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To explore the information seeking behaviors in microblogosphere, the microblog track at TREC 2011 intro-
duced a real-time ad-hoc retrieval task that aims at ranking relevant tweets in reverse-chronological order.
We study this problem via a two-phase approach: 1) retrieving tweets in an ad-hoc way; 2) utilizing the
temporal information of tweets to enhance the retrieval effectiveness of tweets. Tweets can be categorized
into two types. One type consists of short messages not containing any URL of a Web page. The other type
has at least one URL of a Web page in addition to a short message. These two types of tweets have dif-
ferent structures. In the first phase, to address the structural difference of tweets, we propose a method to
rank tweets using the divide-and-conquer strategy. Specifically, we first rank the two types of tweets sep-
arately. This produces two rankings, one for each type. Then we merge these two rankings of tweets into
one ranking. In the second phase, we first categorize queries into several types by exploring the temporal
distributions of their top-retrieved tweets from the first phase; then we calculate the time-related relevance
scores of tweets according to the classified types of queries; finally we combine the time scores with the IR
scores from the first phase to produce a ranking of tweets. Experimental results achieved by using the TREC
2011 and TREC 2012 queries over the TREC Tweets2011 collection show that: (i) our way of ranking the two
types of tweets separately and then merging them together yields better retrieval effectiveness than rank-
ing them simultaneously; (ii) our way of incorporating temporal information into the retrieval process yields
further improvements, and (iii) our method compares favorably with state-of-the-art methods in retrieval
effectiveness.
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1. INTRODUCTION

Twitter, a worldwide popular microblog service, has a daily volume of over 340 million
tweets,1 which motivates research interests in studying the information seeking
behaviors within microblogosphere. The microblog track at TREC 2011 introduced
a real-time ad-hoc retrieval task, whereby a user wishes to see the most recent and

1http://en.wikipedia.org/wiki/Twitter
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relevant information to a query within Twitter [Ounis et al. 2011]. To respond to
a query with a timestamp t, the retrieved tweets should satisfy the following three
conditions: (1) relevant to the query, (2) published on or before time t, and (3) ranked
in reverse-chronological order of their publishing times.

Some studies have been done in information retrieval of tweets. These studies can be
categorized into two major classes. The techniques in the first class [Choi et al. 2012;
Duan et al. 2010; Han et al. 2012; Metzler and Cai 2011; Zhang et al. 2012] rank tweets
by measuring the lexical similarities between tweets and queries. The methods in the
second class [Amati et al. 2012; Choi and Croft 2012; Dong et al. 2010b; Efron and
Golovchinsky 2011] rank tweets by exploring temporal information (the publishing
times of tweets and the timestamps of queries). Some studies [Efron et al. 2012; Liang
et al. 2012; Massoudi et al. 2011] employ both lexical similarity and temporality in
ranking tweets. However, there are two important issues that are not well addressed
by these existing works.

The first issue is the impact of the structural difference of tweets on retrieval ef-
fectiveness. Specifically, there are two types of tweets that have different structures.
The first type (to be defined as T-tweet in Section 3.2) is just a short text message
with no more than 140 characters. The second type (to be defined as TU-tweet in
Section 3.2) contains at least one URL of a Web page in addition to a short text mes-
sage. All existing studies simultaneously rank both types of tweets. However, we be-
lieve it is important to utilize the structural difference of tweets in retrieval. Let us
illustrate the motivation by the following example.

Example 1. Consider a query q = “phone hacking British politicians”, a tweet
d1 = “@jamesrae andy Gray is suing the NOTW... just got fired from Sky for footage
that should never have been seen. I smell Murdoch!”, a second tweet d2 = “Ten-
sions simmer as ‘frustrated’ Rupert Murdoch flies in to face phone-hacking affair
http://t.co/b3kOppY via @guardian” and a third tweet d3 = “Windows Phone 7 gets
USB Tethering Hack http://tinyurl.com/4lafss6”. d1 is a T-tweet that only has a short
message. d1 is relevant to q but has no query terms. d2 and d3 are two TU-tweets.
Each of them has not only a message but also a URL. d2 is relevant to q. It contains
two query terms “phone” and “hacking” in its message and all four query terms in the
web page of the URL in d2. d3 is irrelevant to q. It contains two query terms “Phone”
and “hack” in its message. The Web page of the URL in d3 has no query terms. The
content of a TU-tweet is the union of its short message and the contents of the Web
pages of the URLs in it. It is intuitive that for a TU-tweet, the higher the percentage
of query terms appearing in it is, the more likely the tweet is relevant. The relevant d2
has more query terms than the irrelevant d3. However, such an intuition does not ap-
ply for a T-tweet. d1 has no query terms but it is relevant to q. This is because T-tweets
are so short that some relevant T-tweets may not have any query terms. In addition,
we find out that (see Section 6.1.2) the sets of the most important features for learning
to rank the two types of tweets are very different.

Motivated by such an observation, we propose to use the divide-and-conquer strat-
egy to address the structural difference of tweets. Specifically, we learn two rankers
that are dedicated to ranking T-tweets and TU-tweets separately. This produces two
tweet type-specific rankers. We then learn a classifier that determines a preference be-
tween any T-tweet and any TU-tweet with respect to a given query. The details about
these two tweet type-specific rankers and the classifier are discussed in Sections 3.2
and 3.3, respectively. Given a query q, we first obtain a ranking of T-tweets, R1, and
a ranking of TU-tweets, R2, by using the two type-specific rankers, respectively. Then
we apply the classifier to determine the preference between each T-tweet from R1 and
each TU-tweet from R2. Finally, we merge the tweets from R1 and R2 into a single
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Fig. 1. The distributions of relevant tweets over time.

ranking. The merging process considers the preferences from the two rankers and
the classifier. The discussion of how to merge two rankings of tweets is presented in
Section 3.4.

The second issue is the impact of the temporal sensitivities of queries on the re-
trieval effectiveness of tweets. Queries can be categorized into time sensitive and time
insensitive types [Dakka et al. 2012; Jones and Diaz 2007]. For ease of presentation,
Figure 1 shows the temporal distributions of the relevant tweets with respect to four
sample TREC queries. These distributions are plotted over the period from 1/23/2011
to 2/8/2011, when the TREC Tweets2011 collection was sampled from Twitter. The
x-axis represents time in the unit of day [Efron and Golovchinsky 2011]. The y-axis
represents the percentage of relevant tweets published on a particular day. By observ-
ing these distributions, we claim that there are three types of queries. The first type is
insensitive to time, while the last two types are time sensitive.

— The first type of queries has a relatively flat (uniform) distribution of relevant tweets
over time, indicating that these queries are insensitive to time. This is exemplified
by the query “credit card debt.”

— The second type of queries has a dominant peak in terms of their temporal
distributions of relevant tweets. The dominant peak contains an extremely large
portion of relevant tweets concentrating on a single day. This is exemplified by the
query “Egyptian protesters attack museum.” The attack happened during the night
of 1/28/2011 and a dominant peak in the distribution is formed on 1/29/2011. An
event related to the topic of such a query is usually the event of a breaking news
story. The relevant tweets are so concentrated around the peak that the percentage
of relevant tweets rapidly decreases beyond the peak. In this article, such queries
are called dominant peak queries.

— The third type of queries has one or more nondominant peaks. Each peak contains a
significant portion of relevant tweets on a day but the percentage of relevant tweets
of a nondominant peak is not as high as that of a dominant peak. A nondominant
peak of a query is caused by an event that is related to the query. These related
events trigger people’s intensive discussions about the query topic at different
times. This is exemplified by two queries: “Mexico drug war” and “Emanuel resi-
dency court rulings.” For “Mexico drug war,” the nondominant peak on 1/27/2011 is
caused by a related event, “Pot-firing catapult found at Arizona-Mexico border”. For
“Emanuel residency court rulings,” the first two nondominant peaks on 1/24/2011
and 1/25/2011 correspond to the event: “Illinois Court Throws Emanuel Off Chicago
Mayoral Ballot”; the third peak on 1/28/2011 corresponds to another related event:
“Illinois Supreme Court keeps Emanuel on ballot.” In this article, such queries are
called nondominant peak queries.
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These three types of queries depend on their temporal distributions of relevant
tweets. In practice, it is unrealistic to know such distributions for given queries. In
Efron and Golovchinsky [2011] and Jones and Diaz [2007], the temporal distribution
of the relevant tweets with respect to a query q can be approximated by that of the
top tweets with respect to q. These top tweets can be retrieved by a ranking model,
such as BM25 [Robertson et al. 1996]. In this article, we classify queries into different
types by the temporal distributions of their top tweets. For time-insensitive queries,
there is no need to employ temporal information; for time sensitive queries, we propose
two different techniques to calculate the temporal relevance of tweets to dominant
peak queries and to nondominant peak queries, respectively. The degree of temporal
relevance is measured by a time-related relevance score (to be given in Section 4.2).
Our proposed method for categorizing queries and for computing the time-related rel-
evance scores with respect to the two types of time sensitive queries are presented in
Section 4.2. In this article, we only study these three types of queries. The studies of
other types of queries, such as cyclic queries (e.g., “Halloween”) are deferred to future
work.

Our work has two novelties: 1) ranking the two types of tweets by a divide-and-
conquer manner can improve retrieval effectiveness; and 2) our temporal classification
of queries and two different ways of computing the time-related relevance scores with
respect to the two different types of time sensitive queries are different from existing
works. We now summarize the research questions we aim to answer in this article.

— Acknowledging that tweets can be classified into the two types by their different
structures, is the retrieval effectiveness of tweets affected by their structural
difference?

— How to leverage the structural difference of tweets to enhance their retrieval
effectiveness?

— What are the effectiveness and the efficiency of the proposed algorithm?
— How can we improve retrieval effectiveness by taking into consideration the

temporal information (publishing times) of tweets?
— How does our method perform compared to various state-of-the-art methods?

This article has the following contributions.

— We investigate the impact of the structural difference of tweets on retrieval
effectiveness.

— We present a novel algorithm of ranking tweets by using the divide-and-conquer
strategy. To our knowledge, our work is the first study that leverages the structural
difference of tweets to enhance retrieval effectiveness.

— We present a novel categorization of queries by their sensitivities to time.
— We propose different techniques to calculate the degrees of temporal relevance of

tweets with respect to the different categories of queries.

The remainder of this article is organized as follows. We review the related works
in Section 2. Section 3 introduces our divide-and-conquer method for ranking tweets.
Section 4 discusses our method for categorizing queries in terms of their temporal
sensitivities and proposes different techniques to calculate the temporal relevance of
tweets. Experimental setup and experimental results are provided in Section 5 and
Section 6, respectively. The article is concluded in Section 7.

2. RELATED WORK

Recently, interests are rising in exploring Twitter for information retrieval of tweets
by different criteria, such as lexical relevance [Choi et al. 2012; Duan et al. 2010; Han
et al. 2012; Metzler and Cai 2011; Zhang et al. 2012], temporal relevance [Amati et al.
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2012; Choi and Croft 2012; Dong et al. 2010b; Efron and Golovchinsky 2011] and
jointly lexical and temporal relevance [Efron et al. 2012; Liang et al. 2012; Massoudi
et al. 2011]. Beyond tweet retrieval, some studies [Amodeo et al. 2011; Dakka et al.
2012; Dong et al. 2010a; Jones and Diaz 2007; Keikha et al. 2011a, 2011b; Li and
Croft 2003] also showed that incorporating the publishing times of documents into
the retrieval process is beneficial for ad-hoc retrieval. Instead of using the publishing
times of documents, some works [Berberich et al. 2010; Dai and Davison 2010; Elsas
and Dumais 2010; Kulkarni et al. 2011] studied how to improve the ranking effec-
tiveness by using the temporal information extracted from the contents of documents.
Moreover, our study is also related to some works [Ailon et al. 2008; Bian et al. 2010;
Dai et al. 2011; Hüllermeier and Fürnkranz 2010] in learning to rank. In the rest of
this section, we review in greater detail the related works.

2.1. Lexical Relevance-Based Retrieval

The first thread of related works studied tweet retrieval by measuring their lexical
similarities to queries. Duan et al. [2010] employed RankSVM [Herbrich et al. 2000;
Joachims 2002] to rank tweets by their lexical relevance to queries. Metzler and Cai
[2011] studied the real-time ad-hoc tweet retrieval problem by using RankSVM to
rank tweets with respect to queries and rearranged the top-ranked tweets in reverse-
chronological order. This work achieved the best results reported in TREC 2011. Choi
et al. [2012] showed that the quality of tweets is correlated with their relevance and
applied the quality features in relevance ranking. They assumed that high quality
tweets are more likely to be retweeted than low quality ones and learned a model to
estimate the probability of a tweet being retweeted by exploring its lexical content.
Zhang et al. [2012] proposed a query-specific model to rank tweets by considering the
characteristics unique to a query. Specifically, given a query q, they treated the top and
the bottom tweets retrieved by a ranking model as positive and negative examples and
then learned a ranking model specific to q. Efron et al. [2012] expanded each tweet
d with respect to a query q as follows. The terms of the most similar tweets to d are
added to d. The query q is then compared with the expanded tweets for the similarity
computation, in order to improve retrieval effectiveness. Han et al. [2012] expanded
each tweet d in a similar manner by the terms from other tweets that are lexically
similar to d. Our work has two fundamental differences from the works reviewed ear-
lier: 1) we consider the structural difference of the two types of tweets in the retrieval
process while they ranked both types of tweets together; and 2) they only measured the
lexical similarities of tweets to queries while we take into consideration both lexical
similarities and temporal information.

