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ABSTRACT

A formula for the impedance of a shorty cylindrical dipole in a

magnetoplasma is derived using quasi-static electromagnetic theory. The

formula is valid in a lossy plasma and for any dipole orientation with

respect to the magnetic field. It is shown that the quasi-static theory

can be interpreted in terms of scaled coordinates and that a cylindrical

dipole in a magnetoplasma has a free space equivalent with a distorted

shape. The dipole impedance is found to have a positive real part under

lossless conditions when the quasi-static differential equation is hyper-

bolic; this indicates that the quasi-static theory predicts a form of

radiation. The effects of plasma wave excitation and various assumed

Current distributions are discussed. Laboratory measurements of monopole

impedance are found to agree fairly well with the theoretical calculations,
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1. INTRODUCTION

When an antenna is immersed in some medium, knowledge of its impedance

is important whether the antenna is regarded as part of a communications

system or as a probe for studying the properties of the medium. For the

former application,, energy reflection from the antenna must be minimized

and for the latter^ the relationship between impedance and medium properties

must be well established. The foregoing statements apply especially to

rocket and satellite exploration of the ionosphere and also to plasma

diagnostics in the laboratory. For these reasons it was decided to study

both theoretically and experimentally the impedance of a short cylindrical

dipole antenna immersed in a magnetoplasma. Only linear (low RF level)

phenomena will be discussed in this report.

The analysis is limited to short antennas (short compared to a wave-

length) in order to avoid the problem of obtaining theoretically the antenna

current distributions. If the antenna is short enough^ the current may

be assumed to vary linearly from a maximum at the center to zero at both

ends. Furthermore a short antenna may be conveniently analyzed using

quasi-static electromagnetic theory, a method which (in free space at

least) gives good impedance results but does not predict radiation. In

this report the quasi-static theory is derived by means of a low fre-

quency approximation and is used to calculate dipole impedance for any

orientation of the dipole with respect to the steady magnetic field.

Furthermore it is shown that the first near field term of Mittra and

1
Deschamps is the quasi-static field.



Laboratory impedance measurements also are simplified by limiting

the experimentation to short antennas. Since a short antenna radiates

little energy, the reflection of this energy from nearby obstacles has

negligible effect on the impedance. This is especially important when

the antenna is immersed in a laboratory plasma because the walls of the

plasma container must necessarily be close to the antenna. The measure-

ments to be described were performed on a monopole antenna having a length

of approximately a twentieth of a free space wavelength and inserted in

the end of a cylindrical glass discharge tube. For experimental conven-

ience, measurements are limited to the case in which the steady magnetic

field is parallel to the monopole axis. The impedance measurements agree

reasonably well with -he quasi-static theoretical predictions.

An unexpected result of the quasi-static theory is the prediction of

radiation which occurs when the quasi-static differential equation is

hyperbolic. The effect of this radiation on impedance is not only pre-

dicted theoretically but also detected experimentally. Electromagnetic

effects such as radiation were nor expected because, in free space^ a

quasi-static (irrotational) electric field cannot induce a magnetic field.

In a magnetoplasma, however, the electric field does induce a magnetic

field and radiation can take place.

The validity of the theoretical model is examined from several view-

points. An impedance correction is computed, using a second order term

arising in the derivation of the quasi-static field theory. The problem

of the influence of the assumed current distribution is treated by com-

puting the effects of two different current distributions. In addition,



the effect of the excitation of longitudinal plasma waves is computed

for the isotropic case. However, as far as the laboratory experiment is

concerned these corrections are of negligible importance compared to the

problem of non-uniform electron density resulting from plasma diffusion

to the antenna surface and to the container walls. The magnitude of

this effect is estimated by calculating the impedance of a non-uniform,,

isotropic plasma between parallel conducting plates.

There are relatively few published papers dealing with the impedance

2

of antennas in anisotropic media. Kononov et al, have applied quasi-

static theory to the problem of an infinitesimal dipole but their field

and impedance expressions differ with those in this report due to their

choice of an integration contour, Katzin and Katzin have derived an

impedance formula for longer dipoles but a great deal of numerical inte-

gration would be necessary to extract impedance values from their formula.

Whale has discussed some aspects of the problem including the effect of

plasma wave excitation on radiation resistance, Bramley has obtained an

impedance expression valid for low electron density or weak magnetic field.

Kaiser has observed a real part in the input impedance of a biconical

dipole but he believes this to be the result of energy storage rather than

radiation.

Some papers on related topics should be mentioned for the sake of

completeness. The impedance of antennas in conducting, isotropic media

7 8has been studied by King and Harrison and also by Deschamps whose

impedance relation is particularly simple and useful. Quasi-static theory

has been applied to propagation problems in plasmas by Trivelpiece and

9 -j QGould and in ferrites by Trivelpiece et al," and several other authors.



A thorough discussion of source problems in isotropic^ warm plasma has

' 3been presented by Cohen" in a series of three articles.



2. THE QUASI-STATIC THEORY FOR A SHORT DIPOLE ANTENNA
IN A MAGNETOPLASMA

2.1 Derivation of the Basic Equations

In a plasma with a z- directed DC magnetic field Maxwell's equations

are

V x H = j u e
o K E + J (2.1.D

V X E = -j w u. H
o

(2.1.2)

The relative permittivity tensor K is

K =

K JK
.?

S

JK K

K
o —'

(2.1.3)

in which
K =
o

X
1

U

K = 1 -
X U

r?2 y2

- X Y

l?-Y 2



N 2

co
2 -

e
-

co
2

CO eB
H

co - °
oj H ~ m

v
U = 1-jZ = i-j -

.
n . .U y = collision frequency

N = electron density

B = DC magnetic flux density
o

co = angular frequency of signal source

e = magnitude of electron charge

m = electron mass

q — i

€ = permittivity of free space = «.36^T x 10" ) fd /m

~1
Li = permeability of free space = ATI x 10 hy /in.
o

r
— co 27T

k = o-1

, u fc — "" = T~ - free space propagation constant
o " o o c A.

o

c = velocity of light m a vacuum

\ = free space wavelength
o

M K S. units (rationalized) are used throughout

The impedance analysis of an antenna requires knowledge of its near

field If all The dimensions of the antenna are small compared to a

wavelength, the use of an approximate near field theory is indicated in

order to simplify the otherwise complicated calculations. Such an

approximate theory can be obtained by first formulating general near

field expressions and then letting 'fie antenna dimensions become very

small in terms of wavelengths, An equivalent process involves letting the



frequency become arbitrarily small while maintaining the antenna size

and the properties of the medium constant (i.e.^ the dispersive nature

of the medium is not considered). This low frequency limit is employed

in the following paragraphs to derive quasi-static expressions for the

electric f ield, the magnetic field and Poynting' s theorem.

The first step is to obtain a general field formulation valid for

electromagnetic problems in a magnetoplasma. It is desired to derive

E and H from a pair of potentials chosen in such a manner as to display

the quasi-static electric field as a distinct part of the total electric

field. The total electric field can be expressed in terms of a scalar

potential 41 and a vector potential A.

E=-V4, -J W A (2.1.4)

Substitution of Equation (2.1.4) in Equation (2.1.2) gives

u. H = V X A (2.1.5)

The above two relations^ together with Eqjation (2.1.1) give

VXVXA-k^ KA=-jo)y.e KV| + u. J (2.1.6)
o o o o



Operation on Equation (2 1„6) with the divergence operator gives

T7. K 7i|i+jM V'K A = ——- (2.1.7)
JUJ

o

This equation can be simplified by introducing the following restriction

on A :

V-K A = (2,1.8)

This is a modification of the Coulomb gauge condition and is discussed in

the Appendix, Equation (2.1.7) becomes

"KV^ 5LL1. (2.1„9)
J

o

This differential equation can be used to obtain the potential i\i due to a

current density J. If q is the charge density, the equation of continuity

(V'J + j W q - ) puts Equation (2.2 9) into r he form

V'K V ^ = -
| (2 o 1.10)

which may be regarded as a modified Poisson's equation A complete

solution for all the fields would involve solving Equation (2.1.9) or

Equation (2.1.10) for 4j. substituting ty in Equation (2.1.6) and solving

* Equation (2.1.10) is widely used and is the quasi-static differential
equation for the scalar potential <\> .



for A. Expressions for E and H could then be derived using Equations

(2.1.4) and (2.1.5).

Solution of the above equations can be facilitated by the use of

spatial Fourier transforms. A transform will be indicated with a wavy

line ( ~ ) and the transform variables will be represented by the vector

k. Transformation of Equation (2.1.6) gives

MA = con 6 Kkiji+u. J (2.1.11)
o o o

where

•M = kX k X + k
2

K.
o

Transformation of Equation (2.1.9) gives

1 k • J

o k K k
*=-j3T = ~ (2.1.12)

Substitution of Equation (2.1.12) in Equation (2.1.11) gives

A =
(jl M A

I
-

K
_
k k

_
J

+ J ! (2.1.13)
k K k
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The electric field E can be expressed in terms of the potentials

and consequently in terms of the current density J by transforming

Equation (2., 1 „4)

:

E = - jkijJ + ^A (2„1 14)

Similarly, transformation of Equation (,2„1,5) gives an expression for

the magnetic field;

H = — kX A (2 1 15)

Thus the electric and magnetic fields can be expressed in terms of a

scalar potential and a vector potential which can be derived from the

source current in a straightforward manner. The gauge condition on the

potentials is chosen so that the scalar potential ijj satisfies the relatively

simple quasi-static differential equation

An examination of the equations in the preceding paragraph suggests

that some simplification may result if E and J are each separated into

two parts as follows:

E = E + E
o 1

aJ — «J Hr J
O 1

(2.1.16)
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in which

E = - j k i>
o

E : = - j w A
1

- K k k • J
J —
o

k • K k

J = ^ _
K
_
k k

"_
J

(2.1.17)
1 k • K k

The following relations may be deduced readily:

kXK_1
J = (2.1.18)

k • J = (2.1.19)
1

J is clearly a transverse vector. However it is not the entire transverse
1

part of the current density since the other part J is not longitudinal;

rather, K J is longitudinal. Equation (2.1.13) for the vector potential
' o

becomes

A = u M * J (2.1.20)
o i



12

Equations (2..1.20), (2.1.14) and (2.1 12) permit the two parts of E to

be expressed as

E = -4~ K"1 J (2,1.21)
o "Jt o

o

E = - j u u, M~ : J (2.1.22)
1 o i

Equation (2.1.18) shows that E is a longitudinal vector. However it is
o

not the entire longitudinal part of E since in general k ; E d Rather
i

K E is transverse, a fact which may be deduced from the gauge condition,,
1

An expression for the magnetic field follows from Equations (2.1.20) and

(2.1,15) . It is

H = j kXM"1 J (2.1.23)
1

Another expression for H may be derived by noting that

M k = k X k X k * k
2 K k

o

from which -k = k 2 M l K k (2.1.24)

Substitution of Equation (2.1 24) in Equation (2.1.13) gives



13

T ! k k • J „-i -
A = + jjl M i

J (2.1.25)
oj
2
€ k • K k

°

o

from which

H = j k XM * J (2.1.26)

A comparison of Equation (2.1.26) with Equation (2.1.23) leads to the

conclusion that

kX M
_1

J = (2.1.27)

The decomposition of the current density into two parts ( a procedure

suggested by Professor G. A. Deschamps) evidently simplifies the equations

considerably. Furthermore it is clear that E is derived entirely from

J and that both E and H are derived entirely from J . Similarly i(j and
o 1 1

A are derived from J and J respectively. Thus the entire field pro-
o i

blem has been divided into two distinct halves, one with the source J
' o

and the other with the source J . Although J may be confined to a finite
l

region in space, J and J both exist outside that region.
o i

The theory developed above does not use any approximations and is

valid as long as the constant permittivity tensor K is a valid representa-

tion for the properties of the medium. However the near field analysis

of a short antenna can be simplified greatly by the use of a low frequency

approximation to the general theory. Since k is a parameter proportional
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to frequency,, the low frequency approximation can be effected by letting

k approach zero. As discussed before the low frequency approximation
o

is not applied to the elements of the permittivity tensor K; that is
;

the elements of K are to be considered fixed as k approaches zero. It

will be shown that the first term of the approximation gives an electric

field equal to E (the quasi-static electric field). Furthermore it will
o

be shown that the low frequency approximation gives a magnetic field

consisting of two parts. One part is the familiar magnetic field obtain-

able from the DC form of Ampere's law and the other part is an induced

magnetic field which is non-zero only in an anisotropic medium.

