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Code compression coupled with dynamic decompression is an important technique for both em-
bedded and general-purpose microprocessors. Postfetch decompression, in which decompression is
performed after the compressed instructions have been fetched, allows the instruction cache to
store compressed code but requires a highly efficient decompression implementation. We propose
implementing postfetch decompression using a new hardware facility called dynamic instruction

stream editing (DISE). DISE provides a programmable decoder—similar in structure to those in
many IA-32 processors—that is used to add functionality to an application by injecting custom code
snippets into its fetched instruction stream. We present a DISE-based implementation of postfetch
decompression and show that it naturally supports customized program-specific decompression
dictionaries, enables parameterized decompression allowing similar-but-not-identical instruction
sequences to share dictionary entries, and uses no decompression-specific hardware. We present
extensive experimental results showing the virtue of this approach and evaluating the factors
that impact its efficacy. We also present implementation-neutral results that give insight into the
characteristics of any postfetch decompression technique. Our experiments not only demonstrate
significant reduction in code size (up to 35%) but also significant improvements in performance (up
to 20%) and energy (up to 10%).

Categories and Subject Descriptors: B.3 [Hardware]: Memory Structures; C.1 [Computer Sys-

tems Organization]: Processor Architectures

General Terms: Performance, Design, Experimentation

Additional Key Words and Phrases: Code compression, code decompression, dynamic instrumen-
tation, dynamic instruction stream editing, DISE

1. INTRODUCTION

Code compression coupled with dynamic decompression is a useful technique
in many computing contexts. Certainly, (de)compression benefits embedded
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devices where power, size, and cost constraints force the use of small caches
and memories. But general-purpose systems can also benefit from the tech-
nique as well. Not only is power a growing concern for these systems, they can
also use (de)compression to improve performance.

Dynamic code decompression techniques are characterized by when they per-
form decompression. Several systems integrate decompression into the instruc-
tion cache fill path [Kemp et al. 1998; Wolfe and Chanin 1992]. The advantages
of fill-path decompression is that it allows the use of unmodified cores while
incurring the decompression penalty only on instruction cache misses. Its dis-
advantages are that it stores uncompressed code in the instruction cache and
requires a mechanism for translating instruction addresses from the uncom-
pressed image (in the instruction cache and pipeline) to the compressed one
(in memory). An alternative approach decompresses instructions after they are
fetched from the cache but before they enter the execution engine [Lefurgy
et al. 1997]. Postfetch decompression requires a modified processor core and an
ultra-efficient decompression implementation, because every fetched instruc-
tion must at the very least be inspected for possible decompression. However,
it allows the instruction cache to store code in compressed form and eliminates
the need for a compressed-to-decompressed address translation mechanism;
only a single static version of the code exists, the compressed one.

In this paper, we propose and evaluate an implementation of postfetch code
decompression via dynamic instruction stream editing (DISE) [Corliss et al.
2003a]. DISE is a hardware-based instruction macroexpansion facility similar
in structure and function to IA-32 CISC-instruction-to-RISC-microinstruction
decoders. However, it is both programmable and not specific to CISC ISAs.
Rather than merely changing the representation of the fetched instruction
stream, DISE uses the expansion process to augment or modify its function-

ality by splicing custom code snippets into it. DISE is a single mechanism that
unifies the implementation of a large number of functions (e.g., memory fault
isolation, profiling, assertion checking, and so on) that, to date, have been im-
plemented in isolation using ad hoc structures. The hardware components of
DISE (less the programming interface) are well understood and already exist
in many IA-32 microprocessors [Diefendorf 1998; Glaskowsky 2000; Gwenapp
1997].

A DISE implementation of dictionary-based postfetch decompression has
several important virtues. DISE’s macroexpansion functionality enables pa-
rameterized (de)compression, an extension to conventional decompression that
allows multiple, similar-but-not-identical decompression sequences to share
dictionary entries, improving dictionary space utilization. Parameterization
also allows PC-relative branches to be included in compressed instruction se-
quences. DISE’s programming interface also allows the decompression dictio-
nary to be customized on a per application basis, further improving compres-
sion. Finally, as a general-purpose mechanism, DISE can implement many
other features and even combine them (dynamically) with decompression.