2.2. Temporal Relevance-Based Retrieval

The second thread of related works studied the impact of temporal information on re-
trieval effectiveness. Dong et al. [2010a, 2010b] proposed the recency ranking problem
and studied the problem using Twitter data. Amati et al. [2012] assumed that the re-
cent tweets with respect to (the timestamp of) a query q are more likely to be relevant
than the old tweets. Massoudi et al. [2011] studied a query expansion method where
the expanded query terms are selected from high-quality and recent tweets, instead of
low-quality and old tweets. The quality of tweets can be estimated by some indicators,
such as the number of followers of Twitter users. All the works we have mentioned in
principle prefer recent tweets (or terms from recent tweets) to old ones. However, this
is not always desirable. For example, in Figure 1, for the query “Mexico drug war,” a
significant portion of relevant tweets are published on 1/27/2011 and some relevant
tweets are published on 2/2/2011. The tweets on 1/27/2011 are as relevant as those
tweets on 2/2/2011. They should not be assigned lower priorities in retrieval. Our work
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classifies queries by the temporal distributions of their top tweets and then proposes
different ways of utilizing temporal information of tweets according to the classified
types of queries. Liang et al. [2012] studied the real-time ad-hoc tweet retrieval by a
two-phase approach where 1) an ad-hoc retrieval of tweets is conducted and 2) tweets
are re-ranked to promote the relevant and recent ones. Our two-phase method is differ-
ent from theirs in two aspects. First, they ranked both types of tweets simultaneously
while we leverage the structural difference of tweets. Second, they promoted recent
tweets over old tweets while we classify queries by their time sensitivities before ap-
plying temporal information in different manners according to the classified types of
queries. Choi and Croft [2012] obtained the top tweets (consisting of retweets and non-
retweets) with respect to a query q from a ranking model. Then they explored the
temporal distribution of the top retweets to measure the importance of each day with
respect to q. The importance of a day t to q is proportional to the number of the top
retweets published on t. Finally, they arranged non-retweets by considering the im-
portance of each of their publishing days. Our work differs from theirs in that they
use retweets to measure the importance of days while we use top tweets to determine
the importance of days. Moreover, our calculation of the degrees of relevance between
tweets and queries by temporality is quite different from theirs. Efron et al. [2012]
obtained the top tweets with respect to a query q and then, for each tweet d, acquired
the most similar (top) tweets to d. They calculated the temporal similarity between q
and d based on the temporal distribution of q’s top tweets and that of d’s top tweets.
Our work differs from their work in that we classify queries based on the temporal
distributions of their top tweets and then calculate the temporal relevance of tweets to
queries by their classified types.

Besides Twitter search, Li and Croft [2003] studied time sensitive queries and
assumed that relevant documents are mostly recent documents. They proposed an
exponential-based age penalty strategy where aged documents are penalized and then
demoted to boost the ranking positions of recent documents. Efron and Golovchinsky
[2011] studied the same problem and proposed a query-specific exponential-based
age penalty method where aged documents are penalized differently with respect to
different queries. Our classification, determination and handling of time sensitive
queries are different from the given works. Moreover, their hypothesis [Efron and
Golovchinsky 2011; Li and Croft 2003] that aged documents should be penalized more
than recent documents is not necessarily true for some time sensitive queries. For ex-
ample, in Figure 1, for the query “Mexico drug war”, the relevant tweets on 1/27/2011
should not be penalized relative to those on 2/2/2011. Amodeo et al. [2011] and Keikha
et al. [2011b] presented temporal query expansions by using the terms selected from
the top (blog) documents (with respect to a query q) that are published on the days that
are most relevant to q. The relevance of a day t to q is measured by the average similar-
ity of the top documents published on t to q in Keikha et al. [2011b] or by the percent-
age of q’s top documents published on t [Amodeo et al. 2011]. We do not use temporal
information in query expansion. Keikha et al. [2011a] showed that blog feed retrieval
can benefit from the usage of temporal information. They studied the retrieval of
blog feeds. A blog feed consists of a set of blog documents published on different
days. We study the retrieval of individual tweets. Although both studies use temporal
information, the utilizations of temporality in these two studies are very different.
Dakka et al. [2012] indicated that, for a time sensitive query q, a document d can be
represented by two dimensions: the lexical content cd and the publishing time td. They
assumed the independence between cd and td. Our work differs from theirs in that we
assume the contents of documents (tweets) and their publishing times are not neces-
sarily independent. For example, for the query “Emanuel residency court rulings,” the
relevant tweets published on 1/24/2011 and 1/25/2011 discuss the event “Illinois Court
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Throws Emanuel Off Chicago Mayoral Ballot” while the relevant tweets published on
1/28/2011 discuss the event “Illinois Supreme Court keeps Emanuel on ballot.” The con-
tents of tweets with respect to a query can be influenced by other related events which
happen at different times. Jones and Diaz [2007] categorized queries into time insensi-
tive ones, temporally ambiguous queries such as “Iraq War” (referencing two different
wars) and temporally unambiguous queries such as “Turkish earthquake 1999”. Our
work categorizes queries by their sensitivities to time, instead of their temporal
ambiguities.

Exploring the temporal information from the contents of documents can improve
retrieval effectiveness too. Berberich et al. [2010] proposed a language model supple-
mented with a temporal dimension where the temporal information from a query and
that from documents are uniformly expressed and matched in retrieval. For exam-
ple, the query, “World Cups in 1990s” should be matched by the documents containing
“1998 World Cup,” because “1990s” temporally covers “1998.” Elsas and Dumais [2010]
studied the relationship between the temporal dynamics of document contents and
the relevance of documents. For example, they showed that the contents of the rele-
vant documents for navigational queries, such as “YouTube,” have great and frequent
changes over time. Kulkarni et al. [2011] discussed the interaction among the tempo-
ral changes of query popularity, the temporal changes of document contents and query
intents. Dai and Davison [2010] utilized the freshness of Web site contents for comput-
ing Web site authority by examining the frequency of Web site content changes and
that of Web site hyperlink changes over time. Our work uses the publishing times of
top documents (tweets) to improve retrieval effectiveness.

2.3. Learning to Rank

Our work is also related to some studies in learning to rank. Bian et al. [2010] provided
a divide-and-conquer framework for learning to rank documents. Dai et al. [2011] ex-
tended the same divide-and-conquer framework for learning to rank documents by
freshness and relevance simultaneously. Our work has a fundamental difference from
theirs. Both works [Bian et al. 2010; Dai et al. 2011] divided (clustered) queries into
different clusters where queries within a cluster have a similar set of important learn-
ing to rank features. However, we divide (partition) documents (tweets) into two sets
by considering their structural difference. Given some different rankings of a same
set of documents that yield inconsistencies, Ailon et al. [2008] studied how to obtain a
ranking of the same set of documents that approximately minimizes the disagreement
with the given rankings. In our work, we merge two rankings of two different sets
of tweets, one for T-tweets and the other for TU-tweets. Hüllermeier and Fürnkranz
[2010] studied the problem where each example (document) is assigned the probabili-
ties of belonging to different classes. No ranking of examples (documents) is discussed
in Hüllermeier and Fürnkranz [2010].

3. A DIVIDE-AND-CONQUER METHOD FOR RANKING TWEETS

In this section, we introduce a novel method for ranking tweets. This method explores
the structural difference of tweets by the divide-and-conquer strategy. It is deployed as
the first phase to produce a ranking of tweets, taking into consideration their lexical
similarities to queries only.

3.1. Method Overview

In this method, we differentiate the following two types of tweets: the first type is a
short plain message without URLs (T-tweet) and the second type is a message con-
taining at least one URL (TU-tweet). A URL usually leads to a Web page with a sub-
stantially more content than a short message. To explore such a structural difference,
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we propose to rank these two types of tweets separately and then merge the two type-
specific rankings of tweets into a single ranking. The proposed method has two tweet
type-specific rankers and a classifier. The two type-specific rankers are dedicated to
ranking T-tweets and TU-tweets. The classifier calculates the preference between any
T-tweet and any TU-tweet with respect to a query.

In this article, we resort to the learning to rank algorithms to produce the two
rankers. Specifically, RankSVM [Herbrich et al. 2000; Joachims 2002] is employed.
It can consider not only various lexical similarities between queries and tweets, such
as BM25 similarity [Robertson et al. 1996], but also some special social network char-
acteristics that are independent of queries, such as the number of retweets of tweets.
It leverages different criteria as features to learn the two type-specific rankers. We
denote as T-tweet Ranker the RankSVM model that is dedicated to ranking T-tweets.
It is learned over the training data consisting of a set of training queries Q and a set of
labeled T-tweets with respect to Q. Let TU-tweet Ranker denote the RankSVM model
that is TU-tweet oriented. It is learned over the training data consisting of the same
set of training queries Q but a different set of labeled TU-tweets with respect to Q.
A classifier is learned to determine a preference between each T-tweet and each TU-
tweet. Specifically, it is learned by using the union of the two sets of labeled tweets
with respect to the same training query set Q. The classifier indicates for each T-tweet
d1 and each TU-tweet d2 whether d1 is preferred over d2 or vice versa.

The goal of this method is to produce the ranking of tweets for a set of test queries,
Q′ = {q′

1, q′
2, ... , q′

m}. For each test query q′
i
, we apply the T-tweet Ranker to obtain a

ranking of T-tweets R1. Then we obtain a ranking of TU-tweets R2 by the TU-tweet
Ranker. For each pair of one T-tweet from R1 and one TU-tweet from R2, the classi-
fier is employed to determine a preference relationship between them with respect to
q′

i
. There are three sets of preferences: 1) the preference between any two T-tweets

which is indicated by their relative ranking positions in R1; 2) the preference of any
two TU-tweets from R2; and 3) the preference between any T-tweet from R1 and any
TU-tweet from R2 indicated by the classifier. Finally, the two rankings, R1 and R2, are
merged into a ranking by considering all three sets of preferences.

Because these three sets of preferences are computed by three different models,
there may be inconsistent preferences. For example, given two T-tweets di and dj and a
TU-tweet dk, the T-tweet Ranker may indicate di ≻ dj, which denotes the preference of
di over dj. However, the classifier may indicate dk ≻ di and dj ≻ dk. In such a circular
preference situation, no matter how these three tweets are ranked in the merged rank-
ing, there is at least one inconsistency. Suppose that the degree of the preference of di

over dj is 0.5, that of dj over dk is 0.4, that of dk over di is 0.3, and there are no other
preferences. If we determine that di is ranked above dj which is ranked above dk, it
will incur an inconsistency with the degree of 0.3. This is the smallest amount of incon-
sistency among all possible orderings of these three tweets. In an ideal situation, we
want to merge the two type-specific rankings into an optimal ranking that agrees best
with the three sets of preferences. However, such a problem is NP-complete [Cohen
et al. 1998]. Therefore, we propose a greedy merging algorithm called GreedyMerging.
This algorithm always picks the tweet to be ahead of the remaining tweets, if it incurs
the least amount of inconsistency relative to any of the remaining tweets. If there is
no inconsistency among the three sets of preferences, the algorithm will produce the
optimal merged ranking consistent with all preferences.

3.2. Tweet Type-Specific Rankers

In this section, we present the two rankers: one ranks T-tweets while the other ranks
TU-tweets. For ease of introduction, we first define T-tweets and TU-tweets.
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Definition 3.1 (T-Tweet). A T-tweet is a tweet whose message body has no URLs.
The structure of a T-tweet consists of only one field:
a) Tweet Message Field: the message body of the tweet.

Definition 3.2 (TU-Tweet). A TU-tweet is a tweet whose message body has at least
one URL. A tweet whose message body has URLs only is very rare. The structure of a
TU-tweet consists of three fields:

a) Tweet Message Field: the message body with the exclusion of the embedded URLs.
b) URL Title Field: the union of the titles of the Web pages of the embedded URLs.
c) URL Body Field: the union of the bodies of the Web pages of the embedded URLs.

In a learning problem, the features are essential. Table I presents all the features
for learning to rank tweets. Some features in Table I are explained in detail in the
following. For T-tweets, the applicable features are computed based on their tweet
message fields, whereas for TU-tweets, they are computed based on their three fields
as well as the union of the three fields. For example, the BM25 similarity between a
query and a T-tweet d can be computed based on the tweet message field of d; for a
TU-tweet, four BM25 similarities can be computed, one based on the tweet message
field, one based on the URL title field, one based on the URL body field and the last
one based on the union of these three fields. Different degrees of significance can be
associated with the different fields by the learning model. It has been shown that
improvement in ranking can be achieved by weighting the fields of documents (for
example, the titles of documents vs. the bodies of documents) differently [Robertson
et al. 2004]. In our opinion, the same can apply to the tweets. Thus, we propose the
features whose calculations are based on the different fields of tweets together with
queries. During the establishment of the rankers, different weights are learned for
those different field-based features.

Moreover, the features can be categorized into two types: tweet-related (TR for short)
and query-tweet-related (QTR for short). The former type is calculated purely based
on the tweets themselves. For example, for feature F13, it is a Boolean feature indi-
cating whether the tweet has at least an embedded URL. Studies [Duan et al. 2010;
McCreadie et al. 2011; Metzler and Cai 2011] showed that whether a tweet has a URL
is an effective feature for ranking tweets. Intuitively, the Web pages of the URLs em-
bedded in tweets often provide more information than tweets’ 140 characters. Thus,
a tweet with embedded URLs has a higher probability of being relevant than a tweet
without embedded URLs [Duan et al. 2010].

Besides the tweet-related features, the query-tweet-related features are also used
to calculate different lexical similarities between queries and tweets. In addition to
capturing term similarities, such as BM25 similarities discussed before, our method
also computes concept similarities as features. A concept is a proper noun (PN), a

dictionary phrase (DP), a simple noun phrase (SNP), or a complex noun phrase (CNP).

A dictionary phrase is a noun phrase that can be looked up in dictionaries such as
Wikipedia but is not a proper noun. A simple noun phrase (complex noun phrase)
consists of two (more than two) nonstop terms but is neither a proper noun nor a
dictionary phrase. A concept is recognized in a document if all of its nonstop terms
appear in the document within a text window of certain size, with the smallest window
size for PNs, then a bigger window size for DPs, an even bigger window size for SNPs,
and the largest window size for CNPs. Please refer to the papers [Liu et al. 2004; Zhang
et al. 2007] for the details about these concepts. In this article, we adopt the phrase
recognition tool [Zhang et al. 2007] to identify the four types of concepts from queries
and tweets. This tool can achieve an accuracy of 92% in recognizing concepts.
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Table I. Features for Ranking Tweets

ID Type Feature Description (q = query, T = tweet). No.