2The low frequency approximation (the limit as k approaches zero)

can now be applied to the vector potential A. Equation (2.1.25) shows

that A can be expressed as follows:

~ k k J -i
«

A = — —— + jj, M J
u?' 6 k • K k

^2 I ^JL__^ , k
a

m"
1 J i

k
2

I k . K k °

If the rectangular components of k are k . k k , then the matrix M is
1 2 3
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M

k
2
+ k - k

2
K"

2 3 o

-k k + jk *K
12 o

k k
1 3

_

-k k - jk^ K
1 2 °

2 2
2

'

k
J
+ k - k K

1 3 o

•k k
2 3

-k k
1 3

-k k
2 3

k2 + k
2 -k2 K

1 2 ° o

(2.1.29)

-1 N
The inverse of M can be expressed as M = —

N + k" N + k N
O O 1 O 2

k
2
(a + k2 b + k

4
c)

(2.1,30)

in which D is the determinant of M In order to consider the low frequency

limits it is necessary to know the scalars a
s

b
}

c and the matrices

N , N , N . They are
o' i' 2

(k
2

+ k
2

+ k
2

) K (k
2 + k

2
) + K k

212 03

k2 k K k (2,1.31)
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b = (K 2 - K 2
) (k

2
4- k2

) + K K (k
2 + k

2 + 2 k
2

)12 12 3
(2 l o 32)

c = K (K £ - K * )

o

- det K

N = (k
2

+ k
2

+ k
2

) k k
1 2

k k
1 2

1.2
Is

1 a 2 3

k k
1 3

K K

' IV K. is. r (2 „ 1.33)

K (k
2 +k2 )+K Ck2 ik2

)12 o j 3
K k k -jK tk

2 +k2
) K k k -jK k k°12 12 13 2 3

K k k + jK (k
2

- k
2

)

O 1 2 12 K (k
2 +k2 )+K (k

2+k2
) K k k +jK k k

o 2 J

(2.1.34)
2 3 1 3

K k k +JK k k
13 2 i Kkk-jKkk

2 3 1 3
K (k2 +k2 + 2k2

)

1 2 3
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N = K
2 o

K -jK

jK K

'2 " 2
K - K 2

(2.1.35)

The vector potential expression,, Equation (2.1.28), now can be written as

u. N
-2 + k

2
m" 1

a o
(2.1.36)

N

(b+k2 c) — + N + k2 N
o a 1 o 2

a + k
2

b + k4 c
o o

(2.1.37)

In the limit as k approaches zero, Equation (2.1.37) becomes
o '

b N

A = — IN —
o a 1 a

(2.1.38)

It should be noted that the above expression for A is independent of the

parameter k
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Low frequency expressions for E and H now can be derived using

Equation (2 1 . 38 )

E - E + E
o i

j I'k i|j + co A )

o

=1
bN

N (2 l c 39)

If k is sufficiently small, the second term can be neglected (see Section

3„1)„ Under such conditions

-j N J
o

we a
o

= E (2 „ 1 „ 40

)

Equation (2 1 40) asserts that the predominant low frequency electric

field can be derived entirely from the scalar potential 4". Thus E is the
o

well-known quasi-static electric field The preceding derivation not only
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displays the quasi-static electric field as a low frequency limit but also

provides a first order correction term (the second term in Equation (2.1.39))

It will now be shown that the two terms of Equation (2.1.39) are identi-

cal to the two near field terms which can be derived by the method of Mittra

and Deschamps. In their work^ Mittra and Deschamps derive an expression for

one electric field component by going through two long divisions; the

following electric field derivation makes use of this approach. In the

notation of this report^ the transformed electric field may be expressed

as

E = - j " u M x
J

o
(2.1.41)

wlT k M_1 J

-J
we,

N +r N + k* N
o o l o 2

a + k
2

b + k4 c
o o

(2.1.42)

The first long division gives

-J
we

bN
+ k

2 IN
O \ 2 a

,2 . ,4
a + k b + k c

o o

(2.1.43)
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The second long division gives

E =
Cuf

k

a a
2 + _£_|n _

N - bN + (b
2
-c) — + k

2
c

4 ;_2_

N
c

a

(2.1,44)

bN

a + k
2 b - k4 c

The first two terms of Equa r ion (2 1,44) are interpreted by Mittra and

Des champs as near field terms because they are singular at the origin

Note That Equation (2.3 39) is identical to the first two terms of Equation

(2, 1.44).

The transformed magnetic field was given by Equation (2 1.23): it is

H = j kX M J 12 145)

Equation (2.1 30) shows r bat rhis can be expressed as

H = j k X
NT + k

2 N ~ k4 N
O ^2

k
2

(a -: k
2

b 4- k
4 c)

(2 : 1 , 46 )

However

.

k X N J = k X (k k k
o

I )

= (2 147)
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Thus a general expression for the transformed magnetic field is

H = j kx
N + k^ N+ k" N -i ~
1 ° 2__ j

+ k2
b + k

4
c

' l

o o -l

(2.1.48)

A comparison of Equation (2.1.23) with Equation (2.1.26) shows that

Equation (2.1.48) can be written as

H = j kX

N + k" N
1 g 2

a + k
2
b + k

4
c

_ o o -

(2.1.49)

In the limit as k >-0 . Equation (2.1.48) becomes
o '

H
o

= J

k X N J
1 1 (2.1.50)

and similarly, Equation (2.1.49) becomes

kx N J

H = j *

o a
(2.1.51)
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Further insight into the meaning of Equations (2 1,50) and (2.1.51)

can be obtained by employing a different derivation One of Maxwell's

equations is

VXH=jw€KE+J (2.1 52)
o

Taking the curl of Equation 12.1 52) and setting V ° H = gives

V2 H -
.

- j ^ f ^X K E - VX J (2.1.53)

In the low frequency or quasi-static limit, E = - V 4j c
Substitution of

this in Equation (2 1 53) gives

\7
2 H = j CO € VVK ^7 4j - V* J (2.1.54)

o o

If K is a scalar the first term on the right hand side is identically

zero and H and J are related only by the point form of Ampere's law

for direct currents, If K is a tensor, the term containing K is no T zero

in general and thus contributes to H „ Evidently in an anisotropic medium
o

an irrota+ional electric field can contribute to the magnetic field A
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convenient expression for the magnetic field can be obtained by taking the

Fourier transform of Equation (2,1.54). This gives

H = -7 (to 6 kXKkt+kX J
o ^

_2
k

kx K k k • J

k- K k

+ kX J (2.1.55)

H a -±- kX J
O -2

!

(2.1.56)

Equation (2.1.55) can be written in rectangular components as follows:

~ t

H =
1
2

1 2
, , 2k +k +k

1 2 3

r

. k # +k J +k J
1 - / 1 x 2 y 3

K' (k
2
+k2

) + K k
2

12 3

v.

(K -K )k k -jK k k
o 2 3 1 a

(K -K )k k -jK k k +
o 1 3 ' 2 3

jK (k
2 +k2

)

1 2

k J -k J
2 z 3 y

k J -k J
3 x 1

z

k J -k J
1 y 2 x

>(2.1.57)
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It can be shown that this low frequency expression for H is identical to

_s „
Equation (2 1.51) ti e r H - H ) The advantage of this derivation is

o o

that it displays the low frequency magnetic field as the sum of two terms

(see Equation '.2 1 55)), the first term being identically zero in isotropic

media and the second simply a statement of Ampere's law for direct

currents. The meaning of the first term can be clarified be relating

it to the induced current which flows in the medium due to the quasi-

star.ic electric field Equation 12 1 21 ) shows that

j=-j^e KE
o o o

E

° I

1
JUjf

oi

E
°

-j co e E - CT E 12,1 58)
o o o

in which CT is the conductivity rensor If the electric field E induces
o

a current density J in the medium, J is given by

J = a E
i o
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J - i GO € E
o o o

K k k
°

J
- j oo € E (2.1.59)

o o
k • K k

The induced current is seen to consist of two parts; the first part is

irrotational only when K is a scalar and the second is always irrotational

,

The magnetic field resulting from the quasi-static induced current is

given by

J kXJ
i -2 i

-j kX K k k • J

k 2 k • K k

(2.1.60)

This expression is exactly the first term of Equation (2.1.55) which now

may be written

H = H. +— kXJ (2.1.61)
1

k 2
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The existence of an induced magnetic field H in r he low frequency limit

suggests that unusual electromagnetic effects may be predicted by quasi-

static theory when it is applied to problems in anisotropic media.

Propagation effects in magnet oplasmas and ferrites have been described

9,10
in the literature in connection with source-free problems; a problem

which includes sources is the subject of this report and it will be shown

in Sections 2 3 and 24 that the quasi-static theory predicts a form of

radiation

The low frequency behaviour of the field quantities may be

summarized by noting their proportionality with respect to frequency

when expressed in terms of an operation on an assumed current density J:

4j oc - Eoc -

(2.1.62)

A = const
,

H = const

The infinities in >V and E at U - arise from the fact that J is assumed

to remain constant as i> >0, It would be more realistic fco base field

calculations at ^ = on some assumed charge distribution. Since an

oscillating charge di s r ri buti on P is related t d a current distribution by

the equation of continuity

J + j co p = 12 i 63)
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it is clear that an assumed charge distribution would produce a finite

*\> and E at w = 0.

The existence of quasi-static field expressions suggests that the

Poynting theorem might also be expressed in a quasi-static form. The

Poynting theorem is often written as follows:

IE- J* dv = jto I f E D* - B • H j dv - IE • J dv = jto |; (E • D - B • H ! dv - I (
EX H*J. n ds (2.1.64)

S

In the quasi-static limit the relations of Equation (2.1.62) indicate that

_ _*
the B • H term is negligible. A more useful limiting form of the

Poynting theorem may be derived by substituting

E=- Vi[i- juA (2.1.65)

in the surface integral. This gives

(2.1.66)

I E • J* dv = jto If E • D *- B ' H *
j
dv + |(v \\i - H *] h ds + jto

j
(a X H *]• n ds
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The first surface integral can be simplified using the vector indentity

V^XH ^V/^H -4JVXH* (2 . 1.67)

and the conjugate of one of Maxwell's equations,

VxH=-jC0D*+J (2.1.68)

If it is assumed that J - on the surface S Poynting : s theorem becomes

(2,1,69)

I E J*dv = jco I IE D* - B H*j dv * >° IE J'dv (ED B" H'l dv + jw U D AXH fld =

In the quasi-static limit the relations of Equation (.2.1,62) Indicate that

— —# — —

*

the B - H and AXH terms are negligible Thus a quasi-static form for

Poynting'' s theorem is

f f t
IE J dv = jo> I E - D dv + jto 9 4J D n ds (2,1 .70)
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This formula is similar to the well known energy expression to be found in

textbooks on electrostatics. A similar formula for the magnetostatic limit

may be derived if H is expressed in terms of a magnetic scalar potential.

The surface integral of the magnetostatic formula gives a result identical

9

to that obtained by Trivelpiece and Gould in their equation numbered

(A. 10).

The quasi-static field equations and Poynting theorem discussed above

constitute a body of theory sufficient for a study of the near fields of a

short antenna in a magnetoplasnta, Before proceeding to the antenna

problem, it is worthwhile to examine the form of the quasi-static

differential equation. Equation (2.1.9) may be expressed as

+ + + + t + = rrrz g .
(2,1.71)

xx yy az zz j oj t K'

where

Let us consider the lossless case in which both K and K are real. Some
o

information about the potential i|i may be obtained from a study of the

characteristic surfaces of the above differential equation (see

Sneddon for instance). The nature of the characteristic surfaces

depends on whether a is positive or negative; the equation is elliptic

2 2when a is positive and hyperbolic when a is negative (see Figure 2.1.1).
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o

UJ

o
<

UJ
or
<
a
CO

o
h-
or
o
o
or
cl

I 8

I 6

1.4

1.2

ELLIPTIC

REGION

GYR0RES0NANCE

HYPERBOLIC

ELLIPTIC

REGION

.2 . 8 1.2 .4 1.6

X (PROPORTIONAL TO ELECTRON DENSITY)

Figure 2.1,1 The elliptic and hyperbolic regions.
Note: 8 is the angle (with respect to the
Z axis) of the characteristic cone when the
differential equation is hyperbolic
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An elliptic equation has complex characteristic surfaces and thus no

physical significance can be attached to them. A hyperbolic equation

has real characteristic surfaces along which discontinuities "propagate"

(i.e. cannot vanish). Thus under hyperbolic conditions any discontinuity

in V ' J will cause a discontinuity in the electric field (-V *\>)

extending outward from the region where the source current J is

localized.

The equation of the family of characteristic surfaces may be derived

easily by writing the quasi-static differential equation in cylindrical

co-ordinates for the axially symmetric case. If r is the radial variable

and 2 is the axial variable,, Equation (2.1.71) becomes

dj + I ^ + _L ijj - V
'

J
(2.1.72)T rr r r 2 zz j " f K 1

a o

The equation for the characteristic surface as given by Sneddon is

z
2

+ -r r
2

= (2.1.73)

in which the dot represents -differentiation with respect to some parameter.