We evaluate DISE decompression using custom compression tools and cycle-
level simulation. On the SPEC2000 and MediaBench benchmarks, the DISE
(de)compression implementation enables code size reductions of over 35% and
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performance improvements (execution time reductions) of 5–20%. Parameter-
ized decompression—a feature unique to a DISE implementation of hardware
decompression—accounts for a significant portion of total compression. We also
show that dictionary programmability is an important consideration for dy-
namic decompression, as well as how to reduce the overhead of application-
customized dictionaries. Although previous postfetch decompression proposals
do not preclude programmability and may even assume it, none evaluates its
importance or provides a mechanism for its implementation. We show that
DISE-based compression can reduce total energy consumption by 10% and the
energy-delay product by as much as 20%. Finally, we find that the choice of
compiler, optimizations, and ISA used to produce a program can impact its
compressibility.

The remainder of the paper is organized as follows. The next section in-
troduces DISE. Section 3 presents and discusses our DISE implementation of
dynamic code (de)compression. Section 4 gives an extensive evaluation of DISE-
based compression, but many of the results apply to other approaches to code
compression. The final two sections summarize related work and conclude.

2. DISE

Dynamic instruction stream editing (DISE) [Corliss et al. 2002, 2003a] is a
hardware facility for implementing application customization functions (ACFs).
ACFs customize a given application for a particular execution environment. Ex-
amples of ACFs include profiling, dynamic optimization, safety checking, and
(de)compression. Traditional ACF implementations have been either software
or hardware only. Software solutions inject instructions into the application’s
instruction stream, but require expensive binary modification. Hardware ap-
proaches typically customize the application using dedicated pipeline stages,
but are functionally rigid. DISE is a cooperative software–hardware mechanism
for implementing ACFs. Like software, DISE adds/customizes application func-
tionality by enhancing/modifying its execution stream. Like hardware, DISE
transforms the dynamic instruction stream, not the static executable.

DISE inspects every fetched instruction and macroexpands those match-
ing certain patterns into parameterized instruction sequences. The expansion
rules that encode instruction patterns and replacement sequences—called pro-

ductions—are software specified. From a hardware standpoint, DISE is similar
to the CISC-instruction-to-RISC-microinstruction decoders/expanders used in
IA-32 microprocessors [Diefendorf 1998; Glaskowsky 2000; Gwenapp 1997]. To
these, DISE adds a programming interface that allows applications to sup-
plement their own functionality and trusted entities (i.e., the OS kernel) to
augment or modify the functionality of other applications. Currently, decoder-
based macroexpansion is used to simplify the execution engines of CISC pro-
cessors. DISE serves a different purpose (adding functionality to an executing
program) and so may be used in RISC processors as well. In this section, we
describe those DISE features that are most salient to decompression.

As shown in Figure 1, the DISE hardware complex comprises two blocks
(shaded). The DISE engine performs matching and expansion of an application’s
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Fig. 1. DISE structures in processor pipeline.

fetch stream (described below). The DISE engine is a part of the processor’s
decode stage and its components—the pattern table (PT), replacement table

(RT), and instantiation logic—are quite similar to corresponding structures—
match registers, microinstruction ROM, and alias mechanism, respectively—
already present in IA-32 microprocessors to convert CISC ISA instructions to
internal RISC microinstruction sequences [Diefendorf 1998; Glaskowsky 2000;
Gwenapp 1997]. The DISE controller provides an interface (via the execution
engine) for programming the PT and RT, abstracting the microarchitectural
formats of patterns, and replacement instructions from DISE clients. While
the DISE engine is continuously active (unless disabled), the DISE controller
is a coprocessor that is only activated when the DISE engine is configured (i.e.,
rarely).

DISE Engine. The DISE engine—PT, RT, and instantiation logic—matches
and potentially replaces/expands every instruction in an application’s fetch
stream. The PT contains instruction pattern specifications. These patterns may
include any part of the instruction itself: opcode, logical register names, or im-
mediate field. Thus, for example, DISE is able to match instructions of the
form, “stores that use the stack pointer as their base address.” The RT houses
specifications for the instruction sequences (called replacement sequences) that
are spliced into the instruction stream when there is a match in the PT. A PT
match produces an RT identifier, naming the RT-housed replacement sequence
associated with the matching instruction pattern. A given PT entry can store
an RT identifier directly, or indicate which bits in the matching instruction are
to be interpreted as the identifier. The reason for this dual mode of operation
is discussed below.