F1 QTR
The percentage of the terms of q contained by the hashtags of T. The hashtags are the
keywords or topics of T and they appear in the tweet message field of T by prefixing the
symbol “#”.

1

F2 QTR
The percentage of the expansion terms of q contained by the hashtags of T. The expan-
sion terms are obtained by the pseudo relevance feedback method [Liu et al. 2004]. 1

F3 QTR Whether the four fields (the three fields of a TU-tweet and their union) contain q as an
SNP or CNP respectively.

4

F4 QTR The frequency of q in T as an SNP or CNP. 1

F5 QTR
Whether the four fields contain a key term of q, if exist. The key term is the nonverb
term in q, satisfying the following two conditions: 1) it has the least document frequency
among all query terms; 2) it is not a term in a PN or a DP concept.

4

F6 TR The length of the tweet message field of T. [Duan et al. 2010; McCreadie et al. 2011;
Metzler and Cai 2011]

1

F7 QTR Whether the four fields contain all PN or DP query concepts. 4

F8 QTR The sum of the frequencies of all PN or DP query concepts in T. 1

F9 QTR The percentage of the nonverb terms of q contained in the four fields. 4

F10 QTR
The (weighted) percentage of the query concepts contained in the four fields. All query
concepts are either equally weighted or weighted by their inverse document frequencies. 8

F11 QTR BM25 and TFIDF similarities between q and the four fields. [Duan et al. 2010; McCreadie
et al. 2011]

8

F12 TR Whether T (or the Web pages of embedded URLs) has more than 50% content in English.
[McCreadie et al. 2011; Metzler and Cai 2011]

1

F13 TR Whether T has at least one URL in its tweet message field. [Duan et al. 2010; McCreadie
et al. 2011; Metzler and Cai 2011]

1

F14 TR The count of the Twitter user of T mentioned by the tweets in the collection. [Duan et al.
2010]

1

F15 TR Whether T is a retweet (or a reply tweet). [Duan et al. 2010; Metzler and Cai 2011] 2

F16 QTR
The percentage of the related concepts of q contained in the four fields. The related con-
cepts of q are the top three frequent PN concepts among the top 10 web documents
retrieved by Google with respect to q.

4

F17 QTR
The percentage of the related nouns of q contained in the four fields. The related nouns
are the nouns with the top three document frequencies among the top 10 web documents
retrieved by Google with respect to q.

4

F18 QTR Whether the order of query terms appearing in the four fields is the same as that in q. 4

A query can be represented by a set of concepts as illustrated by the following
example.

Example 2. Given a query of “Australian Open Djokovic vs. Murray”, it contains five
concepts. They are three PN concepts, “Australian Open,” “Djokovic” and “Murray,” an
SNP concept, “Djokovic Murray” (“vs.” is omitted as a stop word) and a CNP concept,
“Australian Open Djokovic Murray.”

We propose the features (say F10) involving query concepts because they capture the
similarities between queries and tweets better than query terms as illustrated by the
following example.

Example 3. Given the query q = “Australian Open Djokovic vs. Murray”, a T-tweet
d1 = “and Djokovic it is.... Murray becoming more like England football team...failing
where it matters...” and a T-tweet d2 = “Can’t stop watching the Australian Open!”, d1
contains two query terms, “Djokovic” and “Murray” and d2 also contains two query
terms, “Australian” and “Open”. But d1 is relevant to q while d2 is irrelevant. In terms
of query concepts, d1 contains three out of five query concepts, “Djokovic”, “Murray”
and “Djokovic Murray” but d2 contains only one query concept, “Australian Open”.
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There are eight features with the ID of F10. One of the features is the percentage of
the query concepts contained in the tweet message field. As illustrated by Example 3,
the more query concepts a tweet contains, the more likely the tweet is relevant to
the query. The value of this feature for d1 is 3/5 while that for d2 is 1/5. Another
member feature is the weighted percentage of the query concepts contained in the
tweet message field. Since a concept can be weighted by its inverse document frequency
(idf for short), the weighted percentage of the query concepts contained in the tweet
message field is the ratio of the sum of the idfs of the query concepts contained in the
tweet message field over the sum of the idfs of all query concepts. If we consider the
four fields of TU-tweets (the three fields and their union), eight such features can be
calculated over the four fields of TU-tweets accordingly.

The features with the IDs of F16 and F17 calculate the numbers of the related con-
cepts and the related nouns of queries in the different fields of tweets. A person who
writes a tweet specifies an event by a set S1 of concepts or terms. A person who queries
the same event may utilize another set S2 of concepts or terms. The concepts or terms
in S1 are related to those in S2. Let us illustrate these features with the following
Example.

Example 4. Given a query “White House spokesman replaced” and a T-tweet d1 =
“Jay Carney named as Barack Obama’s press secretary,” d1 is relevant to the query,
although it does not contain any query concepts or terms. “Jay Carney” is a related
concept to the query, as it is one of the three most frequent PN concepts from the top
10 Web documents retrieved by Google with respect to the query. Therefore, the match
of “Jay Carney” is an indicator of d1’s relevance to the query.

To build the two tweet type-specific rankers, we partition TREC relevance judg-
ments of tweets into a set of labeled T-tweets and a set of labeled TU-tweets. We
use the former set of T-tweets as the training data for learning a T-tweet Ranker
and the latter set of TU-tweets for learning a TU-tweet Ranker, respectively. For
building a T-tweet ranker, we convert each training example (T-tweet) into a vector
of the proposed features that are applicable for T-tweets. Then, we feed the vectors
of features into RankSVM to generate a T-tweet Ranker. We repeat the same pro-
cedure as before by using the training data for TU-tweets to generate a TU-tweet
Ranker.

3.3. Preference Classifier

The two tweet type-specific rankers only provide the preference between two tweets of
the same type. In order to merge the rankings of T-tweets and TU-tweets, a classifier
is proposed to determine the preference of each T-tweet with respect to each TU-tweet.
We employ the SVM model [Joachims 1999] to perform such determination. In partic-
ular, each training example is a triple of < d1, d2, label >, where d1 is a T-tweet, d2 is
a TU-tweet and the label indicates whether d1 is preferred over d2 or vice versa. We
again use TREC relevance judgments as the training data. Specifically, for a training
query, a labeled T-tweet d1 and a labeled TU-tweet d2 form a training example (pair),
only if their labels of relevance to that query are different. The different labels of d1
and d2 imply that d1 is preferred over d2 or vice versa.

To learn such a classifier, we reuse the features in Table I and they are referred to
as ranking features. We also propose a set of new features that captures the differ-
ence of the corresponding (ranking) features of d1 and d2 with respect to a query. Let
us call this set of new features dependent features. Each dependent feature aims at a
direct comparison of relevance between d1 and d2. It is calculated by a T-tweet (rank-
ing) feature minus a corresponding TU-tweet (ranking) feature. For example, given
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the feature group F11, a T-tweet feature is the BM25 similarity between a query q and
the tweet message field of d1. But four corresponding TU-tweet features are the BM25
similarities between q and the four fields of d2, respectively. Thus, four dependent fea-
tures are obtained by subtracting the four TU-tweet features from the T-tweet feature,
respectively. A (preference) classifier can be learned by using these features and the
training examples. In our preliminary experiments, the classifier using both ranking
features and dependent features performed better than the classifiers that just use
either ranking features or dependent features.

3.4. Greedy Merging Algorithm

After we build the two tweet type-specific rankers and the preference classifier, we can
rank tweets with respect to a test query q′. First, we use these two rankers to rank
T-tweets and TU-tweets with respect to q′ separately. Then, we employ the preference
classifier to compute the preference between any two tweets, one from each ranking.
This constitutes three sets of preferences: one for any two T-tweets, one for any two
TU-tweets and one for any T-tweet and any TU-tweet. The goal is to merge the two
rankings into a ranking that agrees with these three sets of preferences as much as
possible. Cohen et al. [1998] showed that the problem of finding the ordering that
agrees best with a given set of preferences is NP-complete. Therefore, we propose a
quadratic greedy merging algorithm. To merge a ranking of T-tweets and a ranking
of TU-tweets, this algorithm always picks the tweet that has the smallest sum of the
degrees of the preferences of other tweets (that have not been picked) over it. This
makes the merged ranking consistent with the three sets of preferences, if there is no
inconsistency among the three sets of preferences.

Let T and TU be a ranking of T-tweets and a ranking of TU-tweets, respectively.
They are defined as follows. We assign (numerical) subscripts to the T-tweets in T so
that the T-tweets with smaller subscripts have higher preferences. The same applies
to TU. For convenience of presentation, we give the T-tweets in T the subscripts from 1
to m and the TU-tweets in TU the subscripts from m + 1 to m + n. But the comparison
between a subscript of a T-tweet and that of a TU-tweet does not indicate a preference
between them.

T =
[

d1, . . ., dm

]

s.t. di ≻ dj, 1 ≤ i < j ≤ m

TU =
[

dm+1, . . ., dm+n

]

s.t. di ≻ dj, m + 1 ≤ i < j ≤ m + n.
(1)

Let fp : �T × �TU → R be a preference function which maps a pair of a T-tweet di

and a TU-tweet dj to a real number. �T and �TU are the T-tweet space and the TU-
tweet space, respectively. If the real number is positive, di ≻ dj; if it is negative, the
reverse is true; if it is zero, there is no preference between di and dj. The magnitude
of the number indicates the degree of the preference. We assume that the real number
being zero does not occur, which is true in practice. This function corresponds to the
preference classifier (see Section 3.3). Let D be the union of T and TU, D = T ∪ TU =
[d1, . . ., dm, dm+1, . . ., dm+n]. Let Pref (di, dj) denote the preference between a tweet di

and another tweet dj in D. Pref (di, dj) can be defined as follows.

Pref (di, dj) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

di ≻ dj 1 ≤ i < j ≤ m

di ≻ dj m + 1 ≤ i < j ≤ m + n

di ≻ dj 1 ≤ i ≤ m < m + 1 ≤ j ≤ m + n and fp(di, dj) > 0

dj ≻ di 1 ≤ i ≤ m < m + 1 ≤ j ≤ m + n and fp(di, dj) < 0.

(2)
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Let RP(i) be the ranking position of a tweet di in T or TU. Due to the subscript
assignments given to the T-tweets in T and the TU-tweets in TU, RP(i) is defined as
follows.

RP(i) =
{

i 1 ≤ i ≤ m

i − m m + 1 ≤ i ≤ m + n.
(3)

Let M = [ Mij](m+n)×(m+n) be the preference matrix for D as defined here. It is con-
sistent with Equation (2) and has the following interpretation: 1) Mij > 0 indicates
di ≻ dj; 2) Mij < 0 indicates dj ≻ di; 3) the absolute value of Mij represents the degree
of the preference, which is normalized between 0 and 1. Moreover, we propose three
weighting parameters, λT(> 0) , λTU(> 0) and λPairwise(> 0), to be set to the degrees
that we trust the three sets of preferences.

[ Mij](m+n)×(m+n) =
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

λT · RP(j)−RP(i)
max{RP(i), RP(j)} 1 ≤ i, j ≤ m

λTU · RP(j)−RP(i)
max{RP(i), RP(j)} m + 1 ≤ i, j ≤ m + n

λPairwise · fp(di,dj)

max1≤s≤m<m+1≤t≤m+n{|fp(ds,dt)|} 1 ≤ i ≤ m < m + 1 ≤ j ≤ m + n

−Mji 1 ≤ j ≤ m < m + 1 ≤ i ≤ m + n.

(4)

We now explain why M is defined in such a manner. Specifically, we elaborate the
intuition of each of the four components of M.

(1) The first component
(

λT · RP(j)−RP(i)
max{RP(i), RP(j)}

)

indicates the preference between any two

T-tweets, di and dj. If 1 ≤ i < j ≤ m, then RP(i) < RP(j) and therefore Mij > 0,
indicating di ≻ dj; if 1 ≤ j < i ≤ m, then RP(j) < RP(i) and therefore Mij < 0,
indicating dj ≻ di. The degree of the preference is normalized between 0 and 1
by max{RP(i), RP(j)}. Moreover, it is also easy to verify that Mij < Mi(j+1) if 1 ≤
i ≤ m, 1 ≤ j ≤ m − 1. This is reasonable, because as the separation between two
T-tweets increases, so is the degree of the preference. We propose such a heuristic
method to measure the degree of the preference between two T-tweets, because
most learning to rank algorithms, such as RankSVM, produce the ranking scores
that have no meaning in an absolute sense and can only be used for ordering.

(2) The second component
(

λTU · RP(j)−RP(i)
max{RP(i), RP(j)}

)

has the same interpretation as the

first component, except that it indicates the preference between any two TU-
tweets, di and dj.

(3) The third component
(

λPairwise · fp(di,dj)

max1≤s≤m<m+1≤t≤m+n{|fp(ds,dt)|}

)

indicates the prefer-

ence between a T-tweet di and a TU-tweet dj. If fp(di, dj) > 0, then Mij > 0 and
di ≻ dj; if fp(di, dj) < 0, then Mij < 0 and dj ≻ di. The degree of the preference is
normalized between 0 and 1 by max1≤s≤m<m+1≤t≤m+n{|fp(ds, dt)|}.

(4) The fourth component indicates that the preference between a TU-tweet di and a
T-tweet dj is the negation of the preference between dj and di.

Let us illustrate the preference matrix M with the following example.

Example 5. Given two T-tweets, d1 and d2 and three TU-tweets: d3, d4 and d5, the
three sets of the preferences of these tweets are shown in Table II.
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Table II. Three Sets of Preferences for Example 5

Rankers and Classifier Tweet Preferences and Their Ranking Positions

T-tweet Ranker d1 ≻ d2; RP(d1) = 1 and RP(d2) = 2;

TU-tweet Ranker d3 ≻ d4 ≻ d5; RP(d3) = 1, RP(d4) = 2 and RP(d5) = 3;

Preference Classifier

fp(d1, d3) = −0.9(d3 ≻ d1); fp(d2, d3) = −1(d3 ≻ d2)

fp(d1, d4) = −0.7(d4 ≻ d1); fp(d2, d4) = −0.8(d4 ≻ d2)

fp(d1, d5) = 0.6(d1 ≻ d5); fp(d2, d5) = 0.5(d2 ≻ d5)

For simplicity, we assume that the three weighting parameters: λT, λTU and λPairwise

are all equal to 1. The preference matrix for Example 5 is shown here.