The solution is
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z = + j - r + const. (2.1.74)

2which represents a family of cones when a is negative. Therefore any

source discontinuity at a point will result in a conical field dis-

continuity emanating from that point. Under hyperbolic conditions

the field of a short dipole should contain three discontinuity cones,

two emanating from its ends and one from its center. These cones are

evident in the field formula to be derived in Section 2 2. Thus the

most prominent feature of the field solution has been obtained without

a detailed solution,

2,2 The Field of a Short Dipol e

As shown in Section 2,1, the quasi-static differential equation is

o

This may be written as

i\i + J, _ _ jj _ _ S_ (2.2.2)xx yy 2 zz C K \e.a.aj
a o
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where a = \/
—
K
o

The solution will be obtained using the Fourier transform pair

III
f (k) = |i I

1

||
f (r)e

Jk ° r
dx dy dz

(2.2.3)

oo

III
f (r ) - _L- 111? (k) e

Jk ° r
dk dk dk

X277)
3

ii ^
]

' 12 3

The transforms can be used to. solve Equation (2.2.2) and the solution can

be expressed as

+ <r)«--i 11 q(k)e jk " r

JJJ
-OO

,3 I, ||
i: — -s dk dk dk (2,2.4)

1 t{ (27< r i ! '.U k2 + k
2

+ 1 » 2 3

1 2 T
a
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The transform of the charge distribution is

- j (k x + k y+k z)

q (k) !! || H q (r)e 3 dx dy dz

flf
(2.2 „5)

This can be written in the (u
5
y,v) coordinate system as shown in Figure

2„2„1„ Both r and k can be transformed as follows:

x = u sin 8 v cos fl

z = u cos 9 -f v sin (2.2,6)

k = k sin 9 + k cos 9
1 3

k =-k cos 9 4- k sin 9
1 3

(2„2„7)

Now q can be expressed as

IS!
q (k) =

. |q (u,y,v)e-
J(k U + \ Y + k V)

du dy dv (2,2.8)
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-*y P- X

Figure 2.2.1 The co-ordinate system
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The dipole field will be derived from the filamentary ^ triangular

current distribution shown in Figure 2 2 o 2 The corresponding charge

distribution is obtained from the equation of continuity

„

1
9 J

q (r)= - — g-^ 5(y) 6<v)

= i__ T(u) 6(y) 6(v) C2 o 2 9)

The function T(u) is shown in Figure 2„2 3 The transform of the charge

distribution is

j

q (k) = —
,

|e"
jk L

+ e
jk L

wtk

This can be substituted into Equation (2„2 4) and integration will result

in an expression for the potential 41
. However, for impedance calculation^

the electric field parallel to the current (E ) is required

„

— 9uj
E (r) = -

a
x

u du

1
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Ju*l*£

Figure 2.2.2 The assumed current distribution
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-1

q(u)
T(u)

i .<)L

Figure 2.2.3 The charge distribute
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jco(277r 6 K L
o

OO

I e
-jk L^jk L_

2
,

j (k u+k y+k v)
2

kz

k2 + k
2 + -2-

l 2
a
2

dk dk dk12 3

ico € K LJ
o

X
(L)

+ VD -
2I

(o)]
(2,2,11)

The integral I . . can be expressed as
(L)

(L)

OO

(277)
3

JJJ

jfk (x-L sin6) + k y + k (z-L cos9)l
L

1 2 3
J

k2
~

,2 , ,2 3k + k -f

(2,2.12)

dk dk dk
1 2 3

1 2

Employing a transformation to cylindrical coordinates,

L sinQ

y

P COS0
1 1

p sind)
1 1

Y cosH

•y sinH

z-L cos6 - z k = k
3 3 (2,2.13)
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we can write

(L)"
(277)' ///

if v p cos' 1!- (J) ) 4- k z ]
L

i 1 3 1

J

Y cTH dy dk

1
2

a

(27T)

OO 00

//
-oo o

e

Jk
3

z
i j

o
(y p)

k
2 , 3

-X. d y dk (2 2 14)

since

J (y P ) =
= rr

O 1 27/

277

;
jy p cos en- d) )

1 1

en (2,2,15)
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The next step involves contour integration with respect to k .

It is convenient to designate by "a" the square root of K' /K which
o

has a positive real part,, however small. Under lossless hyperbolic

conditions (a negative with v^o) the correct choice for "a" must be

made by taking the limit as the collision frequency (v) approaches zero.

The contour integration gives

°° jk z °o jk z

i_ f e
3

I dk _ ±_ f e
3 1

dk
277 I 2 3 277 I (k + jay) (k -jay ) - 3

3 3

v +

-av
I
z

a *

2 y

The integration contours are shown in Figure (2.2.4)

(2 o 2 16)
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/
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I

\
x
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\
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\
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\
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/

/

/

/c
/ 2

—""^

Figure 2 2,4 Integration Contours

C is used for z positive and C for z negative
1 I 2 1

Integration with respect to y completes the evaluation of I
CD

(L)

a

47/ !
a V

J (y p ) dy
° 1

-f- CP
2

+ a
2

z
2 )"*

477 j j

(2 2,17)



Similar expressions for I and I may be derived. Using the
(.
— L ) ( o .)

nomenclature

43

P' = (x-L sine)
2

+ y
2

p* = (x+L sine)" + y

z = z - L cos6

z = z + L cos6
2

x" + y z = z
o

(2.2.18)

we may express the electric field parallel to the dipole as

1 W477 e K LJ
o \

P
2

+ a
2
z
2

1 1 "K ^ a P
2

+ a
2

z
2

o o

(2.2.19)

Under lossless hyperbolic conditions (a real and negative), E be-
> u

2 2 2 2 2 2comes infinite on the surfaces p + a z = 0, p +a z =0 and
1 12 2
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2 2 2O + a z = 0. These surfaces are cones emanating from the ends and
o o

center of the dipole. Their discovery was anticipated by the discussion

of the differential equation characteristics in Section 2.1. In addition,,

inspection of Equation (2,2,19) shows that phase shifts across the conical

surfaces occur under hyperbolic conditions.

2 , 3 The Impedance of a Short Dipole

For an input current of unit magnitude, the input impedance of an

antenna wi th a conducting surface is given by

/
Z. = - I J E ds (2.3,1)
in

where S is the antenna surface. In this formula J is the current density

on the antenna surface and E is the electric field at the antenna surface

when the conducting material in the antenna is removed This impedance

formula may be derived using the reaction concept" and such derivations

have been discussed recently by Richmond ' for isotropic media. These

derivations are based on the Lorentz integral relation between any two

solutions of Maxwell's equations (the solutions are numbered 1 and 2):

/(E X H -EXH) n da = |<12 2 J
(EXH -EXH) n da = I (J E-K-H-J.E;K-H)dv (2 3.2)12 12 2 12 1
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where J and K are electric and magnetic current respectively. This relation

may be written for a magneto-ionic medium only if the sense of the magnetic

field is reversed for one solution (say number 2) If the volume V is

the entire space exterior to the antenna, the surface integral at infinity

vanishes and there remains

/
(E X H - E<H ) n ds = (2,3.3)12 2 1

where S is the antenna surface (see Figure 2.3.1). IfnXH = J and
1 1

-nXE = K then
1 l'

K H ds = J J E ds (2.3.4)12 112

If the gap is narrow,

/K H
1 2

ds = - V I (2.3.5)
1 2



46

GAP

CONDUCTING SURFACE
OF ANTENNA

SOLUTION 1 SOLUTION 2

Figure 2.3.1 Derivation of the impedance formula
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where V and I represent source voltage and current. If J = J = J and
1 2

V
11=1 = 1 and the input impedance is defined by Z ==-=- then12 In I '

in 2 | 2/
Z, = —

i)
J -E ds (2,3.6)

S

which reduces to Equation (2.3.1) for unit source current. Since solution

2 requires reversal of the DC magentlc field E must be calculated under
2

such conditions, H at the gap is completely determined by the source
2

current and thus is unaffected by the DC magnetic field reversal. However

in the quasi-static theory for an infinite medium all solutions for the

electric field are independent of the sense of the DC magnetic field. Con-

sequently in the impedance calculations to follow^ Equation (2,3,1) may

be used just as it would be in free space.

The impedance formula for unit input current (in the (u,

y

?
v) coordinate

system) is

/
Z. = - I J E ds (2,3,7)
in I u u

Transformation to a cylindrical {u.F
} £p)

coordinate system (as in

Figure 2,3,2) gives
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ANTENNA
SURFACE

V
k

Figure 2.3.2 The cylindrical co-ordinate system
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y = r cos(p
}

v = r sXn<p

If the current is spread uniformly over the antenna surface, the current

density is

1-
U

J = —~ 5 (r-p) for u > (2 3„8)
u 2vip

u
1 + —

6 (r-p) for u<
21ip

^

In order to simplify the calculations, one can obtain an expression for

the impedance of a monopole of length L, The impedance of a dipole of

length 2L is just twice the monopole impedance. The monopole impedance is

27T L

1

//
o o

Z (1- - ) E (u,p,0) du d$ (2 3„9)
in 271 | I u

and E (u
8 P^(£>) is given in Equation (2 2 19) In the cylindrical



coordinate system,
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p
2

= (u-L)sin9 - P cos6 sin0
]

2
4- [p cos(t>]

2

p
2 = (ufL)sme - P cos9 sm(p

]

2
- [P cosf/)]

2

P" = [
u sine - P cose sin0

]

2
t [p cos0] 2

(2.3.10)

z = fu-L) cos6 - P sin6 sin(j)
1

z = (u+L) cos6 -- P sine sm<£>
2

z = u cose •: P sine sm0 (2.3.11)

The expression for E may be simplified by introducing
u

F = 1 + (a
2
-l ) cos

2
1

G = 2p fa
2
-!) sine cos6 sin0

H = p
2
[l + <; a

2
-l) 3in2

6 sin2
<£] (2.3.12)
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n2 L „2 2
P + a z

1 1

F(u-Lr + G(u-L) + H

P
2 + a

2
z
2 a F(u+L) 2 + G(u+L) + H

P
2 + a

2
z
2 s Fu2 + Gu + H

o o
(2 3 13)

The monopole impedance is

-a

jw 47T6 K L
o

277

-i- f (I + I
2* J

l

-21 ) d0
2 3

(2„3 14)

where

L

/
(l-l) du

\l
Ffu-L-r + G(u-L) + H

(2.3.15)

1_ J Nf a 2
.- G a •

L

_G _ 1_
2F 4F"

In NF(F a' + G a + H) + 2F a.+G

>a=0

a=-L
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I

/
-zh.

\ F(u+L) 2 + G(u+L) + H
'

1 JN F a".-. G a

L
+ H — • -In 2 MF'F a 2 - G a 4-H)+2F a + G

2F aHt L J

L In \z 4
F Llli

Fi;F cT + G a ^H) + 2F
* ']

a-2L

a=L

a=2L

a=L

, 3 . 16

)

/
-1-S,du

<\JFu 4- Gu + H

1 J Nj F a
2

• G a • - H

L 2F
~ In 2 kJf'F a 2

- G a + H) + 2F qj-G

i
QsL

If"
a

+J^- iW n 2 Jf'T a
2

-

T G a + H) - 2F a : G

QsL

a=0

(2 3 17)



In order to make the expressions more compact, let
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(a) = MFa 2 4-Ga*H

M (a) = 2 N|F(F a 2 4-Ga + H) + 2Fa + G (2.3,18)

The sum of the above integrals is

I + I - 21 = =-12 3 FL
3N(o) - 3N(L) + N(2L) N(-L)

I

G 1 , M(or M(2L)
+

2FL ' F1 n 1
M (L) M(-L)4~F

2 , M(o) MC2L)
+ _—• In

nTf~ M
2
(L)

(2,3,19)

If it is assumed that p « L, then the above formula can be greatly

simplified:
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:„3 20)

I + I -21 = —12 3 v^
jl-ln

^
L
-

; In
(
njFfJl-r-(a

2
-l')sin

2
e sin2

(p + la
2 -l)sin0 cos6 sin^j

Substitution of the above in Equation (2„3,14) gives

277

Z =
in

JCJ27T6 K
o

— [in - - 1+lnF- — f Inf/jF^ ta
2-l)sin2

e sin2

l 4F L p 277

J
V

-5- (a -l)sin0 cosQ si n0jd0 (2. 3 21)

It can be shown thai

277

/

Ti

— / f (sin
2
0, sin<p) d(p = - f \±(s±TL

2
<p ,-sin0) +f (sin 0, sin$) d<£ (23 ; 22)
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from which

2TI

—
j lnf 4F"Jl+(a 2 -l)sin2

e sin2
-<- (a

2 -l)sin9 cosG sin0J d0

*/2

| |
In < F|l+(a2 -l)sin2

e sin2 - (a
2 -!) 2

sin2
cos

2
9 sin2

(/A d0

= In '

—

+ a
(2.3 ; 23)

Substitution of the above in Equation (2;3„21) gives

Z =
in

jW27T€ K L nJT
[- I

1 - In
a + nJT

2F ]
(2 ; 3.24)

t-, 2 2 2 2 K
where F = sin 9 + a cos 9 and a = —

K

This formula gives the input impedance of a short,, thin monopole making an

angle 9 with the DC magnetic field, Two special cases are of interest,
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— It

,

8-0 <mouopole parallel to H ) and 9 = '2 (monopole perpendicular to

V
Parallel case:

Jco27Tf K L
o

In •= - 1 4- 1
P

n a 1.3.25)

Perpendicular case;

JW27T6 K L '

o

r l a;i_
i

C2 3 26)

In free space (K - K = 1 J the above impedance formulas reduce to
o

in

i r l— In - - 1

ne l L P Jjui2JTf L
o

(2„3 t 27)

which can be found in any discussion of short, cylindrical antennas

'Schelkunoff and Friis
t

for Instance)

„

It is interesting to observe that impedance formula, Equation (2„3 24)
:

can be re-written in the same form as the free space impedance (Equation

12 3 27)) if the dimensions L and p are suitably scaled,. That is.
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—

o

e l L
Z. = -—r— lln — - 1

where

L = L * K j/K sin2
+ K co

' o
s
2

i

and

/' k' j*7 P
p = £ /

- + |k k

K. sin2
9 + K cos 2

9

The significance of this scaling will be discussed further in Section 2 5 o

The above impedance expressions all contain the logarithm of a function

of a . When the medium is lossless and hyperbolic,, the logarithm produces

a positive^ real part in the input impedance. This indicates that the

antenna transmits energy irreversibly into the magneto plasma. It will be

shown in Section 2.4 that this energy transmission is in fact a form of

radiation.

Numerical impedance calculations will be presented in Chapter 3 along

with the experimental results.