To enable interesting functionality, replacement sequences are parame-
terized. An RT entry—corresponding to a single replacement instruction—
contains a replacement literal and a series of instantiation directives that
specify how the replacement literal is to be combined with information from
the matching instruction to form the actual replacement instruction that will
be spliced into the application’s execution stream. The instantiation logic exe-
cutes the directives. Parameterization permits transformations like the follow-
ing: “replace loads with a sequence of instructions that masks the upper bits
of the address and then performs the original load.” The PT and RT entries
for this particular production are shown (logically) in Figure 2. The PT entry
matches the opcode of the instruction only. The two-instruction replacement
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Fig. 2. Sample DISE PT/RT entries.

Fig. 3. Application-aware sample DISE PT/RT entries.

sequence makes heavy use of parameterization (e.g., for the second replacement
instruction we simply copy every field from the original fetched instruction).

In addition to matching and parameterized replacement, DISE has several
features—notably the use of a dedicated register space, and replacement se-
quence internal control—that simplify ACF implementation and improve ACF
performance. Neither of these features is used in (de)compression.

DISE Usage Modes. DISE has two primary usage modes. In application-

transparent mode, it operates on unmodified executables using productions
that match “naturally occurring” instructions with conventional opcodes (as
in Figure 2). Examples of transparent ACFs include branch and path profiling
(productions are defined for control transfer instructions) and memory fault
isolation (productions are defined for loads and stores). In application-aware

mode (illustrated in Figure 3), DISE uses productions for codewords—specially
crafted instructions that do not occur naturally which are planted in the ap-
plication by a DISE-aware rewriting tool. Codewords are typically constructed
using reserved opcodes. Code decompression is an example of aware function-
ality. A DISE-aware utility compresses the original executable by replacing
common multi-instruction sequences with decompression codewords. At run-
time, DISE replaces these codewords with the appropriate original instruction
sequences.

The two usage modes correspond to the two methods of specifying RT identi-
fiers. Transparent productions match “naturally occurring” instructions whose
raw bits cannot be interpreted as RT identifiers. For these, RT identifiers are
stored directly in the PT entries (as in Figure 2). Aware productions must map
a small number of reserved opcodes (perhaps even just one) to a large number
of replacement sequences, and thus store RT identifiers in the planted DISE
codewords. As a result, the example in Figure 3 can be used to produce an in-
struction sequence that increments (RT identifier 0) or decrements (8) a value
in memory.
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DISE Interface. DISE access is mediated by two layers of abstraction and
virtualization. The DISE controller abstracts the internal formats of the PT
and RT allowing productions to be specified in a language that resembles an
annotated version of the processor’s native ISA. The controller also virtual-
izes the sizes of the PT and RT, using a dedicated fixed-size counter table and
RT tagging to detect and signal PT and RT misses, respectively. RT (and to a
lesser degree PT) virtualization is crucial to improving the utility, generality,
and portability of DISE ACFs. The OS kernel virtualizes the set of active pro-
ductions to both preserve the transparency of multiprogramming and secure
processes from malicious productions defined by other applications. OS kernel
mediation does allow applications direct control over DISE productions that act
on their own code.

The PT and RT are the top, “active” components of the DISE production
memory hierarchy. DISE productions are encoded into executables in a special
.dise segment, and are paged into main memory via traditional virtual memory
mechanisms. They may also be created in memory directly. From memory, the
productions may enter the processor either through the instruction memory
structures or the data memory ones. The instruction path is attractive because
it passes through the conventional decoder. The data path is preferable because
productions often need to be manipulated (more on this shortly). A good com-
promise is to treat productions as data elements, but provide a DISE-controller-
managed path for passing them through the decode stage en route to the RT.
The mechanics of moving productions from memory to the PT and RT (either
imperatively or on a miss) resemble those of handling software TLB misses
(n.b., not page faults)—the thread is serialized by a short handler—and have
similar costs.

The primary use of production manipulation, aside from the dynamic cre-
ation of productions, is the composition of multiple ACFs. DISE is a general
facility that can implement a wide range of transparent and aware ACFs, both
in isolation and together. Composition is performed by merging the productions
sets of multiple ACFs and applying the productions of one to the replacement
sequences of the other. Previous work showed how decompression could be com-
posed with memory fault isolation, a security ACF that inspects/isolates an ap-
plication’s memory operations [Corliss et al. 2003a]. Composition is a unique
and powerful DISE feature that enables new software usage models. Although
the composition of decompression with other ACFs is interesting, we do not
consider it further here.