M =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0.5 −0.9 −0.7 0.6

−0.5 0 −1 −0.8 0.5

0.9 1 0 0.5 0.67

0.7 0.8 −0.5 0 0.33

−0.6 −0.5 −0.67 −0.33 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

To merge the two rankings, we propose a greedy merging algorithm. To explain the
proposed merging algorithm, we first define Dispreferness.

Definition 3.3 (Dispreferness). Given the preference matrix M and a tweet di, the
Dispreferness of the tweet di is calculated by

Dispreferness(M, di) =
∑

j

| min{0, Mij}|. (5)

Given a tweet di, if it is preferred over a tweet dj, then Mij > 0 and | min{0, Mij}| = 0
will not contribute to Dispreferness(M, di). On the other hand, if dj is preferred over
di, then Mij < 0 and | min{0, Mij}| contributes a positive value to Dispreferness(M, di).
Dispreferness(M, di) is the sum of the degrees of the preferences of other tweets over di.
The greedy merging algorithm, called GreedyMerging, merges two rankings of tweets
by placing the tweet d with the least Dispreferness(M, d) in the first position of the
merged ranking L. Placing d in such a position of L may incur a certain amount of
inconsistency and this amount is Dispreferness(M, d). Compared to any other tweet
placed at the first position, this amount of inconsistency is the least. Then, after re-
moving d from the matrix M and re-computing the Dispreferness of other tweets, it
iteratively places the tweet that has the least Dispreferness in the next position in L.
The algorithm always picks the tweet that incurs the least amount of inconsistency at
the time it is picked. Details of the algorithm are shown in Algorithm 1.

The following proposition demonstrates that the proposed algorithm is theoretically
reasonable, because if there is no inconsistency among the three sets of preferences,
the optimal ranking of tweets will be achieved by GreedyMerging.

PROPOSITION 3.4. If there is no inconsistency among all the preferences from the T-
tweet Ranker, the TU-tweet Ranker and the pairwise classifier, GreedyMerging produces
the optimal ranking.

PROOF. Assuming no inconsistency among all the preferences, there must be a lin-
ear order of tweets in terms of their preferences: di1 ≻ di2 ≻ · · · ≻ din . This linear order
is an optimal ranking of tweets because any pair of tweets is ordered by their prefer-
ences. The first tweet di1 has zero Dispreferness because no tweet has preference over
it. Moreover, no other tweet, say d, has zero Dispreferness, since di1 is preferred over
d, causing Dispreferness(M, d) > 0. GreedyMerging inserts di1 into the first position of
the merged ranking L. After di1 is chosen and the matrix is updated by deleting the
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ALGORITHM 1: The GreedyMerging Algorithm

Input: A ranking of T-tweets: T; a ranking of TU-tweets: TU; the preferences of pairs of a
T-tweet and a TU-tweet, fp; Three weighting parameters: λT , λTU and λPairwise;

Output: A merged ranking of tweets L;
1. Union two rankings of tweets D = T ∪ TU;
2. Create the preference matrix M|D|×|D| for D, based on T, TU, fp, λT , λTU and λPairwise;
3. while(D �= ∅)
4. Find the tweet d with the least Dispreferness(M, d);
5. d = arg mind∈D{Dispreferness(M, d)};
6. Insert d into the merged ranking L;
7. Update D and M:
8. D = D − {d};
9. M|D−1|×|D−1| = M|D|×|D|−[d]; // deleting the row and column representing d;

10. end

row and the column representing di1 , the second tweet di2 has no tweet preferred over
it among the remaining tweets and only its Dispreferness is zero. GreedyMerging in-
serts di2 into the second position of L. The same argument is applied repeatedly until
all tweets are inserted into L.

After a ranking of T-tweets and a ranking of TU-tweets are merged by GreedyMerg-
ing, we obtain a ranking L of both types of tweets but their IR scores are absent. We
need to assign some (pseudo) IR scores to the tweets in L so that the time-related rel-
evance scores of tweets (to be given in Section 4.2) can be combined with the IR scores
to yield the similarity scores for the final ranking of tweets (see Section 4.3). The rank-
ing of the tweets in descending order of their pseudo IR scores should be identical
to L. We adopt the conversion proposed in Lee [1997]. Given a ranking of n tweets,
L = [d1, . . . , dn], where the subscript i of tweet di is its ranking position, we assign di

an IR score IR(di) as follows.

IR(di) = 1 − i − 1

n
. (6)

4. TEMPORAL USAGE IN RETRIEVAL

In the first phase, tweets are ranked by only considering their lexical similarities to
queries. In this section, we discuss how to use the temporal information (publishing
times) of tweets to improve retrieval effectiveness.

4.1. Time Representation

In this section, we describe the temporal representation of tweets with respect to
queries. Each query q has a timestamp t and only the tweets published on or before
t are considered to be relevant. Given a tweet d with a publishing time td, we adopt
the time representation f (td, t) proposed in Efron and Golovchinsky [2011] with the
interpretation that f (td, t) = 0 means the tweet d is published on the same day as t
and f (td, t) = n(n > 0) indicates the tweet d is published n days before t.

4.2. Query Type Determination

In this section, we first propose a method to classify queries by the temporal distri-
butions of their top tweets and then present different ways to measure the temporal
relevance of tweets to classified queries.

There are three types of queries as discussed in Section 1. We utilize the top tweets
from the first phase to classify a query into one of these three types. Specifically, for
a query q with a timestamp t, let D = {d1, . . . , dK} be the top K tweets retrieved by
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the divide-and-conquer method in the first phase. Let T = {t1, . . . , tK} be the set of
publishing times associated with those top K tweets, where each publishing time ti

presents either the same time t or a time before t. Let TD = {t′
i
|t′

i
= f (tm, t), tm ∈ T} be

the set of the unique time representations of their publishing times. Let I(tj, t, t′
i
) be an

indicator function.

I(tj, t, t′i) =
{

1 f (tj, t) = t′
i

0 otherwise.
(7)

The type of q can be classified as follows.

— q is a time insensitive query if the largest proportion of the top K tweets pub-
lished on a single day is less than or equal to a certain threshold p(≤ 0.5), that is,
Equation (8) holds.

max
t′
i
∈TD

⎧

⎨

⎩

1

K

∑

tj∈T

I(tj, t, t′i)

⎫

⎬

⎭

≤ p ≤ 0.5. (8)

— q is a dominant peak query if the largest proportion of the top K tweets pub-
lished on a certain single day (say t′) is greater than a threshold s(> p), that is,
Equation (9) holds. Its dominant peak is on t′.

max
t′
i
∈TD

⎧

⎨

⎩

1

K

∑

tj∈T

I(tj, t, t′i)

⎫

⎬

⎭

> s > p. (9)

— q is a nondominant peak query if the largest proportion of the top K tweets pub-
lished on a single day is less than or equal to s but greater than p, that is, Equation
(10) holds. It can have a set of nondominant peaks and the proportion of the top K
tweets at each peak is less than or equal to s but greater than p.

s ≥ max
t′
i
∈TD

⎧

⎨

⎩

1

K

∑

tj∈T

I(tj, t, t′i)

⎫

⎬

⎭

> p. (10)

The parameters K, p and s are estimated empirically. After a query q is classified
into one of the three types, the tweets from the first phase are assigned time-related
relevance scores (TRSs for short) to q as follows.

— If q is a time-insensitive query, all the tweets retrieved from the first phase are not
assigned any TRSs. This implies that time has no impact on ranking the tweets
with respect to q.

— If q is a dominant peak query, that is, the temporal distribution of its top K tweets
has a dominant peak on t′

i
(the t′

i
days before t), a tweet d (published on td) is

assigned a TRS as follows.

TRS(td, t) = 1

2δ
exp

{

−
|f (td, t) − t′

i
|

δ

}

. (11)

This function is in the form of the Laplace distribution [Laplace 1774]. When the
tweet occurs at the peak, its TRS is normalized by maxtd

{TRS(td, t)} to be 1. The
farther the tweet d is temporally away from the peak, the smaller the TRS of d
is. In other words, tweets temporally closer to the peak are given higher TRSs.
We tested different exponential functions and found that the Laplace-like function
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performed best. It has a single peak on t′
i

and its variance 2δ2 can be estimated by
the maximum likelihood method.

δ̂ = 1

|TD|
∑

t′
i
∈TD

∣

∣

∣

∣

∣

∣

1

K

∑

tj∈T

I(tj, t, t′i) − μ̂

∣

∣

∣

∣

∣

∣

s.t. μ̂ = 1

|TD|
∑

t′
i
∈TD

⎛

⎝

1

K

∑

tj∈T

I(tj, t, t′i)

⎞

⎠ . (12)

— If q is a nondominant peak query, that is, the temporal distribution of its top
K tweets has a set of nondominant peaks at a set of time representations P =
{t′1, . . . , t′|P|}, a tweet (published on td) is assigned a TRS as follows.

TRS(td, t) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑

tj∈T I(tj,t,t
′
n)

maxt′m∈P

{

∑

tj∈T I(tj,t,t′m)

} ·
∑

d′∈D
t′n

BM25(d,d′)

|Dt′n | f (td, t) �∈ P

∑

tj∈T I(tj,t,f (td,t))

maxt′m∈P

{

∑

tj∈T I(tj,t,t′m)

} f (td, t) ∈ P

s.t. Dt′m =
{

d′|f (td′ , t) = t′m, t′m ∈ P
}

, t′n = arg max
t′m∈P

{

∑

d′∈Dt′m
BM25(d, d′)

|Dt′m |

}

(13)

Let us explain the intuition of Equation (13) as follows.
(1) Suppose that the distribution of q’s top K tweets has multiple nondominant

peaks.
(a) For a tweet (published on td) belonging to the highest peak at time

f (td, t), its TRS is assigned to be 1, that is, maxt′m∈P

{

∑

tj∈T I(tj, t, t′m)

}

=
∑

tj∈T I(tj, t, f (td, t)) ⇒
∑

tj∈T I(tj,t,f (td,t))

maxt′m∈P

{

∑

tj∈T I(tj,t,t′m)

} = 1

(b) For a tweet d (published on td) belonging to a nonhighest peak at time
f (td, t), its TRS is the ratio of the number of the top K tweets at that peak

to that at the highest peak, that is, TRS(td, t) =
∑

tj∈T I(tj,t,f (td,t))

maxt′m∈P

{

∑

tj∈T I(tj,t,t′m)

} .

(c) For a tweet d (published on td) not belonging to any peak, we first deter-
mine which peak contains the tweets that are most similar to d. We use
BM25 to measure the average similarity of d to the tweets at a peak.2

Then we pick the peak with the highest average similarity to d, say the

peak at time t′n. Let S2

(

=
∑

d′∈D
t′n

BM25(d,d′)

|Dt′n |

)

denote that highest average

similarity. Each tweet in that picked peak is assigned the same TRS. Let

S1

(

=
∑

tj∈T I(tj,t,t
′
n)

maxt′m∈P

{

∑

tj∈T I(tj,t,t′m)

}

)

denote that TRS of a tweet in that picked

peak. Finally we assign d a TRS that is the product of S1 and S2. In other
words, the tweets in different peaks describe different events related to q.
We first determine which related event d is likely to describe. The likeli-
hoods of d describing different events are measured by the average similar-
ities of d to those tweets at different peaks. We then assign d a TRS that
is equal to the highest average similarity multiplied by the TRS of a tweet
describing the same related event as d does.

2We utilize the tweet message field without exploring the Web pages of URLs if present.
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(2) Suppose that the distribution of q’s top K tweets has a single nondominant
peak, the same approach is used.
(a) For a tweet belonging to the unique peak, its TRS is assigned to be 1.
(b) For a tweet d that does not belong to that peak, the average similarity of d

to the tweets in that peak is computed. It is multiplied by the TRS of any
tweet at the peak (having a value of 1 due to the single peak) to yield the
TRS of d.

4.3. Aggregation of IR Scores and Time-Related Relevance Scores

The first phase calculates the IR scores of tweets with respect to a query q. The second
phase of the method calculates the time-related relevance scores of tweets by using
temporal information. Given a tweet d, let IR(d) and TRS(d) be the IR score of d
and the time-related relevance score of d, respectively. An aggregation score AGS(d)

can be calculated in the manner of F-measure [Rijsbergen 1979] (see Equation (14)).
The tweets are arranged in descending order of the aggregation scores. Although the
F-measure is usually used as an evaluation measure, it can be employed to balance
IR(d) and TRS(d). The parameter β aims at balancing the contributions of IR(d) and
TRS(d) to the aggregation score. The appropriate value of β is estimated in the experi-
ments. Experimental results demonstrate that such an aggregation outperforms other
aggregations, such as CombSUM and CombMNZ [Shaw et al. 1994].