2 .4 The Poynting Theorem and Calculation of Radiation Resistance

The radiation resistance of an antenna can be obtained by integrating

the real part of the Poynting vector over a closed surface surrounding the
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antenna Since the quasi-static theory for a lossless plasma predicts a

dipole impedance having a positive real part, this real part should be

the radiation resistance, Therefore, as a check on the impedance calcula-

tion, it should be possible to compute an identical radiation resistance

by integrating over a surface at an arbitrary distance from the antenna.

In addition, it is important to establish that the total outward power

flow is independent of the distance between the source and the surface of

integration; this assures that the power flow has the characteristics of

radiation and not of 'intrinsic loss"" (apparent power dissipation in a

finite lossless region)

„

It is necessary first of all to write the Poynting theorem in a

form readily applicable to quasi-static analysis, Equation (.2 1,60) is

in such a form and is repeated here for convenience:

1 E • J* dv - jtu I E D dv ~ ju. UE • J ' dv jto I E.D' dv jw I ^ D "' n ds (2 4 1)

In quasi-static theory, the addition of a constant to the scalar potential

<\> leaves the electric field unchanged In Equation ('2 4„D, the addition

of a constant to 4* leaves the equation unchanged provided that there is

zero net charge within the surface S
o

Let us now compute the outward power flow from, a short monopole

(or dipole) which is oriented parallel to the DC magnetic field. This
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restriction simplifies the computation while preserving the essential

features of the analysis. The outward power flow P through a surface

S is given by

/
p = -joo

|'i
ijj D -ids (2.4.6)

in the quasi-static limit. For a monopole^ the surface S can be a

closed cylinder as shown in Figure 2„4 l o For P to have a real part,, the

product 41 D • n must have an imaginary part. This can occur only under

hyperbolic conditions and then only between the characteristic cones

emanating from the ends of the antenna. Thus P will have a real part

only over the shaded region of S , The surface S can be removed to
1 2

infinity and then neglected,, at least for the computation of real power

flow.

The necessary field expressions are

E (p,z) = ~
z ' jM

+

_vJp
2 + a

2(z+L) 2
l\p

2 +a2 (z-L) 2
/\p

2
+ a

2
z
2

(2.4,7)



s= s,+s
2

60

ft

CONDUCTING PLA

CHARACTERISTIC
CONES

MONOPOLE IMAGE

Figure 2.4.1 Radiation fields of a monopole
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+ ^ Z) =
31

>Jp
2
+ a

2 (z+u) 2
\|p

2
+ a

2 (z-u) 2
_

du (2.4.8)

where M = ^4376 K L
o

The power flow through S is designated P where
1 1

P =
1

-ICO

/
-J, JU

4* D • n ds (2„4„9)

277

= -jcoe K
o o //

o o

4J(P, z) E (p
;
z) pd(p dp

Z

!
Q I

4>(p,z) E
z

(p,z) dp2

where

Q = -jcoffe K
o o
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P = -Q.I aj

M
2

L oo

// \|P
2 +a2 (z+u) 2

\jp
2 +a2 (z-u)

2

ip
2 +a2 (z+L) 2

A|p
2 +a2

(z-L) 2

f\|p2 *a2
z
2

dp" du

•Qla |

M2

|2
L

/ ij

I du where i=l,2 and j-1,2^3 (2„4 o 10)

Here, I . indicates an integral formed from one of the six products in-

dicated above In general the real part of P comes from the imaginary
1

parts of the integrals I , Imaginary parts arise when a is negative
iJ

(say a = -C ) and over a limited range of the variable p . For instance

consider the integral I

i I

oo

dff

t\jp
2
-C

2
(z+u)'

(2.4.11)

jp
2 -C2

(z+L) 2



It is evident that the imaginary part of I is given by
1

1
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j Iml
11

"J.

p
2 =C2

(z+L)
2

cip"

p
2 =C* (z+u)

2
4 p

2 -C2
(z+u)

2 Mp2 -C2
(z+L)

2

(2.4. 12)

/P
2 =C2

(z+L) 2

= j 2 tan fp
2 -c2

(z+ uy

2 - » 9 9
c {z+Ly-fr

p
2 =C2 (z+u) 2

tan= j 2 tan «? - tan o

= + j n77 where n is an odd integer (2.4.13)

It can be shown readily that In I = - Im I , Im I = - Im I and
21 11 22 12*

Im = + Im I . Thus
23 13
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j Im £ I = 2 j Im I

ij
IJ 13

(2.4,14)

P
2 =C2

(zhhi)
2

P
2 =C2

(z

/" P" =cr z"

dp"

^(iJp'-C^W-l |JP
2 -C2

Z
2

.„;

p
2 =C2

(z+u)
2

p
2 =C2

z
2

dp"

•\] C2 iz+ u)
2 -p2 \ p

2 -r̂2 z2

+ n 4j7T where n is an odd integer. (2,4 15)

The correct value for + n can be determined by introducing a small loss

and observing the locations of the points p -C z and p =C (z+u) in the
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complex p -plane. There are two cases of interest^ K < o and K > o.

9
These cases correspond to the two hyperbolic regions in a Y vs. X graph

(compare with Figure 2.1.1):

K'>0

In the complex p -plane^ the real axis is the path of integration. If

2 2 2 2K > o the points C z and C (z+u) are below the real axis. If K < o

the two points are above the real axis. Thus the imaginary part of the

integral (the 'phase change") is negative for K > o and positive for

K < o. In addition the total phase change of the integral can be no

greater than 77 in magnitude so that n = 1.

Thus j Im SI. = 4 j 77 if K > o

ij
iJ

(2.4.16)

4 j 77 if K < o

If P is the real outward power flow through the surface S „r b
l

)
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P =, -
Q a

' I j In S I
:
du (2.4.17)

/
1 i m

M2 » 1J

aliil (± 4 j IT) L
31gn f °r K :

M2 I
- sign for K < o

(rJwJrt k ) /
'

o o / K_

tu.437e K Lr \ o
o V

(±
4J 7r

J

4^Lf
I

K

3

(2 , 4 18 )

If the input current is unity rhen the radiation resistance is given by

R
rad = —— t— (2.4.19)

4WLC |K
o

From the former impedance calculations for a monopole we have
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Re(Z. )
in

In a

jco2JT€ K L

(2.4.20)

1
j g/2

jco2jre k l

+ sign for K > o

- sign for K < o

4WL6 I

K

o

= R
rad'

(2.4.21)

It has been shown that the real power flow is independent of the height

"z" of the surface S and that the radiation resistance is equal to the
1

real part of the input impedance. This indicates presence of a mode of

radiation which is most unusual because it can have a pronounced effect even

for a very short antenna. The explanation for this phenomenon was suggested

in Section 2.1 where it was shown that an irrotational electric field in-

duces a magnetic field in a magnetoplasma making possible electro-

magnetic effects such as radiation. However it remains to be shown that it

is the induced magnetic field H. which is totally responsible for the real

part of the total outward power flow P. This can be done by writing

P B

/
EXH • ri ds (2.4.22)
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and using the quasi-static electric field together with the total low

frequency magne T ic field -he la*"tec is given in Equation (2,1 61) as

H^H + i- k>CJ (2,4.23')
i - 2

Evaluation of Equation (2„4 22) for the case of a monopole parallel to

the DC magnetic field gives the same integral already evaluated

(Equation (.2 4.10).),, Furthermore the real part of the outward power

flow arises entirely from the induced magnetic field H ,

2 5 De rivation of the Imped ance Formula by Dimensional Scali ng

Consider the problem of transforming the anisotropic differential

equations into equations having the same form as the free space differential

equations. In the quasi-static theory three equations are important,, any

two of which are independent. They are

xx 2 ' yy 3 zz e- (2,5,1

)

V ° J 4- j - q - (2,5,2)

K Cb - K <t> • K (t> - —t- ^ ° J (2.5 3)
xx 2 yy 3 zz j^- f
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where K K K are the relative permittivities in the x y z coordinate12 3

directions (respectively), q is the charge density and J is the current

icot
density. A time factor e is understood.

Dimensional scaling of the following form will be considered:

x' = a x
;

y' = P y, z' = y z • (2.5.4)

In order to transform the "anistropic Laplacian into an ' isotropic or

ordinary Laplacian, it is required that

Kd> + K (p + K <p m C (<f>
, , + <b

, , + <b
, ,) (2.5.5)

i
rxx 2 yy 3 zz ' x x y y z z

= C A' <p

where C is some constant. Substituting the scaled variables on the left

side and equating the coefficients gives

a 2 K (3
2 K y

2 K

—z—- = —~" = „ 3 = 1 (2.5 6)
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or

q2 s r> p2 =t y
2

= r (2 ° 5 * 7)12 3

After transformation the divergence of the current density becomes

V • J = a (3 y V* J ! (2.5.8)

Equations (2.5.1) and (2.5.2) can be expressed as

o

C A!

<t> = — (2.5.9)

a
. (3 y ^ ?

' J ! + j uJ q = (2.5.10)

If it is assumed r hat C and a (3 \ ate not zero Equations (2.5.9) and

(2.5 10) become

A1

<p = - — (2.5.11)
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— to a
A !

• J + j
-~- -
a b "y

(2,5.12)

These can be reduced to the free-space form if w and q are suitably

transformed^ say to to 1 and q
1

„

q
c

(2.5.13)

CO

)i nl - a (& Y (2.5.14)

It is necessary to put some restriction on the frequency and charge

scaling. First let it be assumed that to 1 =to (frequency-invariant scaling)

Equations (2.5.13) and (2.5.14) give

C = Q (3 y (2.5.15)

Equations (2.5.6) and (2.5.15) can be solved for a^ (3 y }
and C

?
giving

a = K K
M 2 3

P = K K
1 3

K K
N 1 2

C = K K K . (2.5.16)
12 3
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Now let it be assumed that q
8 = q (charge-invariant scaling). It-

is apparent that

C = 1 (2,5,17)

and from Equation (2 : 5„7)

a =

N

P = -

J*

c =

/J

K
3

(2 „ 5 . 18

)

To summarize, there are two principal types of scaling, one frequency-

invariant and one charge-invariant.

a) Frequency-invariant scaling:

K K x
NJ 2 3

CO* = CO (2.5U9)

K K y
/\| 1 3

K K z
M i 2

q
! - FK K K

1 2 3

b) Charge-invariant scaling:

x" = x.

z" = z

ft

PI

CO' = CO K K K
A 1 2 3

q" = q

(2„5„20)
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Either of these two methods of scaling converts the equations of free-

space form

A'4>
e

(2.5.21)

V ' J' + j W q' = (2.5.22)

A1

<p = — V • J' (2.5.23)

to Equations (2.5.1), (2.5.2), (2 . 5 , 3), respectively , Since frequency

(rather than charge) appears explicitly in the quasi-static impedance

formulas, frequency-invariant scaling is to be preferred.

For a magnetized plasma with the DC magnetic field oriented along

with the z axis, the scaling is somewhat simplified.

a) Frequency-invariant scaling:

N
K' K x W = CO (2.5.24)

y = K'K y
M o

q'

K'
2 K

z' = K*

b) Charge-invariant scaling:
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x ! = x/ JO7 «.' = K» J~K~
* o

y' = V//K7 q
! = q «

z« = Z//T

(2,5,25)

By means of scaling, the quasi-static differential equations may be

transformed into free space equations. If the scaling is applied to the

dimensions of a cylindrical dipole, the equivalent free space dipple can

be shown to have an elliptical cross section (for the case of real, positive

scale factors) This free space dipole,, in trarn has a free space equivalent

with a circular cross section. Thus the impedance of a short dipole in an

anisotropic medium may be found by a simple scaling of the well-known

results for cylindrical antennas in free space, The details of this

approach to the problem will be worked out in the following paragraphs.

Frequency-invariant scaling will be employed. The scale factors are

given by

K'K x
N
K'K y

o
K'z (2 „ 5 . 26 )

The co-ordinate system is shown in Figure 2,5 1„

The length scales easily. If x' z" are the projections of the

scaled length L* and x z are the projections of L we have
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*y x

Figure 2.5.1 The co-ordinate system in the magnetoplasma
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f^T l[K' K x2
+ K ! z

2

>^'o

„[F" ^KoS1 n :

' )• K 1 cos 2
6 L (25.27

)

The radial scaling is somewhat more involved, The circular cross

section of the dipole is given by the equation

v
2

+ y
2 = p

2
(2 c 5 ;

28 )

where

u = z cos9 + x sinQ

v -. z sin9 - x cos9 (2,5,29)

After scaling the above cross section equation becomes

z 1 sin9 x" cost

K'

AP^
111
K'K

(2,5,30)

The co-ordinate system is shown in Figure 2,5,2, The co-ordinate trans-

formation (x' z' )—*(u !

f
v* ) is given by
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y ( INTO PAPER )

Figure 2.5.2 The free space co-ordinate system



z* = u' cos0 + v" sin8

78

x' = u' sinG - v ! sin6
o o

(2 o 5 31)

The relation between and 9 is
o

tanG = -,
o z' N

K
X o

1 z \ K»
tanG

,

(2 5„32)

Ml

sinB
K sinQ

. K sin2
Q *K'cos 2

G
N o

(2 5„33)

or

cosG =
o

/jFcas 8

MK sin2 G + K'cos 2
G

<2„5 34)

Now the cross section equation becomes

, 2 / K^sin2
G + K ! co-

2

K'
2
K

..*[-±-.
K ! K

o,

,5 35)
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P K' A K

,, K sin2
6 + K' cos2

1

/\| o

A

r»2

K' K

= 1 (2.5.36)

This is an ellipse with semi-axes

P K' ^ K

. K sin2
9 + K' cos 2

9
M o

i
B = P /f '

K (2.5.37)

Thus there exists an equivalent free space dipole having an elliptical

cross section.

i ft

Y. T. Lo has shown that a dipole with an elliptical cross section

has an equivalent with a circular cross section^ the radius of which is

A+B
given by p

1 Thus the radial scaling can be written as

P'
^AFo"

|kv (2.5.38)

K sin 9 + K' cos 9
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The impedance of a short cylindrical monopole in free space is

usually expressed (see Schelkunof f and Friis ; as

in
JW2JT6e L> L H J

(2„5„39)

When L' and p' are transformed as indicated above the formula becomes

m
joo2JTf L j|k' Ik sin :2

G + K« cos 2
6

mi-X

+ In

2(K sin2
9 + K' cos 2

9)

/{F UK" + Jk sin2
9 + K ! cos

2
9

]

(2 o 5 o 40)

This formula could have been derived using charge-invariant scaling^

which involves the slight additional complication of a frequency scale

factor. The above expression is identical to the one obtained by solving

the anisotropic source problem without recourse to scaling.