DISE Performance. The performance impact of the DISE facility depends
on its implementation. A complete discussion is beyond the scope of the present
work and is available elsewhere [Corliss et al. 2002, 2003a]. Here we give a brief
overview. Three aspects of DISE directly impact performance: (i) the expansion
process itself, (ii) demand loading the PT/RT, and (iii) interacting with the DISE
controller. For compression, minimal interaction with the controller is required
(only at application startup), so this cost is nearly nil. The costs of demand
loading the PT/RT are comparable to TLB misses, and we evaluate this in
Section 4.5.
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The cost of the expansion process itself is very important, because each
fetched instruction may potentially need to be expanded. The implementation
of the PT and RT must not lengthen the processor cycle time. Systems with
relatively slow cycle times (e.g., some embedded and low-power systems) will
be able to access both the PT and the RT in a single cycle. Faster systems will
need to distribute PT and RT access across two cycles. This can be done for free
in processors with 2-stage decoders, but it will introduce delay on expansion in
processors with 1-stage decoders.

3. (DE)COMPRESSION WITH DISE

DISE enables an implementation of dictionary-based postfetch decompression
that is functionally similar to a previously described scheme [Lefurgy et al.
1997]. The DISE implementation is unique among hardware decompression
schemes in that it supports parameterized decompression, has a programming
interface that allows program-specific dictionaries, and uses hardware that is
not decompression specific. We elaborate on how DISE may be used to perform
dynamic decompression and present our compression algorithm.

3.1 Dynamic Decompression

A DISE decompression implementation uses the RT to store the decompression
dictionary. Decompression is an “aware” ACF. A DISE-aware compressor re-
places frequently occurring instruction sequences with DISE codewords, which
are recognized by their use of a single reserved opcode. DISE decompression
uses a single PT entry to match all decompression codewords via the reserved
opcode, and the codeword itself encodes the RT identifier of the appropriate re-
placement sequence. This arrangement is basically the same as the one used by
the previously described scheme [Lefurgy et al. 1997]. However, to support pa-
rameterized decompression, DISE also uses some non-opcode bits of a codeword
to encode register/immediate parameters. The parameter/RT-identifier division
is flexible and may be changed on a perapplication basis. For instance, in a 32-
bit ISA with 6-bit opcodes, we could use 2K decompression entries (11 identifier
bits) and up to three register/immediate parameters of 5 bits each (15 bits total).
Alternatively, the 26 non-opcode bits could be divided to allow the specification
of up to 64K decompression entries (16 bits) with each using up to two param-
eters (10 bits).

Parameterized (De)compression. Register/immediate parameters encoded
into decompression codewords exploit DISE’s parameterized replacement
mechanism to allow more sophisticated compression than that supported by
dedicated (i.e., dictionary-index only) decompressors. In DISE, a single decom-
pressed code template may yield decompressed sequences with different regis-
ter names or immediate values when instantiated with different “arguments”
from different static locations in the compressed code. In this way, parame-
terization can be used to make more efficient use of dictionary space. The use
and benefit of parameterized decompression is illustrated in Figure 4. Part (a)
shows uncompressed static code; the two boxed three-instruction sequences
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Fig. 4. (De)compression examples.

are candidates for compression. Part (b) shows the static code and the dictio-
nary (RT) contents for unparameterized compression. Since the sequences differ
slightly, they require separate dictionary entries. With parameterized decom-
pression, part (c), the two sequences can share a single parameterized dictio-
nary entry. The entry uses two parameters (shown in bold): P1 parameterizes
the first instruction’s input and output registers and the second instruction’s
input register, P2 parameterizes the first instruction’s immediate operand. To
recover the original uncompressed sequences, the first codeword uses a2 and 8

as values for the two parameters, while the second uses a3 and −8, respectively.
In addition to allowing more concise dictionaries, parameterization permits

the compression of sequences containing PC-relative branches. Conventional
mechanisms are incapable of this because compression itself changes PC offsets.
Although two static branches may use the same offset before compression, it is
likely this will not be true after compression. General solution of this conflict is
NP-complete [Szymanski 1978]. In DISE, post-compression PC-relative offset
changes are no longer a problem. Multiple static branches that share the same
dictionary entry prior to compression can continue to do so afterward. With
parameterization, even branches that use different a priori offsets can share
a dictionary entry. The one restriction to incorporating PC-relative branches
into (de)compression entries is that their offsets must fit within the width of a
single parameter. This restriction guarantees that no iterative rewriting will be
needed, because compression can only reduce PC-relative offsets. As we show
in Section 4, the ability to compress PC-relative branches gives a significant
benefit, because they represent as much as 20% of all instructions.