AGS(d) = (1 + β2)
IR(d) · TRS(d)

β2 · IR(d) + TRS(d)
(14)

5. EXPERIMENT SETUP

5.1. TREC Tweets2011 Collection

TREC 2011 released a tweet collection called Tweets2011 for the real-time ad-hoc re-
trieval task of the microblog track. The collection consists of about 16 million tweets
sampled from Twitter over 17 days (from 1/23/2011 to 2/8/2011). Instead of directly giv-
ing those tweets, TREC 2011 provided two tools for participating groups to crawl the
collection. One tool employing a Twitter API provides an information-rich collection of
tweets in the JSON format. The other one just crawls the HTML pages of tweets. The
efficiency of the first tool is very low, crawling about 150 tweets per hour due to the
limitation of the Twitter API. The second tool only crawls the HTML pages of tweets
and it is far more efficient than the first tool. However, some social information, such as
Twitter user profile, is absent in the HTML collection of tweets. We utilize the second
tool in this article. Since Twitter users might delete their tweets at any time, change
their usernames or change the public sharing properties of their tweets, it is possible
that some tweets are successfully crawled by some groups while become unavailable
when other groups are crawling. The statistics of our crawled tweet collection is shown
in Table III. In the TREC Tweets2011 collection crawled by us, 16.7% of tweets are
TU-tweets. We crawled the Web pages whose URLs are linked by the TU-tweets in the
collection, which results in another collection of about 2.3 million Web pages.3

5.2. TREC 2011 and 2012 Queries and TREC Relevance Judgments

TREC 2011 released 50 queries and TREC 2012 released 60 queries. TREC required
both sets of queries to be retrieved over the TREC Tweets2011 collection. Each query
represents an information need at a specific time. An example query is shown in
Figure 2. The num tag encloses the ID of the query. The query tag encloses the query.

3Some URLs given by the TU-tweets are not available during our crawling.
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Table III. The Statistics of Our Crawled TREC Tweets2011 Collection

HTTP Response Code Tweet Count Description

200 (OK) 14437978 Successfully downloaded tweets.

302 (Found) 1612080 Downloaded retweets via redirects.

403 (Forbidden) 339147 The tweets without public sharing properties.

404 (Not Found) 707403 The tweets no longer available.

Fig. 2. An example of TREC query.

The querytime tag gives the timestamp of the query in the form of ISO standard. Each
tweet is assigned a unique tweet ID. The descending ordering of the IDs of tweets can
be interpreted as the reverse-chronological order of their publishing times. The query-
tweettime tag represents the timestamp of the query. In response to a query with a
timestamp t, only the tweets whose IDs are not greater than t need to be considered.

TREC also provided the relevance judgments of tweets with respect to those two
sets of queries. TREC assessors read tweets, then followed the URLs inside them and
finally labeled them in a three point scale: “highly relevant,” “relevant,” and “irrele-
vant.” For the TREC 2011 queries, 49 (out of 50) queries have at least one relevant
or highly relevant tweet and 33 (out of 50) queries have at least one highly relevant
tweet. For the TREC 2012 queries, 59 (out of 60) queries have at least one relevant or
highly relevant tweet and 56 (out of 60) queries have at least one highly relevant tweet.
“Highly relevant” tweets are preferred over “relevant” tweets that are preferred over
“irrelevant” tweets. For the set of TREC 2011 queries, we use the set of TREC 2012
queries as the training query set and their corresponding TREC relevance judgments
as the training data and vice versa.

5.3. Relevance Criteria

There are two relevant criteria: 1) both relevant and highly relevant tweets are con-
sidered relevant; 2) only the highly relevant tweets are considered relevant. In our
experiments, we denote these two relevant criteria as the relevant criterion and the
highly relevant criterion, respectively. Our results are evaluated by these two criteria.

5.4. Evaluation Measures

In this article, we employ the precision at top 30 tweets (P30 for short), the mean
average precision (MAP for short) and the normalized discounted cumulative gain at
top 30 tweets (NDCG@30 for short) as the evaluation measures. To evaluate the re-
trieval effectiveness of our method that does not involve ranking tweets in reverse-
chronological order, we use MAP as the primary measure and P30 and NDCG@30 as
the secondary measures. However, we use P30 as the primary measure and MAP as
the secondary measure to evaluate the performance of our method in ranking tweets in
reverse-chronological order, as TREC 2011 stipulated that P30 is the official measure
for the reverse-chronological rankings of tweets [Ounis et al. 2011]. In this article, we
only consider statistical significance at p < 0.05 according to one-sided paired t-test.
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6. EXPERIMENTAL RESULTS

In this section, we evaluate our method by using both TREC 2011 and TREC 2012
queries over the TREC Tweets2011 collection. Two sets of experiments are conducted
to evaluate our two-phase method. One set evaluates the retrieval performance of the
divide-and-conquer method in the first phase; the other set evaluates that of utilizing
temporal information of tweets in the second phase. We also compare the performance
of our two-phase method with various state-of-the-art methods. In particular, we con-
duct the experiments to reveal the answers to the following research questions.

— Is it beneficial to apply the divide-and-conquer strategy on ranking tweets? In other
words, would there be any benefit to rank the two types of tweets separately, com-
pared with the method of ranking them simultaneously? Experiments are conducted
to verify the motivation of leveraging the structural difference of tweets.

— What are the important features for learning to rank tweets? We study the degrees
of importance of the proposed features for ranking T-tweets, TU-tweets and both
types of tweets together.

— What are the effectiveness and the efficiency of the proposed divide-and-conquer
algorithm for ranking tweets?

— How many queries do benefit from the divide-and-conquer algorithm and how many
queries do not? In particular, we conduct a result analysis of the proposed algorithm
and discuss the reasons why our algorithm helps or hurts some typical queries.

— Is it necessary to have two different types of time sensitive queries (dominant peak
queries vs. nondominant peak queries)? Experiments are conducted to validate the
benefit of our proposed categories of temporal queries.

— How to estimate the parameters K, p, s and β that are used by our temporal classi-
fication of queries?

— Does the utilization of temporal information provide further improvement over the
algorithm using the divide-and-conquer strategy?

— How many queries do benefit from the usage of temporal information and how many
queries do not? We analyze the performance of our method query by query and
discuss the reasons why our method improves or deteriorates the performance of
some queries.

— How is the performance of our two-phase method that combines the usage of tem-
poral information with the divide-and-conquer approach, compared with various
state-of-the-art methods?

6.1. Relevance Ranking Analysis

In this section, we first demonstrate the necessity of considering the structural differ-
ence of tweets. Second, we study the degrees of importance of the proposed features for
ranking tweets. Third, we study the effectiveness of the divide-and-conquer method by
comparing it with various baselines. Fourth, we discuss the efficiency of the proposed
method. Finally, we conduct a result analysis and discuss why some queries are helped
or hurt by our method.

6.1.1. The Motivation of Considering Structural Difference of Tweets. To validate the motiva-
tion of using the divide-and-conquer strategy to address the structural difference of
tweets, we analyze a uniform ranker (denoted by Uniform Ranker) and the two tweet
type-specific rankers (denoted by T-tweet Ranker and TU-tweet ranker respectively).
The Uniform Ranker is constructed by using RankSVM. It is learned over the training
data consisting of a set of training queries and both types of labeled tweets. It ranks
both types of tweets simultaneously. We first apply the Uniform Ranker to produce
a ranking of tweets. This ranking R consists of both types of tweets and is then
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Table IV. Uniform Ranker vs. Tweet Type-Specific Rankers

TREC 2011

Relevant Highly Relevant

MAP P30 NDCG@30 MAP P30 NDCG@30

Uniform Ranker (for T-tweets) 0.0613 0.1497 0.1142 0.0231 0.0202 0.1030

T-tweet Ranker 0.0768 † 0.1639 0.1327 † 0.0297 0.0152 0.1151

Uniform Ranker (for TU-tweets) 0.4440 0.5013 0.4762 0.3966 0.2364 0.4831

TU-tweet Ranker 0.4715 † 0.5102 0.4952 † 0.4042 0.2242 0.4923

TREC 2012

Relevant Highly Relevant

MAP P30 NDCG@30 MAP P30 NDCG@30

Uniform Ranker (for T-tweets) 0.0474 0.1266 0.0670 0.0182 0.0411 0.0706

T-tweet Ranker 0.0510 0.1373 0.0678 0.0184 0.0446 0.0696

Uniform Ranker (for TU-tweets) 0.2882 0.4226 0.2798 0.2447 0.2435 0.2722

TU-tweet Ranker 0.2926 † 0.4367 † 0.2949 0.2489 † 0.2548 0.2829

Note: † indicates statistically significant improvements over the corresponding baselines

partitioned into two rankings, R1 for T-tweets and R2 for TU-tweets. The relative
order of the tweets in each Ri(i = 1, 2) is the same as that in R. Two tweet type-specific
rankers are constructed by using RankSVM too. The T-tweet Ranker is learned by only
using the portion of T-tweets in the training data and the TU-tweet ranker is learned
by only using the portion of TU-tweets. They are used to rank the two types of tweets
separately. Finally, we compare the performance of these two rankings R1 and R2 with
those of the two corresponding rankings from the two tweet type-specific rankers.
The performance is evaluated by using both relevant criteria. The comparison of their
performance is shown in Table IV.

We make three observations based on the information shown in Table IV. First,
the Uniform Ranker achieves decent performance in ranking TU-tweets but it per-
forms poorly in ranking T-tweets with respect to both sets of TREC 2011-2012 queries.
Second, the two tweet type-specific rankers consistently outperform the Uniform
Ranker in terms of MAP, P30 and NDCG@30 by the relevant criterion over both sets
of queries. Third, for the highly relevant criterion, the two type-specific rankers show
somewhat stronger performance than the Uniform Ranker. Specifically, for the TREC
2011 queries, the two rankers consistently outperform the Uniform Ranker in MAP
and NDCG@30 but get marginal deteriorations in P30. For the TREC 2012 queries,
the TU-tweet Ranker consistently outperforms the Uniform Ranker in all three mea-
sures. The T-tweet Ranker outperforms the Uniform Ranker in terms of MAP and P30
but gets a negligible deterioration in NDCG@30. These three observations validate the
motivation and the necessity of treating the two types of tweets separately.

6.1.2. Feature Analysis. It is worth investigating the degrees of importance of the pro-
posed features for learning to rank tweets. We sort the proposed features in descend-
ing order of their degrees of importance that are calculated by RankSVM [Bian et al.
2010]. Specifically, we study the degrees of importance of the features applicable for
the T-tweet Ranker, the TU-tweet Ranker and the Uniform Ranker. Table V shows the
top 10 important features for each of these three rankers.

From Table V, several observations can be made. First, QTR features (the features
whose calculations depend on tweets and queries) are more important than TR fea-
tures (the features whose calculations depend on tweets only) in ranking T-tweets,
TU-tweets or ranking them simultaneously, because QTR features dominate the top
10 features for these three rankers. Second, the top 10 features for the T-tweet Ranker
are very different from those for the TU-tweet Ranker. In particular, only 3 of the top
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Table V. Top 10 Features for T-tweet Ranker, TU-tweet Ranker, and Uniform Ranker

Top 10 Features for T-tweet Ranker Shared by Rankers Below

Rank ID Type Feature Description TU-Tweet Uniform

1 F17 QTR The percentage of related nouns of Q contained in the
tweet message field.

√ √

2 F10 QTR The percentage of query concepts contained in the tweet
message field

√ √

3 F10 QTR The weighted percentage of query concepts contained in
the tweet message field

√ √

4 F12 TR Whether the tweet message field has more than 50% con-
tent in English.

5 F16 QTR The percentage of related concepts of Q contained in the
tweet message field.

6 F18 QTR Whether the order of query terms in the tweet message
field is the same as that of in the query

7 F3 QTR Whether the tweet message field contains the whole
query as a SNP or CNP.

8 F1 QTR The percentage of query terms contained by the hashtags
in the tweet.

9 F5 QTR Whether the tweet message field contains the key query
term.

10 F2 QTR The percentage of expansion terms contained by the
hashtags in the tweet.

Top 10 Features for TU-tweet Ranker Shared by Rankers Below

Rank ID Type Feature Description T-Tweet Uniform

1 F10 QTR The weighted percentage of query concepts contained in
the union of all three fields.

√

2 F10 QTR The percentage of query concepts contained in the URL
title field.

√

3 F10 QTR The percentage of query concepts contained in the URL
body field.

√

4 F10 QTR The percentage of query concepts contained in the tweet
message field.

√ √

5 F3 QTR Whether the URL title field contains the whole query as
a SNP or CNP.

√

6 F17 QTR The percentage of related nouns of Q contained in the
tweet message field.

√ √

7 F10 QTR The weighted percentage of query concepts contained in
the URL body field.

√

8 F10 QTR The weighted percentage of query concepts contained in
the tweet message field.

√

9 F10 QTR The percentage of query concepts contained in the union
of all three fields.

√ √

10 F3 QTR Whether the URL body field contains the whole query as
a SNP or CNP.

√

Top 10 Features for Uniform Ranker Shared by Rankers Below

Rank ID Type Feature Description T-Tweet TU-tweet

1 F10 QTR The percentage of query concepts contained in the tweet
message field.

√ √

2 F10 QTR The percentage of query concepts contained in the URL
title field.

√

3 F10 QTR The weighted percentage of query concepts contained in
the tweet message field.

√ √

4 F17 QTR The percentage of related nouns of Q contained in the
tweet message field.

√ √
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Table V. Continued

Top 10 Features for Uniform Ranker Shared by Rankers Below

Rank ID Type Feature Description T-Tweet TU-tweet

5 F10 QTR The percentage of query concepts contained in the union
of all three fields.

√

6 F10 QTR The percentage of query concepts contained in the URL
body field.

√

7 F3 QTR Whether the URL title field contains the whole query as
a SNP or CNP.

√

8 F10 QTR The weighted percentage of query concepts contained in
the union of all three fields.

√

9 F10 QTR The weighted percentage of query concepts contained in
the URL body field.

√

10 F3 QTR Whether the URL body field contains the whole query as
a SNP or CNP.

√

10 features for the T-tweet Ranker appear among the top 10 important features for
TU-tweet Ranker and they are not among the top 3 features for the TU-tweet Ranker.
This observation shows that the T-tweet Ranker and the TU-tweet Ranker emphasize
different features and thus again verifies the motivation and the necessity of rank-
ing these two types of tweets separately. Third, the top 10 important features for the
T-tweet Ranker are quite different from those for the Uniform Ranker while the top
10 important features for the TU-tweet Ranker are very similar to those for the Uni-
form Ranker. In particular, only 3 of the top 10 features for the T-tweet Ranker appear
among those for the Uniform Ranker while all the top 10 features for the TU-tweet
Ranker are the same as those for the Uniform Ranker but with a different order. This
observation explains why the Uniform Ranker achieves decent performance in ranking
TU-tweets but suffers poor performance in ranking T-tweets.