2 .6 The Effect of a Cylindrical Current Assumption on the Computed Impedance

The analysis in the preceding sections of Chapter 2 has uncovered
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unexpected phenomena associated with lossless, hyperbolic conditions in

the magnetopLasma, The field of a short dipole exhibits infinite

discontinuities . and its impedance has a real part, indicating radiation.

Since such a phenomenon may be caused by a poor choice of current dis-

tribution, this section and the following one are devoted to analyses of

two different current distributions. This section considers the tri-

angular current to be spread over the cylindrical surface of the dipole

rather than being concentrated in an infinitesimal filament along the

dipole axis.

For the sake of simplicity, both the dipole and the DC magnetic

field are priented in the z direction. Because of cylindrical symmetry,

the differential equation may be expressed in cylindrical co-ordinates

as

kjj + i^ + ^4; = _ _3_ (2.6.1)
rr r r 2 zz t K'

a o

This equation is to be solved with the help of the transform pair

00 00

//
-OO o

f(k, y)
jj

,
f(z, r) e~

jkZ
J fyr) r dr dz (2.6,2)

OO QO

//
-OO

f(z,r) = ~jj
J

f f(k, Y ) e
JkZ

J^-vr) y d Y dk (2.6.3)
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If the differential equation is transformed, solved algebraically and

re-transformed the potential can be expressed as

+ (z
>
r) = ^TT f f ^-^^ eJkZ JjY^Y <*Y dk (2.6.4)

J J + + *.
-00 o ' 2

a

In order to find q,, it is necessary to consider a current distribution J

which is spread uniformly over a cylinder of radius p„ The corresponding

charge distribution is

1 9 J(z) 5(r-p )

a =: "
j co 9 z 2Tip

_L. T (z) ^1 (2.6.5)
J^L 277p

for which the function T is shown in Figure 2.2.3. The transform of q is

q(k,v)
2WtoLk

L ~jkL
+ e

JkL
- 2] J

o
(-y P) (2.6.6)
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The potential *\> at any point (z
;
r) now can be expressed in terms

of an integral

,

(2.6.7)

v|j(z, r)

OO OO

//
e
-JkL

e
jkL _

2 ikz

(2ff)
2 w€ K'

L

-oo o k ly +
$)

J (Y p)e
J

J, (vr)v dv dk
o o

For impedance calculation, it is necessary to have the electric field in

the z direction at the dipole surface (r=p)

.

E (z,p) -

OO OO

//
e"

JkL
+ e

JkL
-2 e

jkZ
J2 (^) Y dY dk (2.6.8)

(2ff)'ju€ K'L 2 k2
°

O */ " Y + T
•oo o a^

If the integration with respect to k is carried out as in Section 2.2^

E becomes
z

V Z
> P) =

47TJC06 K'L

00

av z-L -av z+L -avlz \\ j> . „. , ,„ „ „.Y
' + e Y -2 e '' '] T (y p)dY (2.6.9)

The following integral relation can be used to simplify the calculations.
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°° a/2

J e
-p^ * (Y P) dY -

I j
d 4>

*^ p2 + (2pcos(py

(2.6,10)

Now E can be expressed as
z

E
z

j/3
437jco6 K'L " I

I.o M
a
2 (L-zr + (2pcos.#r ^ a2 (U-z) 2

* (2pcos0)

^ a^z2 +(2pcos<£y

d<2> (2.6.11)

The expression inside the integral sign now has the same form as Equation

(2.2.19). Integration with respect to <p can be delayed while the impedance

calculations are carried out as in Section 2.3.

The impedance of a monopole is given by

m

L

/
(1- - ) E (p

5
z) dz,

L z '

(2.6.12)
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If the integration with respect to z is carried out and if the assumption

is made that (2pcos0) « ( |a|L)
.,

the following formula may be written

by analogy with Equation (2.3.25):

j^27I6 K' L
o

2

77

77/2

/
In

2pcos(£>
1 + In a d(p (2.6.13)

However.

77/

2

n(2pcos<p) d0 = In p (2,6.14)

Thus,

in jw277e K' L
In — - 1 + In a (2,6,15)

which is identical to Equation (2.3.25). It may be concluded that the

assumption of a filamentary current (in Section 2.2) introduces negligible

error in the impedance calculation,

2 . 7 The Effect of a Smooth Current Assumption on the Computed Impedance

The field solution for a triangular current distribution contains

infinite discontinuities along the characteristic cones emanating from the
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ends and center of the dipole (see Equation (2.2.19)). The discontinuities

in the field are closely related to the current discontinuities at the

source. In the following calculations, the current distribution chosen

is filamentary but has a continuous first derivative at the ends and

center of the dipole.

For simplicity, both the dipole and the DC magnetic field are oriented

in the z direction. If J and q represent the corresponding current and

charge distributions, it is assumed that

for z > J = 6(x) 5(y)
~2 3 -

!_ 3 ?- + 2 i-

L
2

L3 -J

(2.7.1)

q =

jioi/
2Jrp l

(2.7.2)

for z < J = 5(x) 5(y)
z
2 z3

"

1 - 3 — - 2 —
L2 L3 _J

(2.7.3)

j^Lz

5(p) „ z

MP Z (1 + I } (2.7.4)

The transforms to be used are
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00 oo

//
-00 o

if, k)
[J

II ffp, z) e
JkZ

J
q (v

P) P dp dz

f(P,z) -

oo oo

S JJ
-oo o

f(Y,k) e
jkZ

J
o

(Yp) Y dy dk

(2.7,5)

(2.7,6)

The transform of the charge distribution is

jco2J7I/

o

/

L

(iff) e - jkZ dz+f z(l-f) e " JkZ dz (2,7,7)

After combining the two integrals and integrating by parts,, one obtains a

convenient form of q :

q =
-3

WAIT

L

/
(1

2u jku -jku— ) (e + e ) du (2.7.8)

The electric field parallel to the dipole can be obtained by a

transform solution of the quasi-static differential equation. The method

is identical to the one employed for the previous field computations for

a triangular current distribution. The inverse transformation is carried out

as follows

:
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E (p, z)
-J

2776 K'
o

OO OO

//
-OO o

^-2 e
JkZ

J (v p) v dv dk
2 o '

(2.7.9)

v
2 ^

OO OO

e (p,z> =—^-— r (l- 2H)

ja)2^2 e K'L2

o
/"*//

(2.7.10)

jk(z+u)+ jk(z-u)
:—~-2 — J l\P)y d-y dk du

2 o

a
2 + *-

oo 6
a

2

(2.7.11)

-3a

J0J2JT6 K' 1/
o

/2u, J /-av|z+u| -av|z-u|] , .

(l -) I (
e + e

I
j
o (vp) Y d7 du

-3a

JOJ277C K' L'

o

I.

;
(i- 2H)

it? l

(2.7.12)

du

flip
2

+ a
2 (z+u)

2
\| P

2
+ a

2 (z-u)
2

jcu277e K' Lz
o

., 2z N

~
1

a(L4-z) ,_ 2z.
~
l a(L-z ) . ,

_1
az

(1+ —r) sinh —-—— + (1— -7) sinh — - 4z sinh -r-
L p L p /-1

P
2

/, A2

£-— + 1+ — +

^a2 L2 v
L
; M .,11-f

a
2 L2 V

L
/

/V| a
2 L2 lW

(2.7.13)
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Note that the expression for E has no infinite discontinuities.
z

If the input current is unity and the antenna surface is designated

by S
;

the input impedance is given by

/
J E ds (2.7.14)

P z
After the transformations —- = t and — = T) the impedance integral for a

aL L '

monopole becomes

Z =
in .JC02JTC K' L

o

1

/
(l-3^ 2

+ 2T1 3
) (l+2rl)sinh

1+n
4 (l-2rl)sinh

i-n

-1

i'i -.inh ' • 2[ Jt
2 + (1+Tl)

2 +Jt2 + (l- 1!)
2 -2

j

t
2
+ n

2

J] dT] (2.7.15)

The integral has been evaluated exactly but the final answer is quite

involved. To simplify the expression, it is assumed that |p/a| « L"

Under this assumption the impedance is given by
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Z
irT j^ire'K'L

f

ln f ~
1 - 375 > (2 - 7 - 16)

For a triangular current distribution the corresponding monopole impedance

expression as derived previously is

in jco2JTe K ! L p
In £ 1 I (2.7.17)

The two impedance expressions are identical in form and only slightly

different in magnitude.

The |E
| at the ground plane of a monopole is plotted in the

z

accompanying graph (Figure 2.7.1). The field of the smoothed current

distribution has no infinite discontinuity but instead it has a dis-

continuous slope. Despite the difference in field magnitudes, the im-

pedance expressions are nearly identical.

Given the field calculations for the triangular current^ it would be

tempting to conclude that the real part of the input impedance arises

from some sort of energy storage in the vicinity of the characteristic

cones along which the electric field becomes infinite. In fact, such a

conslusion has been reached by Kaiser in his work on the biconical

dipole. However the smooth current assumption produces a finite field

intensity yet gives an impedance expression almost identical to the one
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derived under the triangular current assumption. Thus the occurrence of

field infinities is not necessary for the appearance of a real part in

the input impedance. This conclusion clearly lends support to the

radiation argument put forward in Section 2.4.
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3. VALIDITY OF THE THEORETICAL MODEL

3„ 1 A first-Order Correction to the Quasi-Static Theory

It has been shown (Equation (2,1,39)) that the total electric

field may be approximated at low frequencies by the quasi-static electric

field plus a correction term:

E =
we

bN
+ N (3.1.1)

we
k k

k '

o

K k

b k k

K k

N J
1

(3,1,2)

in which

a = - P k . K k

b = (R ,2 -K" 2
) (k

2
+ k2 ) + K' K (k

2
+ k2 + 2 k2

)12 12 3

The total low frequency electric field (Equation (3.1.2)) may be represented

—A —

B

as the sum of the quasi-static field E and the correction term E . Thus
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E = / + E
B

(3.1.3)

Using parallel notation, the low frequency input impedance may be

represented by

A B
Z = Z + Z.
in in in

(3.1,4)

r=B
From Equation (3.1.2) the expression for E is

;,h "J^o
\ b k k • J

E = + N J
1 k • K k X

(3.1.5)

The case to be considered in detail is that of finding the electric

field E parallel to a current filament J . The z direction is considered
z z

in order to keep the computations as simple as possible. The electric

field can be expressed as follows:

;B J^K (K'
2 -K" 2

) (k
2
+ k

2
) + K'K (k

2
+ k

2
+ 2 k

2
) 1

L- 1 2 O 1 2 3 -1

z -,-
k'k • K k

(3.1.6)

1 + K' (k
2 +k2 +2k2

)12 3
> J

K k
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The expression can be simplified by a transformation to cylindrical

coordinates

:

i R 1 2 , 2 2
k = v cosP

,
k + k = v

1 12

k = y sinP
,

k 2 =
Y'

2
+ k

2
„ (3„1.7)

2 3

Thus the electric field expression becomes

~B K'
2

y
2 K" 2

y
2 k2

E
z

= " jC
^o < / 2 2 \2

+ 71 2 \f 2 TTT \
J
z

> K'y2
+ K k

2

Y + k
)(
K'\ K k '3/ \ 3/1 03

For a triangular current distribution,, J is given by

jk L -jk L

2 - e
3 -e 3

/
/ jk u -jk u\

(1- ?) [e * + e 3

J duJ
z

= ' = (
(1- 7) \e

J
+ e J

/ du (3,1.9)

k
2 L
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The electric field in space may be found by taking the Fourier transform

of Equation (3 1.8). For convenience k is written in place of k .