Parameterization is effective for two reasons. First, only a few parameters
are needed to capture differences between similar sequences. This is due to the
local nature of register communication of common programming idioms and the
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resulting register name repetition. In Figure 4, the three-instruction sequence
(lda, ldq, cmplt) increments an array pointer, loads the value, and compares it to
a second value. The seven register names used within this sequence represent
four distinct values: the array element pointer, the array element value, the
compared value, and the comparison result. Given four register parameters,
we could generalize this sequence completely. Second, a small number of bits
(we use five) suffice to effectively capture most immediate values. Certainly,
most immediate fields are wider than 5 bits. The key here is that in the static
uses of a given decompression entry only a few immediates will be used and
this small set can be compactly represented in a small number of bits. In our
example, the immediate used in lda is the size of the array element. In a 64-bit
machine, this number will most likely be some small integer multiple of 8. By
defining the interpretation of the bits of P2 to be the three-bit left-shift of the
literal parameter, we can capture the most common array accesses in a single
dictionary entry.

3.2 Compression Algorithm

Code compression for DISE consists of three steps. First, a compression profile

is gathered from one or more applications. Next, an iterative algorithm uses
the compression profile to build a decompression dictionary (i.e., the virtual
contents of the RT). Finally, the static executable is compressed using the dic-
tionary (in reverse) to replace compressible sequences (i.e., those that match
dictionary entries) with appropriate DISE codewords. We elaborate on each
step, below.

Gathering a Compression Profile. A compression profile is a set of weighted
instruction sequences extracted from one or more applications. The weight of
each sequence represents its static or dynamic frequency. If customized perpro-
gram dictionaries are supported, the compression profile for a given program
is mined from its own text. If the dictionary is fixed (i.e., a single dictionary
is used for multiple programs), a profile that represents multiple applications
may be more useful.

A compression profile may contain a redundant and exhaustive represen-
tation of instruction subsequences in a program. For instance, the sequence
<1,2,3,4> may be represented by up to six sequences in the profile: <1,2>,
<2,3>, <3,4>, <1,2,3>, <2,3,4>, and <1,2,3,4>. This exhaustive representa-
tion is not required, but it gives the dictionary construction algorithm (below)
maximum flexibility, improving resultant dictionary quality. We limit the max-
imum length of these subsequences to some small k (the minimum length of
a useful sequence is two instructions), and we do not allow the sequences to
span basic blocks. The latter constraint is shared by all existing postfetch de-
compression mechanisms and is necessary for correctness because DISE does
not permit control to be transfered to the middle of a replacement sequence.
Both constraints limit the size of compression profiles and instruction sequence
lengths, which are naturally not very long (see Section 4).

A weight is associated with each instruction sequence in a profile in order
to estimate the potential benefit of compressing it. We compute the benefit of
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Fig. 5. Dictionary construction algorithm.

sequence p via the formula: benefit(p) = weight(p) × (length(p) − 1). The lat-
ter factor represents the number of instructions eliminated if an instance of p

is compressed to a single codeword. Weight may be based on a static measure
(i.e., the number of times the sequence appears in the static executable(s)),
a dynamic measure (i.e., the number of times the sequence appears in some
dynamic trace or traces), or some combination of the two, allowing the algo-
rithm to target compression for static code size, reduced fetch consumption—a
feature that can be used to reduce instruction cache energy consumption (see
Section 4.6)—or both. For best results, the weights in a profile should match
the overlap relationships among the instruction sequences. In particular, the
weight of a sequence should never exceed the weight associated with one of its
proper subsequences, since the appearance of the subsequence must be at least
as frequent as the appearance of the supersequence.