6.1.3. The Impact of the Divide-and-Conquer Method. To study the impact of our divide-
and-conquer method, four systems are configured. The first system is BM25 similarity
[Robertson et al. 1996]. We empirically learn the two parameters b and k for BM25.
In particular, the parameter b is learned from 0.5 to 1 with an interval of 0.05 and the
parameter k is learned from 1.2 to 2.0 with an interval of 0.1. The combination of these
two parameters that optimizes the performance of the TREC 2011 queries is applied
to the TREC 2012 queries and vice versa. The second system is the Uniform Ranker
(see Section 6.1.1). These two methods act as the baselines. The third system is the
proposed divide-and-conquer method equipped with a simple merging (called Simple-
Merging) algorithm. It can act as an alternative to the GreedyMerging algorithm to
merge the rankings of T-tweets and TU-tweets. The SimpleMerging algorithm works
as follows. Given a ranking of T-tweets, a ranking of TU-tweets and the preferences
of T-tweets relative to TU-tweets, SimpleMerging compares the preference between
the first T-tweet and the first TU-tweet. If the first T-tweet is preferred over the
first TU-tweet, SimpleMerging puts the first T-tweet into the merged ranking and
then compares the preference between the second T-tweet and the first TU-tweet.
Otherwise, SimpleMerging puts the first TU-tweet into the merged ranking and then
compares the first T-tweet with the second TU-tweet. Repeat the given comparison un-
til all tweets are merged into the final ranking. SimpleMerging guarantees to preserve
the relative ranking positions of the T-tweets and those of the TU-tweets. Its time
complexity is linear. The fourth system is the divide-and-conquer method equipped
with the GreedyMerging algorithm and its time complexity is quadratic. The three
parameters, λT, λTU and λPairwise, of GreedyMerging are estimated as follows. We stip-
ulate that the sum of the three parameter values be 1 and each parameter can only be
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Table VI. The Comparison of the Divide-and-Conquer Method of SimpleMerging or GreedyMeging with
Uniform Ranker and BM25

TREC2011

Relevant Highly Relevant

MAP P30 NDCG@30 MAP P30 NDCG@30

BM25 0.3693 0.3966 0.3747 0.2488 0.1576 0.3474

Uniform Ranker 0.4778 ↑ 0.4905 ↑ 0.4880 ↑ 0.3788 ↑ 0.2000 ↑ 0.4793 ↑
SimpleMerging 0.4953 ↑ 0.5109 ↑ 0.4914 ↑ 0.3912 ↑ 0.2152 ↑ 0.4882 ↑
GreedyMerging 0.5006 ↑ ‡ 0.5143 ↑ 0.4939 ↑ 0.4090 ↑ ‡ 0.2283 ↑ † 0.4933 ↑

TREC2012

Relevant Highly Relevant

MAP P30 NDCG@30 MAP P30 NDCG@30

BM25 0.2603 0.3791 0.2207 0.1910 0.2167 0.2319

Uniform Ranker 0.3077 ↑ 0.4175 ↑ 0.2705 ↑ 0.2345 ↑ 0.2375 ↑ 0.2633 ↑
SimpleMerging 0.3206 ↑ 0.4130 ↑ 0.2832 ↑ 0.2409 ↑ † 0.2357 ↑ 0.2710 ↑
GreedyMerging 0.3259 ↑ 0.4367 ↑ 0.2966 ↑ †‡ 0.2590 ↑ †‡ 0.2583 ↑ 0.2852 ↑ †‡

Note: ↑, †, and ‡ indicate statistically significant improvements over BM25, Uniform Ranker and Sim-
pleMergeing, respectively.

assigned one of 10 possible values: 0.1, ..., 1.0. The combination of these three parame-
ters that optimizes the performance of the TREC 2011 queries is applied to the TREC
2012 queries and vice versa. The performances of these systems are shown in Table VI.

Several observations can be made from the information in Table VI. First, all three
learning to rank models, the Uniform Ranker, the divide-and-conquer method with the
SimpleMerging algorithm (the SimpleMerging algorithm for short) and the divide-and-
conquer method with the GreedyMerging algorithm (the GreedyMerging algorithm for
short) consistently and significantly outperform the BM25 baseline in all measures by
both criteria with respect to the two sets of queries. This indicates that using learning
to rank techniques benefits the retrieval effectiveness of tweets. Second, for the set of
TREC 2011 queries, the SimpleMerging algorithm consistently outperforms the Uni-
form Ranker in all the measures by both criteria; for the set of TREC 2012 queries,
the SimpleMerging algorithm consistently outperforms the Uniform Ranker in MAP
and NDCG@30 but gets negligible deteriorations in P30 by both criteria. For all the
measures with respect to the two sets of TREC queries, the GreedyMerging algorithm
consistently outperforms the Uniform Ranker baseline by both relevant criteria. This
observation validates that the retrieval effectiveness of tweets benefits from the em-
ployment of the divide-and-conquer strategy for handling the structural difference
of tweets. Third, the GreedyMerging algorithm consistently outperforms the Simple-
Merging algorithm in all the measures by both relevant criteria with respect to the
two sets of queries. This indicates the performance of the GreedyMerging algorithm is
superior to that of the SimpleMerging algorithm.

6.1.4. The Efficiency of GreedyMerging Algorithm. To merge a ranking of m T-tweets and
a ranking of n TU-tweets, the time complexity of the GreedyMerging algorithm is
O((m+n)2). It consists of the construction of the preference matrix M and the merging
process based on M. Compared with the SimpleMerging algorithm, the GreedyMerg-
ing algorithm is not very efficient when m and n are large. However, its quadratic time
complexity should not be problematic when only merging the top m′ T-tweets and the
top n′ TU-tweets, where m′ ≪ m and n′ ≪ n. Merging the top m′ T-tweets and the top
n′ TU-tweets makes the construction of the preference matrix efficient, since we only
construct the submatrix based on these top tweets. It also makes the merging process

ACM Transactions on Information Systems, Vol. 31, No. 4, Article 21, Publication date: November 2013.



The Impacts of Structural Difference and Temporality of Tweets on Retrieval Effectiveness 21:25

Fig. 3. Performance of GreedyMerging with the Varying Values of m′ and n′ with respect to the TREC 2011
queries.

efficient, because the GreedyMerging algorithm merges tweets by their Dispreferness
that now is calculated on this small submatrix.

We study the effectiveness of the GreedyMerging algorithm when m′ and n′ are as-
signed small values. Figures 3 and 4 show the MAP, P30 and NDCG@30 performance
of the GreedyMerging algorithm with varying small values of m′ and n′ for both sets
of TREC 2011 and TREC 2012 queries, respectively. For the TREC 2011 queries, the
value of m′ varies from 10 to 60 and that of n′ varies from 10 to 150. For the TREC
2012 queries, the value of m′ varies from 10 to 60 and that of n′ varies from 10 to 300.
In all the component figures of Figures 3 and 4, the x axes represent the varying values
of n′ and the y axes represent the MAP, P30 and NDCG@30 performance by either the
relevant criterion or the highly relevant criterion. The different curves represent the
varying values of m′. The dash lines represent the corresponding performance of the
GreedyMerging algorithm by merging all m T-tweets with all n TU-tweets. For ease of
presentation, let us denote as FullGreedyMerging the GreedyMerging algorithm that
merges all m T-tweets and all n TU-tweets.

Figure 3 shows the performance of the GreedyMerging algorithm by both relevant
criteria with respect to the set of TREC 2011 queries. According to Figure 3(a), which
shows the MAP performance by the relevant criterion, the GreedyMerging algorithm
achieves a comparable MAP score of 0.4987 when merging only the top 60 (m′ = 60) T-
tweets and the top 150 (n′ = 150) TU-tweets, relative to a MAP score of 0.5006 achieved
by FullGreedyMerging. A similar observation can be made based on Figure 3(d) where
the MAP performance is evaluated by the highly relevant criterion. The GreedyMerg-
ing algorithm achieves a comparable MAP score of 0.4017 when merging only the top
40 (m′ = 40) T-tweets and the top 90 (n′ = 90) TU-tweets, compared with a MAP score
of 0.4090 achieved by FullGreedyMerging. If the users are interested in the top tweets,
we can achieve comparable performance in terms of P30 and NDCG@30, when merg-
ing very few T-tweets and TU-tweets. According to Figure 3(b) (Figure 3(e)) where the
P30 performance is evaluated by the (highly) relevant criterion, we can achieve a P30
score of 0.5122 (0.2263) when just merging the top 10 (m′ = 10) T-tweets and the top
30 (n′ = 30) TU-tweets, compared with the P30 score of 0.5143 (0.2283) achieved by
FullGreedyMerging. Similar observations can be made based on the NDCG@30 per-
formance shown by Figure 3(c) and Figure 3(f). This indicates that we can make the
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Fig. 4. Performance of GreedyMerging with the Varying Values of m′ and n′ with respect to the TREC 2012
queries.

GreedyMerging algorithm much more efficient without significantly hurting its effec-
tiveness for the TREC 2011 queries.

Figure 4 shows the performance of the GreedyMerging algorithm by both rele-
vant criteria with respect to the set of TREC 2012 queries. As shown in Figure 4(a)
(Figure 4(d)) where the MAP performance is evaluated by the (highly) relevant crite-
rion, the GreedyMerging algorithm achieves a reasonable MAP score of 0.3013 (0.2476)
by merging only the top 60 (m′ = 60) T-tweets and the top 300 (n′ = 300) TU-tweets,
relative to a MAP score of 0.3256 (0.2590) achieved by FullGreedyMerging. We note
that the TREC 2012 queries are harder than the TREC 2011 queries to achieve good
performance, which explains why we only achieve reasonable MAP performance for
the TREC 2012 queries by merging more top tweets than the TREC 2011 queries. If
only the top tweets are interested by users, we can achieve comparable performance
in P30 and NDCG@30 by merging very few top T-tweets and top TU-tweets. In partic-
ular, according to Figure 4(b) (Figure 4(e)) where the P30 performance is evaluated by
the (highly) relevant criterion, the GreedyMerging algorithm achieves a comparable
P30 score of 0.4340 (0.2571) by merging only the top 10 (m′ = 10) T-tweets and the
top 30 (n′ = 30) TU-tweets, relative to the P30 score of 0.4367 (0.2583) achieved by
FullGreedyMerging. Similar observations can be made based on the NDCG@30 perfor-
mance shown in Figure 4(c) and Figure 4(f). All these observations indicate that the
GreedyMerging algorithm can be much more efficient by achieving reasonable MAP
performance and comparable P30 and NDCG@30 performance for the TREC 2012
queries.

6.1.5. Result Analysis. In this section, we conduct an analysis for both sets of TREC
queries. Specifically, we compare the MAP performance of the Uniform Ranker with
that of the divide-and-conquer method using the GreedyMerging algorithm (see Ta-
ble VI). This comparison shows whether our way of handling the structural difference
of tweets can improve retrieval effectiveness. We analyze the average precision (AP for
short) changes query by query. Figure 5 shows the AP changes by both relevant criteria
with respect to the two sets of queries. For example, Figure 5(a) shows the AP changes
for the TREC 2011 queries by the relevant criterion. The changes are displayed from
the most improved query (on the left) to the most deteriorated query (on the right).
This displaying style continues from Figure 5(b) to 5(d). According to Figure 5, our

ACM Transactions on Information Systems, Vol. 31, No. 4, Article 21, Publication date: November 2013.



The Impacts of Structural Difference and Temporality of Tweets on Retrieval Effectiveness 21:27

Fig. 5. AP Changes of the TREC 2011-2012 queries (Uniform Ranker vs. Divide-and-Conquer Method).

proposed method based on the divide-and-conquer strategy can improve the majority
of the queries by both relevant criteria for the two sets of queries. This validates the
effectiveness of our method.

We perform a deeper analysis of our results to find out how many queries are sig-
nificantly improved or hurt in their APs (�AP ≥ 0.1) by our method and discuss the
corresponding reasons. For the TREC 2011 queries, Figure 5(a) shows that 13 queries
are significantly improved in their APs while 7 queries are significantly hurt according
to the relevant criterion. Figure 5(b) shows that 10 queries are significantly improved
while 4 queries are significantly hurt according to the highly relevant criterion. For
the TREC 2012 queries, Figure 5(c) shows that 6 queries are significantly improved
in their APs while 3 queries are significantly hurt according to the relevant criterion.
Figure 5(d) shows that 9 queries are significantly improved while only 1 query is sig-
nificantly hurt according to the highly relevant criterion.

One reason why our method improves some queries in their APs is that the T-tweet
Ranker (see Section 6.1.1) outperforms the Uniform Ranker in ranking T-tweets for
them. Let us illustrate this reason with an example.

Example 6. The query q = “Assange Nobel peace nomination” has four concepts: two
PN concepts, “Assange” and “Nobel peace,” and two CNP concepts, “Nobel peace nomi-
nation” and “Assange Nobel peace nomination.” Given a T-tweet d1 = “Nobel war prize
for wikileaks... only if the nukes are fired... #cablegate #wikileaks #assange #anony-
mous” and another T-tweet d2 = “#unlikelyheadlines GEORGE BUSH WINS NOBEL
PEACE PRIZE! Ha,” d1 is relevant to q while d2 is irrelevant to q. The T-tweet Ranker
ranks d1 on top of d2, because its most important feature is “the percentage of related
nouns of the query contained in the tweet message field” (see Table V). d1 contains one
related noun, “wikileaks”, while d2 does not contain any related nouns. The merged
ranking preserves the ranking of d1 ahead of d2. However, the Uniform Ranker ranks
d2 above d1. For the most important feature of the Uniform Ranker, “the percentage
of query concepts contained in the tweet message field” (see Table V), d1 contains a
PN concept, “Assange” in its message field and d2 contains another PN concept “Nobel
peace” in its message field too. d1 and d2 are tied. The second most important feature
of the Uniform Ranker, “the percentage of query concepts contained in the URL title
field” (see Table V), is not applicable for T-tweets. For the third most important feature
of the Uniform Ranker, “the weighted percentage of query concepts contained in the
tweet message field” (see Table V), d2 beats d1, because the weight of “Nobel peace”
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is higher than that of “Assange.” We use the inverse document frequency of a concept
as its weight. There are more tweets containing “Assange” than the tweets containing
“Nobel peace” in our collection. Therefore, the Uniform Ranker ranks d2 above d1.