3

(2J7)<

oo oo

//
OO o

E
B

e
jkZ

J (vD) v dv dk
z o

(3.1.10)

(2J7)
2

¥~\ * <P, Z
> -IfY i"<P,«>

K
(3.1.11)

where

»oo L
jku -jku

I- (p ,z) := K4
I (1- J)

—2 e
JKZ

J (vp) y
3 du dY dk (3.1„12)

O I I I L ,„. 2 „ ,2 -.2 O

oo oo L

///
-OO o o

(K'y + K k')'
' o

and

oo oo L
,2 J ku -jku

l"<P,.0-B» fl-H) . _5 +-• Jkz T
,

///
-oo o o

k
2
+ y

2 (K k
2
+ K" y

2
;

(3 1.13)

r- e
J ""J (YP)Y

J du dY dk
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Introducing the anisotropy factor a = K ! /K
%

one may write the above

two integrals as follows:

I' (p,z) = I (1- -r)

/
-

» //
O O -00

jk(z+u) jk(z-u) , . 3 ,„ .

e + e J (\P) Y dk d^ du (3.1,14)

(k
2

+ a
2

^
2

)
2

l"(P,z)

L oo oo

o o ^

, jk(z+u) jk(z-u)
k2 e +e

k2
+y

2 <k2 + a
2

V
2

)

J (yP) y dk d \ du (3.1.15)

Integration with respect to k (using contour integration) gives

I
1 <P,z) =

77

2a"

L oo

e
+aY(z+u)

aY(z+u)
1+aYl z-u| eu

]
aYl z-u|

(3.1.16)

J (yP) dy du
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l"(P,z) =
77

a'-l

L oo

_1
2 a a

2
+ l

+ a\(z+u)
-av(z+u)

e ' +
a
2+ l

a
2»l

+ av| z-u|
-a-y|z-u|

I J

e
-v(z+u)

+ e
-vlz-u|

a2 -l

J (yp) dy du (3.1.17)

Rearranging the terms gives

r (p,z) =
77

2 a'

L oo

/ " * 1 a

-av(z+u) -av)z-u|
;e ' + e '

(3.1.18)

J ("yP) dy du

l"(P,z) =
77

2(aJ
-l)

L, oo

a' + l

a(a -1)

9_l
J

-a-y(z+u) -ay|z-u|

J -v(z-f-u) —y|z-u|
e + e

a
2 -l

J (vp) dv du (3.1.19)
o



After integration with respect to y

(3 „ 1,20)

I' (p,z) =

2 a'

" (i
2 a oa

L

/
(1- $)<w + a

2
(z+u)

2

N

du
-.2

. _2
P^+ a" (z-u)'

I" <P,z)
2(a"-l)

L

/
(i- H>

Li

(a
2
-!-!) _ £_

a (a -1)
IV + a

2
(z+ii)

2
l(p

2
+ a

2
(z-u)

2

"2 ,

a -1 £ . /_ , N 2
t\ p" + (z+ur /\]p (z-u)'

du (3 c 1.21)

Recall that E (p.,z) is given by

E
B

(P,z) = -«_ fa
4 r(P,z) + b

4
I" (p,z

z
C2ir3

2 L ]
(3.1.22)

where

a = _ and b = _
o o
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The corresponding contribution to the impedance of a short monopole is

L

/
(1- f ) E

B
(p z) dz (3.1.23)

(27T)
2

77

2
C -C 77-
1 2 da

L L

«-!>

p
2
+ a

2
(z+u) 2

p
2 +a2 (z-u)

2

du dz

Hia- => (i- j>

/^p
2 +(z+u) 2 ^p2 (z-u)

2

du dz (3.1.24)

where C = a+
b
4
(a

2 +l)

1 a(a2
-l)

2 2

, C = a
2

+ _^_
. C = 2bl

a
2
-l 3 (a

2 -l) 2

Note that the integrands are symmetric in u and z. Thus the impedance may

be expressed as
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7
B

=
jfagX

J±U
"

(27F)
2

J7 C -C a-
1 2 da

L z

)/•"'/
o o

a-f> + —
->2 . 2 •„ ,,%2

(J p
2 +a

2
(z+u) 2 Jp^a* (z-u)'

du dz

- C

L z

/ ""
» /

u-f> | u-£
p

2 +(z+u) 2

N
p

2 + (z-u) 2

du dz (3.1.25)

Integration with respect to u gives

B juj^

in
47T

C - C -s-
1 2 d a

L

/3 I "" Z>

• u 2az
L sinh —— + z

P
fsinh"^ 2 sinh

az

N

P" 2

2

-el + 4 z2 ^e+ 4z*- 5-
| dz

.2 a

(3.1,26)

/

-

1 E
1

f ri- f) |l sinh
X

|£ + zfsmh ^
3 L | L [_ p p > 4Z\P2

4-Z
2 - p

2
Hr4z

2 ~p|dz,}
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Now one can integrate with respect to z, take the derivative 75— and
' oa

.n.
make the approximation L »| —

[ „ Thus,

R jc^tL

in 4ff

1 l , aL , „— - In — + In 2
a 3 P

ll\ o Z 1
1

aL 10 17^ r,
/l

,
L

, - ll\— 1 + -*•
[ — In —- + ln2 -l-C — In — +ln2-—

J

18^ 2 \3 p 18/ 3 \3 p m)

4JT \a
a
2 3/\3 P 18/ \a ^ 3 3 ^ a

3)

(3.1.27)

With the help of the relation K" 2 = (K ! -K )(K' -1), it may be shown that

C
-i = 1 +
a

(K'-l) CK' +K )
o

K' (K' -K )
o

_JL =1 + EZ! c
2(K, - 1}

K' ' 3 K" -K
(3 „ 1 . 28 )

from which

C C
-i + -2- - C =2,
a 2 3

a

_1.

a

C C

V-F -^ = 2 1+
K'-l
K r -K

o

(3,1.29)
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103

J

in 2VT

1 , L , „ 17_ ln _ + ln2 .__ K'-l \ In a
1 + 1FTZZ I-3- +K*-K 6K'

(3.1.30)

The quasi-static calculation gave

in
277jco€ LK'

o
[
lnr i + in

3
(3.1.31)

Combining these,

..A B
Z = Z + Z
in in in

^i^rjjb- h—3-*rf|H 251

rK'-l \ In a
1+ ——— I

—— +
K' -K

I 3 4 (3.1.32)

where X is the free-space wavelength.



L
When K' a, K are of the order of unity the In — terms dominate.

Under these conditions, the quasi-static expression is accurate as long as

(27T)2 /L\2 .

Y « 1. In other words, if L = „1A., a correction of about 10%

would be expected.

However at cyclotron resonance K' and "a" become very large, increasing

B A
the magnitude of Z compared to Z . Thus the quasi-static theory breaks

in in

down at cyclotron resonance unless the magnitudes of K' and 'a" are kept low

by collisional damping. As an example consider the experimental monopole

for which L = .04X. at 1.6 kmc. At Y = 1 (cyclotron resonance), X = 1 and

Z = .05, the magnitude of the correction term is 20$> of the quasi-static

impedance magnitude.

B
It is important to notice that the form of Z. is almost identical to

in
A

that of Z
. , showing that the correction term does not introduce any
in'

markedly different kind of impedance behaviour.

3 .2 The Effect of Plasma Waves on Impedance

A given current distribution in a uniform, isotropic plasma generates

both transverse electromagnetic waves and longitudinal plasma waves. Coupling

between the two wave types occurs only in the presence of inhomogeneity or

anisotropy and such coupling will not be considered here. The problem to be

considered is that of a short, thin, cylindrical dipole with a triangular

current distribution as shown in Figure 3.2.1. Since the electromagnetic and

plasma fields are generated independently by a given current distribution

(see Cohen, Part I), their impedance contributions may be computed separately

and added.
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The electromagnetic problem has many well-known solutions but the

plasma wave problem has received little attention. Hessel and Shmoys

have discussed the field problems of an infinitesimal dipole and a current

distribution on a sphere. Whale has calculated the radiation resistance

of a short dipole and compared his calculations with the results of rocket

1 3experiments. Cohen has discussed source problems in warm plasmas and

has included a calculation of dipole radiation resistance,, In the following

paragraphs an impedance formula is derived for a cylindrical dipole; the

formula is valid for a lossy medium and for any electron density.

The required differential equation can be obtained easily from the

1

3

jwt
paper by Cohen (Part I). If a time variation e " is assumed and if a

collision frequency v is introduced^ Cohen's force Equation (2„6) becomes

jw Nm U v = - Ne E - tn V2V n (3„2 1)
total total

where V =
ykT
m

Y = 3

k = Boltzmann constant

T - electron temperature

m = electron mass (3 2 o 2)

N = average electron density

n s variation in electron density

e = magnitude of electron charge

U = 1 - JZ « 1 - J £

v = electron velocity.
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Cohen's field equations can be derived for a lossy medium using the above

force equation. Three of the lossy medium equations (equivalent to Cohen' s

Equations (3. 10), (3. 12 ) and (3.21) together with the continuity equation can

be used to derive a differential equation for the plasma wave electric field

E due to a source current J.

j - U-X -
!

~K
o 1

v E + — E= — ° j^r VV ° J C3 ° 2 ° 3)

o

where

A =

co
2

co 2

CO
2

2 Ne2

N " m€
o

.*-!

In order to carry out field and impedance calculations it is necessary

— o
to assume some current distribution J. At 300 K, plasma waves have a very

short wavelength (about one centimeter at ten megacycles). Since the wave-

length may be comparable to a typical antenna radius, it is necessary to

assume a cylindrical current distribution rather than a filamentary distri-

bution. For a z-directed current cylinder of radius P }
the differential
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equation for E is
z

^2 F a 2 F - - ° L Z 6 (*-P> /o 9 4 ^^ \ ~ Q E
z

" "K jSe— 7T" 2^p
(3 - 2 - 4)

o o Sz'

where

2 U-X
a = -

The longitudinal current distribution J is assumed to be triangular. The

second derivative of a triangular current distribution is equivalent to

the sum of three delta functions as shown in Figure 3.2,1,

The differential equation now can be expressed as

V2
E - a 2

E = -—2 • —!— (b( z-L) + 6(z+L) - 26(z)l
6^"P) (3,2.5)

K
o ju>€ L !

" !/

The above equation can be solved using the transform pair

oo oo

//
^oo o

f(y,k) - i\ f(r,z) e~
JkZ

J (yr) dr dz (3.2.6)
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f(r,z) =
277

00 00

//
-oo o

f (Y ?
k) e

J Z
J (yr) y dy dk (3.2,7)

Transformation of the differential equation gives

(k
2 + V

2 + a2
) E =

1-K

z joo6 K L
o p

-jkL jkL
e + e - 2

n j (y p>

'J 277
(3 2„8)

Now E can be expressed as an inverse transform,
z

K -1
o

E
z
(rz) = jcoe K L

o o

1

(277)'

oo 00

//
-oo o

-jkL jkL „
e

J + e -2 jkz

(3.2.9)

J Cvp) e
J

J (yr)Y &y dk,22 2 O O '

2 , „2If it is assumed that/^ y + a always has a positive real part^ integration

with respect to k gives

(3.2.10)

K -1

z ' JC04776 K L
o o

CO

/
N
Y
2 +a 2 |z-L| - Y

2
+a2 (z+L) -J^j^

+e ^ -2e

o A Y^+ a"*

-J
q
CyP) J Cy^)Y dY
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If one's interest is confined to impedance, one need calculate the field

only at the antenna surface, that is at r = p„ With the substitution

4 CyP)
2

77

IS/2

I J (2yp cos6) d9, (3.2.11)

the field expression becomes

77/2 °°

E
Z

(P,Z) : -
K -1
o

jt0477e K L 77

o o ;/
o o

\
2 4a 2

|z-L| -

/ I e '1 +e
Y
2
-KL

2 (z+L)

-2e

^-1+a z

N
v
2 + a'

J (2a/ pcos9) Y d-y d9 (3 2.12)

If it is assumed that a always has a positive real part, the integration with

respect to y can be carried out (it is a form of "Sommerfeld' s integral").

K -1

E <p,z)= ° -
Tz jw4 77e

o
K
o
L

77/2

/
-a. (z-Lr + (2Pcos9)

.*2 -a
e N

(z+L) 2
+ (2pcos9) 2

/^|(z-L)
2
+ (2pcose) 2 /J(z+L) 2

+ (2Pcos6)
2

-2

-a
e

ai

z2 +(2pcos9) 2

>d9 (3.2.13)

*/z
2
+ (2pcos9) 2
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Integration with respect to will be delayed in order to simplify the

impedance calculation.

The dipole impedance contribution due to the longitudinal plasma

oscillations is twice the monopole impedance contribution. The latter

may be expressed as

in

L

/
(1- -) E (fi z) dz

L z '

In order to express the impedance in terms of simple functions^ use is made

2 2
of the approximation L » p „ Integration with respect to z gives

K -1
o

in jW27!"e K L
o o

7T/2

/ i2aL

-aL -2aL -2aOcos(
4e -e -3e ^

+ K (2apcos9) - 2E (aL) + E f2aL) > d6 (3.2.14)
o l l

where E is one of the exponential integrals;
1

E (aL)
1

oo

/
-au

du. (3.2.15)
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In the derivation of Equation (3.2.14) the following integral expression

for the function K has been used;
o

K (aq) =

oo

/
-au

du. (3.2.16)
2 2u -q

Here it should be mentioned that the assumption of a current filament

instead of a current cylinder would give the above impedance expression

with the exceptions that there would be no 8 integration and that 2 cos9

would be replaced by unity.

Integration with respect to 9 gives

K _1

z = °<: „ , O Cap) K (ap) - 2E (qL) + E (2qL)
in jW23re K L I o O i i

o o

2a L

-aL -2aL
4e -e -31 (2ap) + 3L

o
(3.2.17)

where L is a modified Struve function. In practical cases aL is quite
o

large but ap may be fairly small . When ap is small the term containing

K (ap) is dominant and it approaches infinity as ap approaches zero. The
o

large argument approximations for I and K are still useful when the
o o

argument is near unity and they give the very simple approximate result
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K -1
P o

in j^2ff£ K L
o o

(3.2.18)

Combining this with the quasi-static analysis gives

(3.2.19)

From the above impedance formula,, it is clear that plasma waves

affect the impedance of a short monopole appreciably when ap is approxi-

o 5
mately equal to unity. Taking T = 300 K, we find that V = 1.168 X 10 m/sec,

In a lossless plasma

a =
f

i

X-l

A V
(3.2.20)

To take an example, ap = 1.07 when X =s 1.25, f = 4 Mc . and p = 1 cm.

