 October 1990, 2 January 2000, 23 November 2005, and 2 January 2009, respectively, fluctuating at 

a magnitude of 0.67 K; the intensities of the UHI effect signified by the mean LST differences between 

the built-up land and the whole city of Guangzhou were on average 2.04, 1.03, 2.43 and 2.34 K on 13 

October 1990, 2 January 2000, 23 November 2005 and 2 January 2009, respectively, fluctuating at a 

magnitude of 1.40 K. 3) There is a strong linear relationship (R
2
 = 0.60, p < 0.001) among the LST, 

NDBI and NDVI along four profiles in the images from 13 October 1990. The general urban LST 

distribution patterns that are important in determining the ecosystem and climatic conditions are 

therefore directly connected to anthropogenic impacts. The LST, NDBI and NDVI together can 

describe the spatial distribution and temporal variation in the urban thermal environment in a 

qualitative manner. The result from this remote sensing study shows that LUCC, especially the 

expansion of built-up land area is a major contributor to the UHI effect or urban climatic warming, and 

that the spatiotemporal variation in UHI can be very likely attributed to surface modifications caused 

by rapid urbanization, particularly due to the expansion of built-up area, the decline in vegetation 

coverage, and the enhancement of anthropogenic living and industrial activities which results in a large 

amount of waste heat. This finding suggests that some measures (e.g., increasing forest and garden 

lands, controlling the population density of the urban downtown area, reasonable planning of the 

distribution of industry, etc.), could be taken to mitigate the UHI effect for a healthy urban 

environment and sustainable development.  

It is worthy of pointing out that since the spectral emissivity is a fundamental parameter in the 

thermal remote sensing data processing algorithm for retrieving the LSTs, it is very important to adopt 

a better estimation of the emissivity of land surface objects to increase the accuracy of the LST 

retrieval. Additionally, although there is a close correlation among the LST, NDBI, and NDVI at the 

selected profiles from the 1990 image of Guangzhou, this does not necessarily imply that the NDBI 

and NDVI are causative factors for interpreting the UHI effects in Guangzhou. It is therefore 

recommended that more multi-date images from the same season should be extensively analyzed to 

provide more reliable evidence for quantitative thermal remote sensing, so as to better understand the 

impacts of urbanization on the urban thermal environment. 
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