Another reason why our method improves some queries in their APs is that the
TU-tweet Ranker (see Section 6.1.1) outperforms the Uniform Ranker in ranking TU-
tweets for them. Let us illustrate this reason with an example.

Example 7. The query q = “Supreme Court cases” has two concepts, a PN con-
cept “Supreme Court” and a CNP concept “Supreme Court cases”. Given a TU-tweet
d1 = “@enrogers Only FOX news... http://www.foxnews.com/opinion/2010/01/22/
ken-klukowski-supreme-court-amendment-mccain-feingold/” and another TU-tweet
d2 = “Letter to Julia Gillard by Peter H Kemp - Solicitor of the Supreme Court of NSW
http://wlcentral.org/node/1175 #assange #wikileaks,” d1 is relevant while d2 is irrel-
evant. The Uniform Ranker ranks d2 on top of d1, because its most important feature is
“the percentage of query concepts contained in the tweet message field” (see Table V).
d1 has no query concept in its message field while d2 has a query concept “Supreme
Court” in its message field. The TU-tweet Ranker ranks d1 above d2, because its most
important feature is “the weighted percentage of query concepts contained in the union
of all three fields” (see Table V). The Web page linked by the URL in d1 contains both
query concepts, “Supreme Court” and “Supreme Court cases” while the Web page linked
by the URL in d2 only contains “Supreme Court”. The merged ranking preserves the
ranking of d1 ahead of d2.

The T-tweet Ranker and the TU-tweet Ranker are superior to the Uniform Ranker in
ranking T-tweets and TU-tweets. Our merging algorithm preserves most of the pref-
erences indicated by those two tweet type-specific rankers. So our divide-and-conquer
method improves the majority of the queries.

The reason why some queries suffer significant drops in their APs is that the TU-
tweet Ranker falsely ranks some irrelevant TU-tweets over some relevant TU-tweets
with respect to them. This happens for a small minority of queries, because the TU-
tweet Ranker is not perfect. Let us illustrate this reason with a query “Michelle Obama
fashion” whose performance is hurt most by both relevant criteria among the TREC
2012 queries.

Example 8. The query q = “Michelle Obama fashion” has two concepts, a PN con-
cept, “Michelle Obama” and a CNP concept, “Michelle Obama fashion”. Given a TU-
tweet d1 = “Michelle Obama & Jill Biden Coordinate With Pearls On Monday (PHO-
TOS, POLL) http://huff.to/h4PmSg” and a TU-tweet d2 = “Fashionista: Fashion News
Roundup: Franca Sozzani Trashes Fashion Bloggers, Cathy Horyn Throws Down Over
Michell... http://bit.ly/fTKBEs,” d1 is relevant but d2 is irrelevant. The Web page
linked by the URL in d1 presents the following excerpt: “And the pair did a little co-
ordinating of their own – blazers and pearls. Michelle opted for a gray suit, with a
necklace secured with a safety pin (super punk rock!), while Jill mixed cream with
metallics and long necklace strands.”. This excerpt implicitly talks about the fashion
aspect of “Michelle Obama”, although the query term “fashion” does not occur at all.
However, consider an excerpt from the Web page linked by the URL in d2, “Fashion
News Roundup: Franca Sozzani Trashes Fashion Bloggers, Cathy Horyn Throws Down
Over Michelle Obamas McQueen, and Naomi Campbells a No-Show in Court”. This
excerpt contains all the query terms that form a CNP concept but is irrelevant to the
query. The TU-tweet Ranker ranks d2 on top of d1, because its most importance feature
is “the weighted percentage of query concepts contained in the union of all three fields”
(see Table V). d2 contains all the query concepts in the union of its three fields while
d1 only has a query concept, “Michelle Obama” in the union of its three fields. The
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ranking of d2 ahead of d1 is preserved in the merged ranking. However, the Uniform
Ranker ranks d1 above d2, because its most important feature is “the percentage of
query concepts contained in the tweet message field” (see Table V). d1 has a query con-
cept “Michelle Obama” in its message field while d2 does not have any query concepts
in its message field.

Again our merging algorithm can preserve most of the preferences of TU-tweets
indicated by the TU-tweet Ranker. Given a query q, if its AP performance of TU-tweets
achieved by the TU-tweet Ranker is significantly deteriorated, compared with that of
the Uniform Ranker, q suffers a significant drop in the AP performance of its merged
ranking.

6.2. Improving Relevance Ranking via Temporal Information

In this section, we present a set of experiments to evaluate our method that han-
dles temporality. Specifically, we first validate our proposed three temporal cate-
gories of queries. Then we evaluate our proposed F-measure aggregation method (see
Section 4.3) by comparing it with two baseline aggregation methods, combSUM and
combMNZ [Shaw et al. 1994]. Third, we show that the incorporation of the temporal
information of tweets can further improve the retrieval effectiveness of the divide-and-
conquer method in the first phase. Finally, we present a result analysis and discuss the
reasons why our way of using temporality helps or hurts some queries.

6.2.1. The Validation of Temporal Query Categorizations. In this section, we validate our
three temporal categories of queries. We conduct the experiments in three scenarios
where queries are classified into either time insensitive ones or time sensitive ones.
In the first scenario, a classified time sensitive query is always treated as a dominant
peak query, no matter how its top tweets are temporally distributed. The time-related
relevance scores of the tweets with respect to it are calculated by the Laplace-like func-
tion given by Equation (11). In the second scenario, a classified time sensitive query
is always treated as a nondominant peak query, irrespective of the temporal distribu-
tion of its top tweets. The time-related relevance scores of the tweets with respect to
it are thus computed by Equation (13). In the third scenario, a time sensitive query is
classified to be either a dominant peak query or a nondominant peak query. The time-
related relevance scores of the tweets with respect to that query are calculated by
Equation (11) or Equation (13), depending on its type. This is what we propose in this
article. By comparing the results from the third scenario with those from the first two
scenarios, we can conclude whether our temporal query categorization is necessary.

Several parameters are proposed to temporally categorize queries, so we first discuss
how to estimate them, which is followed by a description of how to configure the three
scenarios. There are four parameters to be estimated. They are K, p, s and β (see
Equations (8) to (10) and (14)). Given a query q, we first empirically use the top K
tweets of q to approximate the temporal distribution of the relevant tweets to q; then
we categorize q into one of three classes, after comparing the proportion of its top
K tweets at each day by p and s; we calculate the time-related relevance scores of
the tweets according to the classified type of q; finally, we aggregate the IR scores of
the tweets with their time-related relevance scores by β. We perform a grid search
for estimating them. Specifically, K is estimated within the range from 10 to 60 at
intervals of 10; the parameter p is estimated within the range from 0 to 0.5 at intervals
of 0.1 to ensure p ≤ 0.5; the parameter s is estimated within the range from p + 0.1
to 1 at intervals of 0.1 to ensure s > p; the parameter β is estimated within the range
from 0 to 1 using the same interval length as p and s. For the TREC 2011 queries, we
employ the TREC 2012 queries and their relevance judgments as the training data to
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estimate these four parameters and vice versa. We present the parameter estimation
method here.

(1) Given a combination of a K value, a p value, and an s value within their ranges,
the training query set Q can be categorized into three subsets of queries: QA (time
insensitive queries), QB (time sensitive dominant peak queries) and QC (time sen-
sitive nondominant peak queries). The class of a training query q(∈ Q) is deter-
mined by exploring the temporal distribution of its top K tweets (from the first
phase) jointly with the p value and the s value.

(2) For the subset of the training queries, QA, parameter β is not estimated. Let MAPA

denote the MAP performance of the ranking of the tweets by their IR scores with
respect to QA.

(3) For the subset of the training queries, QB, we iteratively test all possible values of
the parameter β for QB. Let βB denote this parameter β for QB.
(a) For each possible value of βB, we first calculate the time-related relevance

scores (TRSs) of tweets with respect to QB by Equation (11), then aggregate the
IR scores of the tweets (with respect to QB) with their TRSs by Equation (14)
by using the βB value; finally we obtain a ranking of the tweets in descend-
ing order of their aggregated scores. The performance of this ranking can be
measured by a MAP score.

(b) Find the βB value (from Step 3.a) that corresponds to the highest MAP score.
Let MAPB denote this highest MAP score for QB.

(4) For the subset of the training queries QC, we iteratively test all possible values
of β for QC. Let βC denote this parameter β for QC. Apply a similar method to
Step 3 on QC except that the TRSs of the tweets with respect to QC are computed
by Equation (13). Find the βC value that corresponds to the highest MAP score for
QC (denoted by MAPC).

(5) Union the K value, the p value and the s value from Step 1, the βB value from
Step 3, and the βC value from Step 4 into a combination of five parameters. This
combination corresponds to a MAP performance for all training queries Q(= QA ∪
QB ∪ Qc) that can be calculated as follows. Let MAPQ denote this MAP score.

MAPQ = MAPA · |QA| + MAPB · |QB| + MAPC · |QC|
|QA| + |QB| + |QC| (15)

(6) Iteratively repeat Step 1–Step 5 with another combination of a K value, a p value
and an s value until all their possible combinations are iterated. Find the combina-
tion of K, p, s, βB and βC that corresponds to the highest MAPQ. This combination
is the set of the estimated parameter values.

We provide some explanations for this method. Given a possible combination of a
value of K, a value of p and a value of s, we find out the value of the parameter β that
maximizes the MAP performance of all the training queries. Since the calculations of
the time-related relevance scores for dominant peak queries and nondominant peak
queries are defined differently, the parameter β for them should be estimated differ-
ently. Therefore, we technically have five parameters to estimate: K, p, s, βB and βC.
After the parameters are estimated, we can apply them to test queries. Specifically,
given the top K tweets of a test query q′, we categorize q′ into one of three classes by
exploring the temporal distribution of the top K tweets via the estimated p value and
the estimated s value. If q′ is categorized to be a time insensitive query, there is no
estimated parameter β for q′; if q′ is categorized to be a dominant peak query, the esti-
mated parameter βB value is used to aggregate the IR scores of the tweets for q′ with
their TRSs; if q′ is categorized to be a nondominant peak query, the estimated param-
eter βC value is used to aggregate the IR scores of the tweets for q′ with their TRSs.
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Table VII. The Comparison of Three Systems

TREC 2011

Relevant Highly Relevant

MAP P30 NDCG@30 MAP P30 NDCG@30

System I (p = s) 0.5062 0.5224 0.4983 0.4116 0.2323 0.4981

System II (s = 1) 0.5142 0.5224 0.5061 0.4141 0.2273 0.4962

System III 0.5270†‡ 0.5218 0.5076 0.4357 0.2283 0.5125

TREC 2012

Relevant Highly Relevant

MAP P30 NDCG@30 MAP P30 NDCG@30

System I (p = s) 0.3236 0.4362 0.2939 0.2564 0.2554 0.2817

System II (s = 1) 0.3360 0.4492 0.2933 0.2644 0.2589 0.2858

System III 0.3415† 0.4695†‡ 0.3018 0.2719 0.2738†‡ 0.2911

Note: † and ‡ indicate statistically significant improvements over System I and System II
respectively.

Our proposed system that uses the given estimation method corresponds to the third
scenario. Let System III denote the system in the third scenario. System III is com-
pared against two systems, each having only one type of time sensitive queries.

System I is obtained by stipulating p = s < 1, ignoring the restrictions of p ≤ 0.5
and s > p. It assumes that if a query does not satisfy Equation (8), it is time sensitive.
Because Equation (10) cannot hold when p = s, all time sensitive queries are assumed
to be the dominant peak queries, regardless of the distributions of their top tweets.
If a query has multiple peaks, then the highest peak serves as the dominant peak.
System I has two parameters p(= s) and β that can be estimated in a similar way as
discussed before. In particular, by assuming p = s < 1, all training queries can be
partitioned into a set of time insensitive queries and a set of dominant peak queries.
The combination of a p value and a β value that yields the largest MAP score for the
training queries is utilized to categorize a test query q′. If q′ is a time sensitive query,
then the Laplace-like function is used to calculate the time-related relevance scores
for the tweets for q′, as this is the only type of time sensitive queries for this system.
System I corresponds to the proposed system in the first scenario described earlier.

System II is configured by stipulating s = 1. Because Equation (9) cannot hold when
s = 1, all time sensitive queries are assumed to be the nondominant peak queries.
Equation (13) is applied to calculate the time-related relevance scores. The two pa-
rameters p and β are estimated using a similar method to that used by System I. For
each test query q′, the combination of a p value and a β value which yields the largest
MAP score for the training queries is applied to q′. System II corresponds to the pro-
posed system used in the second scenario. Table VII presents their performances.

As shown in Table VII, for the set of TREC 2011 queries, compared with System I,
System III suffers slight deteriorations in P30 by both relevant criteria. However, Sys-
tem III consistently outperforms System I in MAP and in NDCG@30 by both relevant
criteria. We also see that System III consistently outperforms System II in almost all
measures by both relevant criteria except a negligible deterioration in P30 by the rele-
vant criterion. For the set of TREC 2012 queries, System III consistently outperforms
System I and System II in all measures by both relevant criteria. These improvements
validate our temporal query categorizations.