Since these parameter values are representative for the maximum electron

density in the F region of the ionosphere, it is clear that plasma

oscillations cannot be ignored in impedance probe studies using rockets or

satellites. In the laboratory experiment, however, the corresponding value

of ap would be of the order of 20. T^us it is unlikely that plasma

oscillations would have a measurable effect on the impedance of the experi-

mental monopole.
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The above impedance formulation is quite general but is most convenient

when the frequency is lower than the plasma frequency, that is when a is

real (in the lossless case) . For frequencies above the plasma frequency,

a is imaginary so one can write jj3 in place of a, taking care to ensure that

a small loss in the medium gives j(3 a positive real part. Now the input

impedance contribution due to plasma oscillations can be written as

K -1
o

in ' jco27Te K L
o o

V/2

2

77

4e JK -e
J2PL _3e

-j2(3pcose

77

2
N (2(3pcos9) + j J (2(3pcos9)
o o

-2 Ci((3L)+ jsi((3L)
']}

Ci(2(3L) +jsi(2(3L) } d0 (3.2.21)

Where the following formulas have been used:

- j N (qP) =

2 2
u -q

oo

/ cospu
Ci(aP) =| —^- du,

J J (qP) =
2 o J

siuBu

2 2~

A
U -q

;

du

II

^Ph du

(3.2.22)
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Integration with respect to gives

K "I
P o

in jw2ff€ k
o °

L

l

f-S J (|3p)N (£p) + ji J^(PP) -2 |ci(PD + jsKPL3

[•+ Ci(2(3L) + j si(2(3L)
J2(3L L

J2PL
-3 J (2(3p) + 3j H (20P) K3.2.23)

r> —o 1

1

where H is aStruve function.
—

o

For the case of a lossless medium, it is helpful to break up the

impedance into its real and imaginary parts.

Re Z

1-K
P o

in w2We K L ) 2 o
o o

- <~ J
2

(PP> t 2 si (PL) - si(2PL)

-jr- 4cos PL-cos2pL-3 J (2PP)

I
(3.2,24)

P
1_K

Im zm = z^frr Vo'^ 1 Vp <

;

o o

2PL
4 sinPL + sin2PL + 3 H (2(3p) (3,2 ,25)

It should be noted that Re Z is the radiation resistance associatedm
with the radiation of plasma waves from the antenna.
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In most cases of interest pp is fairly small while PL is quite large^

making the terms containing <T (Pp) and J (Pp) dominant in the above two

formulas. If PP is no smaller than unity the Bessel functions can be

replaced by their large argument approximations. Thus

Rp z
P ~

1 "K
° 1 +

Sln2 PP
f3 2 26)Re Z

in ~ "2776 K L ' ^2PP^ (3.2.26)
o o

Tm 7 P ~
K
° cos2 PP .

Im Z
in ~ CJ23TC K L '

~~2PP~
(3.2.27)

o o

Combining the above with the quasi -static impedance^ one obtains the

approximate formula

t
K -1 _

L o
In — - 1 +

in
"'

j0J23Te KL p 2pp
o o

cos2 pp -j(lfsin2 PP) (3.2.28)

The preceding discussion of impedance is based on the assumption of a

triangular current distribution on an antenna which is ^hort compared to a

free space wavelength. This assumption may break down^ however, at the

plasma frequency under near-lossless conditions. Furthermore^ at high

frequencies Landau damping may affect the impedance.
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3 „3 The Effect of a Non-Uniform Electron Density

The introduction of some surface or boundary into a plasma results

in the diffusive flow of the charged particles toward the surface. Close

to the surface, free diffusion predominates and an ion sheath forms.

Farther away, ambipolar diffusion predominates; the electron and ion densities

are nearly equal but both decrease as the point of observation approaches

the surface. Since the theory in this report assumes a uniform medium

with no space charge, experimental verification of the theory must depend

on minimizing diffusion and on understanding its effect on antenna impedance.

The effect of non-uniform electron density on impedance can be estimated

by calculating the impedance per unit area between two parallel conducting

plates separated by unit distance. The space between the plates contains

isotropic plasma having an electron density distribution as shown in

Figure 3.3.1. The input impedance per unit area is given by

1

i

/ K (v)
o '

dy (3.3.1)

1

l

/ X(-y)

U

d-y where U = 1 - jZ

U
jw6 I i-a

U - X —7T— v 4- a
o (3

dY
1-P

U - X
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Figure 3.3.1 The assumed electron density distribution
between two parallel conducting plates
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jcoe

(3

(1-a) X
In

U-aX

U- X
1-P
u-x

(3,3,2)

The results of some numerical calculations using Equation (3„3 2)

are shown in Figures 3 3.2 and 33,3, The impedances are normalized to

give a free space reactance of 5 ohms . An examination of all the curves

(especially curve E) reveals that the losses in the plasma are increased

considerably whenever some part of the medium is in plasma resonance.

Note that curves C and F are nearly identical despite the ratio of two

between their respective collision frequencies; apparently under such

circumstances the electron density distribution has a greater influence

on energy loss than the collision frequency c Furthermore it is evident

that the effects on non-uniformity cannot be calculated from a density

distribution made up of finite steps'; only a continuous distribution

will give the enhanced energy loss discussed above.

Curve E of Figure 3,3 3 exhibits an indentation for 1<X <,2„ The
o

similarity of this indentation to the kinks in the theoretical curves of

o
Section 4.2 (at low values of Y ' .) suggests that it may be difficult in

practice to distinguish between the effects of non-uniformity and the

effects of anisotropy. However,, it is estimated that the conditions of

curve F may be closer to the experimental conditions than those of curve E c

This conclusion arises from the estimate that in the vicinixy of the R F

probe the average electron density is about four times the minimum density

(see Section 4,1). Thus the ratio of maximum to minimum electron density
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Xo-

B

Figure 3.3.2 The impedance of a non-uniform, isotropic plasma between
parallel plates as a function of peak electron density.
Collision parameter: Z=.10
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.5X

Figure 3.3.3 ""he impedance of a non-uniform, isotropic plasma between
parallel plates as a function of peak electron density

.

Collision parameter: Z=.05
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may be as high as eight. Under such conditions the impedance curve would

have a very gradual indentation and would be similar to curve F„ A further

point is this; the experimentally observed kinks first appear for Y •>,
. 50

„

o 9
For .50 ^ Y ^ .10 the experimental curves are fairly smooth. For .10 ^ Y ^.

some indentation was observed and presumably it was caused by non-uniformity.

It is therefore suggested that non-uniformity in the experimental results

of Section 4.2 is more likely to move the entire impedance locus toward

the real axis than to cause local distortions which may be confused with

anisotropic effects.

The ion sheath over a conducting surface is a type of non-uniformity

which can be expanded or collapsed by the application of bias with respect

to a reference electrode. When the sheath is collapsed, the plasma is

essentially uniform in the region adjacent to the surface. Bias controls

the sheath thickness by influencing the state of equilibrium between the

electron and ion currents flowing to the surface. Consequently the surface

under consideration (and also the reference electrode) must not be covered

with an insulating layer„ Since a state of sheath collapse is easy to

achieve, it is not necessary to discuss the theory of sheath formation

further in this report.

In a decaying, inactive laboratory plasma, the electron density

distribution at time t is a function of the deionization processes for all

time before t (going back to t , the time when the discharge was initiated).
1 o'

The two principal deionization processes are volume recombination and

diffusion to surfaces. Recombination, being a volume process, tends to make

the electron density uniform but diffusion has the opposite tendency. The
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experimental plasma (see Chapter 4) is initiated at t by a 2jis DC pulse,
o

In the first 50 to 100/is diffusion is dominant due r o the high electron

temperature. There follows a period of dominant recombination resulting

from the existence of high electron and ion densities. As these densities

decrease, diffusion again takes over. From the foregoing discussion it is

clear that the electron density distribution around the experimental antenna

ill be a very complicated function of all the events in the plasma betweenw

t and t .

o 1

Measurement of the electron density distribution is difficult because

any probe system disturbs the plasma around it. Because of such difficulties

in measurement the best approach to the non-uniformity problem is to try

to minimize diffusion This can be accomplished by choosing a gas with a

high recombination coefficient and a low diffusion coefficient (such as

neon), and by using it at as high a pressure as possible. Although the

choice of gas is important, the introduction of a magnetic field parallel

to the diffusing surface is probably the best way to reduce diffusion,

provided that the experiment can be carried out in the presence of the

magnetic field.
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4. LABORATORY MEASUREMENT OF MONOPOLE IMPEDANCE

4 . 1 Experimental Apparatus and Measurement Technique

The apparatus is designed to produce a pulsed DC discharge in neon

or helium at a pressure of 1 to 10 mm. Hg. The experiments are carried

out during the plasma decay period (afterglow) following each discharge

pulse. The "resonance probe'' method is used to measure electron density

and slotted-line techniques are used to measure the impedance of the

monopole RF probe immersed in the plasma.

Figure 4.1.1 is a schematic drawing of the vacuum system. Pump-down

procedure consists of pumping first to about 20 microns (2 x 10 mm) with

the mechanical pump and then pumping to about 10 mm with the diffusion

pump. This procedure may take from a few hours to a few days depending on

the amount of contamination in the system. The application of a spark

coil to the glass parts of the system speeds up the outgassing of %he

glass surfaces. Pump-down is followed by sealing of the system and back-

filling with the required pressure of neon or helium. Operation of the

discharge for a few hours completes the decontamination of the discharge

tube interior. After the pump-down and back-fill procedures have been

carried out again, the equipment is ready for impedance measurement

experiments

.

Figure 4.1.2 is a diagram of the pulse and RF system used in the experi-

ment. The continuous discharge at the cathode end of the discharge tube

assures dependable starting of the pulsed high-voltage discharge. The 2fts

.

discharge pulse is followed by the plasma decay which lasts for several
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milliseconds. In this experiment the first one or two milliseconds of

the decay are displayed on the oscilloscope.

Figures 4,1,3 and 4.1,4 show the details of the discharge tube and

RF probe assembly. The coaxial line up to the RF probe is designed to

minimize reflections. Both the RF probe (monopole antenna) and a flush

probe (not shown but mounted flush with the surface of the brass end

cap adjacent to the RF probe) are used as resonance probes to measure

electron density. The electron density given by the monopole resonance

probe measurement is an average density for the immediate vicinity of

the monopole; the electron density given by the flush resonance probe

has a much lower value and indicates the degree of plasma non-uniformity

resulting from diffusion to the brass end cap. In a typical experiment

the electron density adjacent to the end cap was found to be one-quarter

the average electron density along the RF probe.

The method of impedance measurement is illustrated in Figure 4,1.5,

The slotted line probe is positioned at four points spaced — wavelength
8

along the line. At each position a photograph of probe voltage vs. time

is taken. Measurements taken from the photographs are used to plot the

impedance as indicated. This method is usually referred to as the "four

ii 2 1probe method and is discussed in detail in the book by Ginzton ~ (.page 310)

A typical set of probe voltage photographs is shown in Figure 4,1,6a

and Figure 4.1,6b. The experimental conditions are as follows:
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*
Gas: Neon

Pressure: 4 3 mm, Hg

Frequency: 1 6 Gc„

Bias: 18 volts

Oscilloscope horizontal scale: 320/Lis o /cm o

Oscilloscope vertical scale: 2 mv o/cm

Probe dimensions: L = 8.0 mm., L/p = 12.0

The corresponding impedance loci are shown in Figure 4 „ 2.5,, The die- :;

charge pulse in each photograph is at a point one centimeter from the left

side of the photograph. In the first 200 Ms„ after the discharge pulse the

traces are irregular thus the impedance loci of Figure 4.2 . 5 begin approxi-

mately 250JUs. after the discharge pulse A photograph of resonance probe

current at zero magnetic field (Y =0) is included in Figure 4.1,6b„

It is important to estimate T he leak rate of the vacuum system in

order to determine 'he optimum period for experimentation. At a pressure

of 2 to 10 mm, small changes in pressure cannot be measured accurately with

the equipment of Figure 4,1,1, Thus it is necessary to measure the low

pressure leak rate with the ionization gauge and assume that the leak rate

is not appreciably different at a pressure of a few millimeters „ Figure 4.1.7

is a graph of pressure vs., time as measured using the ionization gauge. As

shown on the graph there is a period of about one hour after pump down during

which leakage contamination is negligible

*
Only these conditions are varied in the experiments
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4 . 2 Comparison of Experimental and Theoretical Impedance

The monopole impedance measurements to be described were carried

o
out in neon and helium gases. Some properties of these gases (at 300 K,

1 mm pressure) are summarized in the following table (CGS units):

Gas Electron-molecule Recombination Ambipolar
Collision probability coefficient Diffusion

Coefficient

P
c

a D
a

Neon 3.3 2.1 x 10~ 7
115

Helium 19 1.7 x 10~8 540

2 2The values of a and D are as given by Goldstein and the values of P
a c

2 3are as given by Brown. The table indicates that neon is preferable to

helium because neon has a lower diffusion coefficient and a higher recombi-

nation coefficient. This means that a neon afterglow has a greater tendency

to decay by recombination instead of diffusion. Since recombination is a

volume process and diffusion a surface process, afterglow decay by recombi-

nation tends to produce a uniform plasma. In addition, neon's lower value

of P indicates that it may be used at higher pressure (for the same

collision frequency) thus reducing contamination problems.