Building the Dictionary. A compression/decompression dictionary is built
from the instruction sequences in a compression profile using the iterative pro-
cedure outlined in Figure 5. At each iterative step, the instruction sequence
with the greatest estimated compression benefit (minus its cost in terms of
space consumed in the dictionary) is identified and added to the dictionary. In
environments where the dictionary is fixed and need not be encoded into the
application binary, we set the cost of all sequences to zero. In this case, it may
be useful to cap the size of the dictionary to prevent it from growing too large.
Otherwise, the iterative process continues until no instruction sequences have
a benefit that exceeds their cost.

When a sequence is added to the dictionary, corrections must be made to the
benefits of all remaining sequences that fully or partially overlap it to account
for the fact that these sequences may no longer be compressed. Since DISE
only expands the fetch stream and does not reexpand the expanded stream, a
sequence that contains a decompression codeword cannot itself be compressed.
We recompute the benefit of each sequence (using RecalculateBenefit()) given
the sequences that are currently in the dictionary and information encoded in
the profile.

Benefit correction monotonically reduces the benefit of a sequence, and may
drive it to zero. For example, from our group of six sequences, if sequence
<1,2,3> is selected first, the benefit of the sequence <1,2,3,4> goes to zero.
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Once <1,2,3> is compressed, no sequence <1,2,3,4> will remain. If <1,2,3,4>

is selected first, the benefit of sequence <1,2,3> will be reduced, but perhaps
not to zero. Once <1,2,3,4> is compressed, instances of <1,2,3> may still be
found in other contexts.

Parameterized Compression. The dictionary building algorithm is easily
extended to support parameterized compression. At each step, before adding
the selected sequence to the end of the dictionary, we attempt to unify it via
parameterization with an existing entry. Two sequences may be unified if they
differ by at most p distinct register specifiers or immediate values, where p is
the maximum number of parameter values that can be accommodated within a
given instruction (a 32-bit instruction can realistically accommodate 3). For in-
stance, assuming p is 1 (our implementation actually supports 3), the sequence
<addq r2,r2,8; ldq r3,0(r2)> can be unified with the existing sequence <addq

r4,r4,8; ldq r3,0(r4)> by the decompression entry <addq P1,P1,8; ldq r3,0(P1)>.
The sequence <addq r2,r2,16; ldq r3,0(r2)> cannot be unified with the existing
sequence using only a single parameter. We do not attempt opcode parameter-
ization. If unification is possible, the sequence is effectively added to the dic-
tionary for free, that is, without occupying any additional dictionary space. If
unification with multiple entries is possible—a rare occurrence since it implies
that two nearly identical entries were not already unified with each other—the
one that necessitates the fewest number of parameters is chosen.

In environments where the virtual dictionary size is capped, parameteriza-
tion allows us to continue to add sequences to the dictionary so long as they can
be unified with existing entries. In other words, the algorithm adds sequences
whose cost exceeds their benefit if they may be unified with existing dictionary
entries (i.e., they have effectively no cost).

Custom, Fixed, and Hybrid Dictionaries. When the compression profile
used by this algorithm is derived from a single program, a dictionary will be
generated that is customized to its characteristics, resulting in very effective
compression for that program. Unfortunately, the dictionary itself must be en-
coded in the program binary, for it should only be used to decompress that
particular program. If a compression profile is derived from a large collection
of programs, a dictionary of more general utility is produced, and it may be
used to compress a greater variety of programs. Although the effectiveness of
this (fixed) dictionary is likely to be inferior to that of a custom dictionary,
the dictionary itself need not be encoded in the program binary, because the
system (e.g., OS or hardware vendor) can provide this dictionary to be shared
by all programs. It may also be valuable to build a hybrid dictionary that in-
cludes fixed and customized components, only the latter of which needs to be
embedded in the program binary. This hybrid dictionary offers the promise of
achieving the best of both customized (good compression of the program itself)
and fixed (little overhead) dictionaries. We evaluate all three approaches in
Section 4.4.

Rather than compute hybrid custom/fixed dictionaries directly, we combine
a custom and fixed dictionary after they have been produced by the algorithm
in Figure 5. Assuming a fixed-size virtual RT, we allocate a portion of this
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structure to contain fixed dictionary entries (i.e., entries derived from profiling
a large class of applications) and the remainder is devoted to custom entries (i.e.,
entries derived from the particular application being compressed). The former
will be shared by all compressed programs, so it need not be encoded in the
binary. The latter is unique to each compressed program, so it must be encoded
in the program binary. The fixed and custom portions are computed as described
above, except that dictionary entries appearing in the custom portion that are
subsumed by entries appearing in the fixed portion are removed. One entry
subsumes another when both are identical except for fields in the subsuming
sequence that are parameterized where the subsumed sequence was literal. A
(perhaps) superior approach would be to detect and eliminate subsumed entries
in the algorithm in Figure 5, but we leave this for future work.