6.2.2. The Evaluation of Aggregation Method. In this section, we evaluate our proposed
aggregation method (i.e., System III in Table VII). We compare its performance with
two baselines, CombSUM and CombMNZ [Shaw et al. 1994]. In particular, given
a tweet d with an IR score IR(d) and a time-related relevance score TRS(d), the
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Table VIII. The Comparison of Various Aggregations

TREC 2011

Relevant Highly Relevant

MAP P30 NDCG@30 MAP P30 NDCG@30

CombSUM 0.5028 0.5245 0.4951 0.4025 0.2394 0.4917

CombMNZ 0.4909 0.5156 0.4851 0.3931 0.2343 0.4882

Our Aggregation 0.5270 0.5218 0.5076 0.4357 0.2283 0.5125

TREC 2012

Relevant Highly Relevant

MAP P30 NDCG@30 MAP P30 NDCG@30

CombSUM 0.3358 0.4616 0.2915 0.2495 0.2631 0.2849

CombMNZ 0.3412 0.4638 0.3020 0.2660 0.2690 0.2897

Our Aggregation 0.3415 0.4695 0.3018 0.2719 0.2738 0.2911

CombSUM method calculates an aggregated score for d, CombSum(d) = IR(d) +
TRS(d); the CombMNZ method calculates an aggregated score for d, CombMNZ(d) =
CombSum(d) · md, where md is the number of nonzero scores for d. Specifically, if d
has a nonzero IR(d) score and a nonzero TRS(d) score, then md = 2. If a query q
is time insensitive, no TRSs are assigned to the tweets with respect to q. Table VIII
shows the comparisons of the three aggregation methods. For the TREC 2012 queries,
our aggregation method consistently outperforms CombSUM in all measures by both
relevant criteria. Our method also outperforms CombMNZ in almost all measures by
both relevant criteria except a negligible deterioration in NDCG@30 by the relevant
criterion. For the TREC 2011 queries, compared with the two baselines, our method
suffers marginal deteriorations in P30 by both relevant criteria. But it outperforms the
two baselines in all other measures by both relevant criteria. Overall, our aggregation
method shows the strongest performance among all three aggregation methods. How-
ever, the improvements over CombSUM and CombMNZ by our aggregation method
are not statistically significant.

6.2.3. The Impact of Temporal Information on Retrieval Effectiveness. We now study the im-
pact of incorporating temporal information on retrieval effectiveness. In this experi-
ment, we use two baselines. The first baseline is our divide-and-conquer method using
the GreedyMerging algorithm (i.e., its performance in Table VI), because we want to
see whether the inclusion of temporal information can further improve the perfor-
mance of this baseline or not. Let BASELINEI denote the first baseline. The second
baseline is the algorithm proposed by [Efron and Golovchinsky 2011]. Given a query
q with a timestamp t, this method ranks the tweets published before or on t by using
their temporal information. Specifically, it prefers the recent tweets close to t to the old
tweets and calculates a score P(d|q) for a tweet d (publishing at td) by Equation (16).

P(d|q) ∝ P(q|d) · r · e−r·f (td,t), (16)

where r is the rate parameter of the exponential distribution. P(q|d) is an IR score
provided by a retrieval model. f (td, t) is the same time representation we adopt in this
article. Efron and Golovchinsky [2011] proposed to do the maximum posterior estima-
tion for the parameter r for each q as follows. Let Dq = {d1, . . . , dk} be the top k tweets
for q by a ranking model. Let TDq

= {t1, . . . , tk} be the set of the time representations

of the publishing times associated with Dq. Then rMAP
q = ρ+k−1

σ+
∑k

i=1 ti

. This estimation in-

volves three parameters, k, ρ and σ . In order to compare our method with this method
(denoted by BASELINEII), we use the IR scores of the tweets from the first phase as
P(q|d) for BASELINEII. Moreover, we also do the maximum posterior estimation of
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Table IX. The Impacts of Temporal Information

TREC 2011

Relevant Highly Relevant

MAP P30 NDCG@30 MAP P30 NDCG@30

BASELINEI (Divide-and-
Conquer Method)

0.5006 0.5143 0.4939 0.4090 0.2283 0.4933

BASELINEII [Efron and
Golovchinsky 2011]

0.3958↓ 0.3891↓ 0.3909↓ 0.3391↓ 0.1505↓ 0.4117↓

Our Method (System III) 0.5270†‡ 0.5218‡ 0.5076‡ 0.4357†‡ 0.2283‡ 0.5125‡

TREC 2012

Relevant Highly Relevant

MAP P30 NDCG@30 MAP P30 NDCG@30

BASELINEI (Divide-and-
Conquer Method)

0.3259 0.4367 0.2966 0.2590 0.2583 0.2852

BASELINEII [Efron and
Golovchinsky 2011]

0.2305↓ 0.3283↓ 0.2082↓ 0.1698↓ 0.1923↓ 0.2011↓

Our Method (System III) 0.3415†‡ 0.4695†‡ 0.3018‡ 0.2719‡ 0.2738†‡ 0.2911‡

Note: † and ↓ indicate statistically significant improvements and deteriorations over BASELINEI; ‡ indicates
statistically significant improvements over BASELINEII.

r for each test query. Efron and Golovchinsky [2011] showed that their suggested pa-
rameter values are effective for the proposed maximum posterior estimations across
two collections, including a Twitter collection. In our experiments, for each parameter,
we try different values for that parameter including their suggested value. For exam-
ple, for the parameter k, we try 10, 20, and 30, where 20 is their suggested value. The
method using their suggested values for the three parameters k, ρ and σ achieves the
best performance and thus we just report the best performance in this article. Table IX
presents the comparison of our method with two different baselines.

As shown in Table IX, compared with BASELINEI, BASELINEII deteriorates in
all measures by both relevant criteria for both sets of TREC queries. We are not sur-
prised by this results, because BASELINEII always prefers recent tweets to old tweets.
Such a recency-preferred strategy does not apply for our queries, as we discussed in
Section 1, which is the reason why we propose our three temporal categorizations of
queries. For comparing our method with BASELINEI with respect to the set of TREC
2011 queries, our method ties with BASELINEI in P30 by the highly relevant criterion
but outperforms BASELINEI in all other measures by both relevant criteria. For the
set of TREC 2012 queries, it consistently achieves improvements over BASELINEI
in all measures using both relevant criteria. This demonstrates that our proposed
method using temporality can effectively further improve the retrieval effectiveness
of our divide-and-conquer method in the first phase. Our method also consistently and
statistically significantly outperforms BASELINEII in all measures by both relevant
criteria for the two sets of queries, which demonstrates the effectiveness of our pro-
posed temporality usage.

6.2.4. Result Analysis. In this section, we conduct an analysis for our utilization of the
temporal information of tweets. In particular, we do a query-by-query analysis by com-
paring the MAP performance of BASELINEI with that of our method (see Table IX).
Figure 6 shows the average precision (AP for short) changes for the TREC 2011 and
2012 queries by both relevant criteria. It displays the changes from the most improved
query to the most deteriorated query. According to Figure 6, our usage of temporality
improves the average precisions for the majority of the TREC 2011 and 2012 queries.
This demonstrates the effectiveness of our proposed method.
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Fig. 6. The average precision changes for temporality.

We provide a deeper analysis to see how many queries are significantly improved
or hurt (�AP > 0.05) in their APs by our temporality usage and present the reasons
why their APs are improved or deteriorated. For the TREC 2011 queries, 10 (8) queries
are significantly improved while 2 (3) queries are significantly hurt according to the
(highly) relevant criterion. For the TREC 2012 queries, 11 (13) queries are significantly
improved while 5 (7) queries are significantly hurt according to the (highly) relevant
criterion. Let us illustrate the reasons with two examples. For example, the query q =
“Aguilera super bowl fail” is a dominant peak query. 73% of its relevant tweets were
published on 2/7/2011. The first phase of our method achieves a very good precision at
the top tweets for q, as 26 out of the top 30 tweets are relevant to q. Then our method
correctly classifies q as a dominant peak query and predicts its dominant peak is on
2/7/2011. This query is significantly improved in its AP. On the contrary, if the first
phase of our method fails to achieve a decent precision by its top tweets with respect to
a query q, then our classification of q is inaccurate, which may lead to a deterioration
in the AP of q after we apply our temporal method on q. For example, for the query
“Michelle Obama fashion,” we are not surprised to see a significant performance drop
for this query again, because the first phase of our method achieves a poor precision
at its top tweets, as 10 out of the top 30 tweets are relevant to q. Our classification for
this query and our prediction of the peaks of this query are inaccurate. Overall, the
performance of our usage of temporal information depends on an accurate classifica-
tion of each query, which in turn depends on how well its top tweets using the first
phase of our method approximate its relevant tweets.

6.3. Comparison with Related Works

In this section, we compare the performance of our method with those of some related
works. TREC 2011 required the retrieved tweets to be ordered in reverse-chronological
order [Ounis et al. 2011]. In this experiment, we evaluate the performance of our
two-phase method in ranking tweets in reverse-chronological order. Since our method
mainly aims at ranking tweets in terms of relevance, we adopt a simple strategy to
produce the reverse-chronological ranking of tweets. In particular, we take the top 30
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Table X. Comparison of Our Method vs. State-of-the-Art Methods
with Respect to the TREC 2011 Queries

Relevant Highly Relevant

Reverse Chronological Order

P30 MAP P30 MAP

[Liang et al. 2012] 0.4177 0.2365 0.1979 0.2722

[Choi et al. 2012] 0.5068 0.3068 - -

Our Method 0.5218 0.3018 0.2283 0.3189

Descending Order of Relevance

P30 MAP P30 MAP

[Amati et al. 2012] - 0.3950 - -

Our Method 0.5218 0.5270 0.2282 0.4357

Descending Order of Relevance

Top 100 Tweets

P30 MAP P30 MAP

[Efron et al. 2012] - 0.2350 - -

Our Method (Top 100) 0.5218 0.4892 0.2282 0.4262

tweets and rearrange them in reverse order of time. This strategy is the most popular
strategy adopted by the participants in TREC 2011 [Ounis et al. 2011]. The primary
evaluation measure is P30 for the reverse-chronological ranking of tweets. Metzler
and Cai [2011] achieved the best P30 score in TREC 2011 but their results were ob-
tained in the absence of TREC relevance judgments as training data. So we omit the
comparison of our results with theirs, because we use TREC relevance judgments as
training data. We compare our results with other published results with respect to
the set of TREC 2011 queries. Liang et al. [2012] achieved improvements over the re-
sults of Metzler and Cai [2011] only by the highly relevant criterion. Moreover, [Choi
et al. 2012] only reported their performance by the relevant criterion and their results
outperform the TREC 2011 best results. Some studies [Amati et al. 2012; Efron et al.
2012] reported their MAP performance by ranking tweets in descending order of rel-
evance to the TREC 2011 queries, without addressing the requirement of the reverse
chronological order. We compare our results with these published results in Table X. As
shown in Table X, our method consistently and significantly outperforms the results
from Liang et al. [2012] in terms of P30 and MAP by both relevant criteria. Accord-
ing to the primary evaluation measure P30, our results outperform theirs by 24.9%
using the relevant criterion and by 15.4% using the highly relevant criterion. Both
works explore the Web pages whose URLs are embedded in tweets. According to the
primary measure P30, our results outperform the results from Choi et al. [2012] by the
relevant criterion and obtains a competitive performance in MAP. For ranking tweets
in descending order of relevance, our results also significantly outperform the results
from Amati et al. [2012] and Efron et al. [2012]. Their results were obtained without
exploring the Web pages linked by tweets while our results use the information from
those Web pages. Efron et al. [2012] reported their results by only evaluating top 100
tweets with respect to a given query.

For the set of TREC 2012 queries, we compare our results with the best known re-
sults reported by the TREC 2012 overview paper [Soboroff et al. 2012]. Unlike TREC
2011, TREC 2012 required tweets to be ranked in descending order of relevance, in-
stead of reverse chronological order. Moreover, TREC 2012 only evaluated up to top
1000 tweets by the highly relevant criterion. The “hitURLrun3” run from [Han et al.
2012] achieved the best P30 and MAP scores [Soboroff et al. 2012]. For the TREC
2012 participants, the relevance judgments with respect to the TREC 2011 queries are
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Table XI. Comparison of Our Method vs. Best Results
with Respect to the TREC 2012 Queries

TREC 2012

Highly Relevant

MAP P30

hitURLrun3 [Han et al. 2012] 0.2640 0.2701

Our Method 0.2719 0.2738

available as training data, so we compare our corresponding results with the reported
best results. Since TREC 2012 required tweets to be ranked in descending order of
relevance, MAP is more important than P30. Table XI shows that our results compare
favorably with the best results in both measures. Both methods use the Web pages
whose links are provided by tweets.

7. CONCLUSION AND FUTURE WORK

In this article, we studied the problem of real-time ad-hoc retrieval of tweets intro-
duced by TREC 2011. We proposed a two-phase approach to retrieve tweets. Motivated
by the observation that tweets have different structures where one type of tweets con-
tains just short plain messages (called T-tweets) and the other type of tweets contains
short messages with at least one embedded URL (called TU-tweets), we proposed a
divide-and-conquer based method for the first phase. Specifically, the method consists
of two tweet type-specific rankers and a classifier. We first used the two rankers to ob-
tain a ranking of T-tweets and a ranking of TU-tweets. Then we utilized the classifier to
determine a preference for every two tweets, one from each type. Finally, we proposed
a greedy algorithm to merge the two type-specific rankings into a single ranking for
both types of tweets. The merging process takes into consideration all the preferences
from the two rankers and the classifier. Experiments showed that our proposed method
yields better retrieval effectiveness than the ranker that ranks the two types of tweets
simultaneously. We also showed how our method can be made efficient by performing
a merging of only the top tweets. In the second phase, we proposed to classify temporal
queries by the temporal distributions of their top tweets and calculate the time-related
relevance scores of the tweets with respect to different classes of queries accordingly.
A ranking of tweets is produced by combining their IR scores from the first phase with
their time-related relevance scores. Experimental results demonstrated that the uti-
lization of the temporal information can further improve the retrieval effectiveness
of the first phase. Our method is also compared favorably with some state-of-the-art
methods.

For future work, we plan to investigate whether we can further improve the per-
formance of the divide-and-conquer method by the social aspects of tweets. Such in-
formation can be found in the JSON version of the TREC Tweets2011 collection. We
also plan to study other categorizations of queries, such as cyclic queries and trending
queries.
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