In some of the experiments a mixture of neon plus 0,5$> argon is used.

At 300 K the argon contributes negligibly to the collision frequency.
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However the electron-molecule collision probability of argon rises sharply

at higher temperatures (the Ramsauer effect) „ Thus the argon tends to

increase the cooling rate for the electrons in the first 50 to 100/Lls after

the discharge pulse. The presence of the argon should reduce the tendency

of neon metastable excited states to maintain the electron temperature

above 300°K„

The time required for the attainment of electron thermal equilibrium

is of major importance and has been studied by Dougal and Goldstein, For

neon and helium at pressures between .5 and 5 mm, , this time constant t
e

is given by the following formulas:

150
Neon: t < —— + 90 Ms. for p = 5 mm, t .< 120 /is.

e v P e

8 4
Helium : t .< ~— + 26 /Lis. for p = ] mm, t <; 36 /Lis.

e

Thus it should be possible to begin impedance measurements after the time t -

e

The theoretical calculations require an estimate of the collision fre-

quency v which is given by the sum of the electron-molecule collision fre-

quency and the electron-ion collision frequency. That is,

v = v + v
em ei



Similarly^ the relative collision parameter Z = — is given by

z = z + z
em ei
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The appropriate collision frequencies are as follows (as given by Dougal

and Goldstein and discussed by Pfister ):

4 - „v = — v P p
em 3 co (MKS units)

ei

3.62 x 10° N
.

i

m 3/2
In

3/2

3.30 x 10° T

1/2

in which

N

8k T

77 m

= average velocity of electrons with Maxwellian distribution

273 o
p = p = pressure reduced to C

N = ion density
l

For a fixed frequency of 1.6 Gc . the electron-ion collision parameter

may be approximated by the following simple function of X
}

the electron

density parameter:

,010 X
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The electron-molecule collision parameter values are summarized in the

following table:

Z
Gas Pressure em

Neon 2-3 mm 010

Neon 4,3 mm 019

Neon 10.3 mm, 044

Helium 2.2 mm 055

The theoretical and experimental results are shown as Smith chart

impedance graphs in Figures 4,2,1 r o 4 2 12, The theoretical graphs

indicate that an increasing magnetic field sweeps the impedance locus

from the top of the Smith chart nearly to the bottom. This effect is

reduced by increasing the pressure. Increased pressure also tends to

move the loci to 'he right.

A prominent feature of each theoretical locus is r he presence of a

"kink" in the vicinity of X = 1 (plasma resonance) This kink arises from

the logarithm in 'rhe impedance formula and is thus rela r ed to the elliptic/

hyperbolic feature of the quasi-static theory. The point X - 1 is always

on the boundary between an elliptic and a hyperbolic region (see Figure

2.1.1). Increasing the pressure' tends to s.moo r h out the kinks in the

impedance loci. In addition, r he point X = 1 is seen to follow a nearly
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Figure 4.2.1 Theoretical impedance loci for neon at 2.3 mm. pressure



140

Figure 4.2.2 Experimental Impedance loci for neon at
2.2 mm. pressure
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Figure 4.2.3 Experimental impedance loci for neon (0 . 5$ argon)
at 2.0 mm. pressure
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Figure 4.2.4 Theoretical impedance loci for neon at

4.3 mm. pressure
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Figure 4.2.5 Experimental impedance loci for neon at

4.3 mm. pressure
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Figure 4.2.6 Experimental impedance loci for neon (0.5$ argon)

at 4.2 mm. pressure
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Figure 4.2.7 Experimental impedance loci for neon (0.5$ argon,

0.03$ air) at 4.3 mm. pressure
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Figure 4.2.8 Experimental impedance loci for neon (0.5$ argon,

0.15$ air) at 4.3 mm. pressure
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Figure 4.2.9 Theoretical impedance loci for neon at 10.3 mm.

pressure
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Figure 4.2.10 Experimental impedance loci for neon (0.5$ argon)

at 10.3 mm. pressure
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Figure 4.2.11 Theoretical impedance loci for helium at 2.2 mm.

pressure
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Figure 4.2.12 Experimental impedance loci for helium at 2.2 mm.

pressure
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circular path as the DC magnetic field changes

o
It should be noted that the line X Y" ,1 is also an ellip-ic-

2 -

hyperbolic boundary for X <1 Y'<1 (Refer to Figure 2.1,1). The poinds

2"
X = 1 - Y are not marked on the theoretical impedance loci but rbey are

o

close to the real axis for small values of Y and are all capacitive. The

Smith chart graphs reveal no unusual behaviour at X = 1 - Y

In general there is good qualitative agreement between experiment and

theory. The movement of the impedance loci from, the top of the Smith

chart to the bottom with increasing magnetic field is evident in every

experiment. Movement of the loci r o the right and toward the real axis

with increasing collision frequency also is evident,. In all cases

(theoretical and experimental) the cyclot'on resonance locus Y = 1) meets

the rim of the Smith chart at right angles.

In each experiment, the points X - ] follow, an approximately circular

path. Since these points were determined at zero magentic field and since

an increasing magnetic field tends to increase r be time required for after-

9
glow decay, the points X = 1 are in error for Y > Furthermore the

2magnitude of the error increases as Y increases Thus r he true plasma

resonance points are somewha r r rhe right of r he indicated poin r s and

the necessary correction increases with increasing magnetic field

In Section 3.3 it was found 'haf a non-uniform electron density tends

2to move the impedance locus for Y = away from the rim of the Smith

chart and toward the real axis Such an effect is evident in every experi-

2mental Smith chart at low values of Y Agreement with rhe rneo'y is some-

o
what better at high values of Y ' presumably because rhe magnetic field



152

tends to reduce diffusion to the probe surface (transverse diffusion), A

reduction m diffusion renders the plasma more uniform and uniformity is

assumed in the theory.

The kinks at X = 1 are visible in many of the experimental loci

At high magnetic fields, the kinks are to the right of the plasma

resonance points obtained at zero magnetic field, As discussed above,

^his is probably caused by the extended decay pe'iod of a plasma in a

magnetic field. The theory predicts a smoothing out of the kinks as gas

pressure is increased and T his effect is noticeable if Figure 4 o 2 2 is

compared with Figure 4 2 5„ However, a non-uniform plasma density also

would tend to smooth out the kink; and the degree of uniformity depends

on the plasma decay processes which in turn are pressure-dependent. Thus

it is very difficult to identify the cause of a smoothing effect in the

impedance loci when the gas pressure is changed

„

The addition of a small quantity of Argon (to increase the rate at

which the electrons approach thermal equilibrium) apparently has little

effect. This can be seen by comparing Figure 4,2,3 with Figure 4 2„2 and

Figure 4,2,6 with Figure 4 2 „ 5

„

In contrast to the case of argon, the addition of a very small

amount of air has a pronounced effect on the impedance loci tsee Figures

4,2,7 and 4 2 8) The effect of the addition of air is to bring the

experimental results into much closet* agreement with the theory, expecially

in the regions of the plasma resonance kinks The air percentages indicated

on the graphs are rough approximat l ons obtained by ext rapolating the

leakage graph of Figure 4.1 „ 7 to 5 hours \ 03% air at 4 3 mm) and to
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25 hours (.15$ air at 4 3 mm). It is suggested that the addition of air

tends to cause the predominance of volume processes (recombination,,

attachment) in the afterglow decay. This should produce a more uniform

plasma and hence better agreement between theory and experiment. The

argument for additional decay processes is supported by the fact that the

addition of air shortens the overall decay period by a factor ranging

from 1/5 to 1/10. Most of this shortening is in the early par*- of the

afterglow when the electron density is high. Since the recombination decay

rate is proportional to the square of electron density, the early after-

glow shortening is a further argument for the addition of volume decay

processes

,

The impedance loci for helium (.Figure 4,2,12.) exhibit no kinks at

all. In contrast the experiment in neon at 10,3 mm (Figure 4„2.10)

displays kinks which are definite although considerably smoothed in

comparison with the theory (Figure 4,2,9), The two cases compared have

similar collision frequencies as is shown in the collision frequency table

given earlier in this section, This tends to confirm the earlier assertion

that neon is preferable to helium in an experiment of this type,
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5 CONCLUS IONS

A formulation for electromagnetic theory in a magnetoplasma is

obtained This formulation is in terms of a scalar potential and a vector

potential. A modified Coulomb gauge condition is selected, the choice

being made so that the quasi-static electric field is displayed as a

distinct part of the total electric field,, The total electric field is

expanded in such a manner as to facilitate making a 1 ow frequency approxi-

mation (the expansion is similar to the expansions used by Mittra and

1 7 6Deschamps" and also Kogelmk'" ). In the low frequency approximation^ it

is shown that only the quasi-static electric field remains. Furthermore

in the low frequency approximation, part of the magnetic field is shown to

arise from, currents induced in the magnefeoplasma by the quasi-static

electric field This induced magnetic field is not present in isotropic

media.

The quasi-static electric field of a short dipole antenna is calculated

and in the lossless case the field is found to contain conical discontinuities

emanating from the ends and center of the dipole. These discontinuities occur

only when the quasi -static differential equation is hyperbolic and they lie

along members of the family of characteristic surfaces of the differential

equation.

The quasi-static electric field is used to obtain an expression for the

input impedance of the dipole for any orientation with respect to the DC

magnetic field, Under lossless, hyperbolic conditions it is found that the

input impedance has a positive real part. Integration of the Poynting vector

over a surface surrounding the dipole indicates that real outward power flow
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is present and that it arises from the induced magnetic field mentioned

above. It is concluded that the quasi-static theory predicts a form of

radiation from a short dipole in a magnetoplasma,

The results summarized above are based on the assumption that the

current distribution is triangular and That a filamentary current is an

adequate representation of the dipole current for electric field calcu-

lations. The influence of this assumption is estimated by carrying out

impedance calculations for two different current distributions. The

first distribution is triangular but the current is assumed to be spread

over the cylindrical surface of the dipole. The second distribution is

filamentary and such that the slope of the current is zero at the ends

of the dipole and at the center. These two assumed currents give

impedances which are essentially identical to the impedance as originally

derived

.

The quasi-static differential equation can be reduced to Poisson's

equation by a simple dimensional scaling. It is shown that a cylindrical

dipole in a . magnetoplasma has a free space equivalent with a different

length and a distorted cross section. Furthermore, it is shown that the

scaling principle can be used to derive the dipole impedance formula.

A first order correction to the quasi-static impedance theory is

computed. The correction is found to be small in many cases of interest^

including the laboratory experiment used to test the theory.

The generation of longitudinal plasma waves is considered but only for

the isotropic case. Plasma waves are found to affect impedance appreciably

only in the vicinity of plasma resonance. In the laboratory plasma, the
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collision frequency is high enough to mask completely any impedance

effect due to plasma wave generation

The effect of a non-uniform electron density is considered by calcu-

lating the impedance of a non-uniform, isotropic plasma between parallel

plane electrodes. Non-uniformity is found to have little effect as long

as no part of the plasma is in a state of plasma resonance. If some

region is in resonance, the effect on impedance is similar to the effect

of increasing the collision frequency,

A series of experiments is described in which impedance measurements

are made on a cylindrical probe immersed in a pulsed, decaying plasma, A

DC magnetic field permeates the plasma and is parallel to the dipole

axis. The electron density in the vicinity of the probe is measured using

the "Resonance Probe" technique. Good qualitative agreement between

measured and theoretical impedance is obtained. Quantitative agreement is

only fair,, probaoly because rhe plasma is qui r e non-uniform. In. some of

the experiments, a small amount, of air *as allowed to mix with the neon

(neon was used in almost all of the experiments). Addition of the air

resulted in greatly improved agreement between theory and experiment „ It

is suggested that r he presence of air enhanced volume decay processes in

the discharge afterglow and thus prpduced a more uniform plasma.
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APPENDIX

THE MODIFIED COULOMB GAUGE CONDITION

The gauge condition used in Section 2,1 is

V . K A - (A.l)

This will be referred to as the modified Coulomb gauge condition because of

its similarity to the Coulomb gauge condition

V . A = (A.2)

which is mentioned in various texts.

In general, a particular gauge condition is chosen in order to simplify

some aspect of electromagnetic theory,. It is necessary to show that the

choice of gauge condition has no effect on the field solution for E and H

and that it is always possible to find potentials which satisfy the gauge

condition. Suppose that A and St are potentials which satisfy Maxwell's

equations through the relations

E = -V* - jooA (A. 3)

K H - V x A (A. 4)
o

It is assumed that no restriction (such as a gauge condition) ha? been applied

to A and St, It is known that Maxwell's equations are invariant under a gauge



X61-

transformation of the type

A = A + vP (A. 5)

* > * - jwP (A .6)

in which A , ^ are the new potentials and (3 is the gauge function. If it

is required that the new potentials satisfy the modified Coulomb gauge

condition, Equation (A.l) becomes

V.KVP---V.KA (A. 7)

Equation (A. 7) has the same form as the quasi-static equation for the scalar

potential and solutions for this equation may be obtained easily. Thus a

gauge function p can always be found such that the gauge condition is

satisfied. Furthermore the invariance of Maxwell s equations under a gauge

transformation assures that the field solutions are unaffected by the choice of.

of gauge condition.
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