Compressing the Program. Given a decompression dictionary—a set
of decompression productions and their RT identifiers (virtual indices)—
compressing a program is straightforward. The executable is statically ana-
lyzed and instruction sequences that match dictionary entries are replaced by
the corresponding DISE codewords. The search-and-replace procedure is per-
formed in dictionary order. In other words, for each dictionary entry, we scan
the entire binary (or function), and compress all instances of that entry before
attempting to compress instances of the next entry. This compression order
matches the order implicitly assumed by our dictionary selection algorithm.
When compression is finished, branch and jump targets—including those in
jump tables and PC-relative offsets in codewords—are recomputed.

Complexity. Dictionary construction dominates the computational complex-
ity of compression. Because sequences are limited to a maximum constant
length (k, above), there are O(n) instruction sequences in the compression pro-
file associated with a program containing (before compression) n instructions.
Dictionary construction is quadratic in the number of sequences in the com-
pression profile, so it is quadratic in the size of the uncompressed program.
No effort has been applied to optimizing the complexity or performance of the
compression algorithm. Nevertheless, for most of our benchmarks compression
takes less than 30 s on 2 GHz Pentium 4. We are currently investigating more
efficient compression algorithms.

4. EXPERIMENTAL EVALUATION

DISE is an effective mechanism for implementing dynamic decompression
in both general-purpose and embedded processors. We demonstrate this us-
ing custom tools that implement DISE-based compression. Our primary met-
ric is compression ratio, the ratio of compressed to uncompressed program
sizes. Section 4.2 shows the effectiveness of DISE-based compression versus a
dedicated-hardware approach. Section 4.3 explores the sensitivity of compres-
sion to factors such as instruction set architecture, dictionary size, and number
of available parameters. Section 4.4 assesses both program-specific and fixed-
dictionary compression as well as a hybrid of the two. Sections 4.5 and 4.6 use
cycle-level simulation to evaluate the performance and energy implications of
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executing compressed code. The final section evaluates the impact of the choice
of compiler and optimizations on the compression ratio.

The experimental data presented in this section serves three purposes. First,
it demonstrates that DISE-based decompression is effective and evaluates the
impact of DISE-specific features (e.g., the impact of parameters on compres-
sion ratio and the impact on performance of demand loading the decompres-
sion dictionary into the RT). Second, it compares DISE-based decompression
with a dedicated-hardware approach. Finally, some of this data (e.g., impact of
dictionary size, impact on energy, impact of source compiler, and so on) is, in
fact, DISE neutral, so our results are equally relevant to dedicated-hardware
implementations.

4.1 Experimental Environment

Simulator. Our results include dynamic program characteristics (e.g., ex-
ecution time and energy) for which we require simulation of a processor pro-
viding the DISE facility. Our simulation tools are built using the SimpleScalar
Alpha instruction set and system call definition modules [Burger and Austin
1997]. The timing simulator models an unclustered Alpha 21264 processor
with a parameterizable number of pipeline stages, register renaming, out-of-
order execution, aggressive branch and load speculation, and a two-level on-
chip memory hierarchy. Via parameter choices, we model both general-purpose
and embedded cores. The general-purpose core is 4-way superscalar, with a
12-stage pipeline, 128-entry re-order buffer, 80 reservation stations, 32 KB,
2-way, 1-cycle-access instruction and data caches, and a unified 1 MB, 8-way,
12-cycle-access L2. Memory latency is 100 cycles. It also includes a 6 KB hybrid
bimodal/g-share predictor and a 2K entry BTB. The embedded configuration is
2-way superscalar, with a 5-stage in-order pipeline, an 8 KB, 2-way instruction
cache, 16 KB 2-way data cache (both 1 cycle access), and no L2. Memory latency
is 50 cycles. It includes a 0.75-KB hybrid predictor and a 256-entry BTB.

The simulator also models the DISE mechanism. Our default configuration
uses a 32-entry PT (although decompression requires only a single PT entry)
and a 2K-instruction 2-way set-associative RT. Each PT entry occupies about
8 bytes while each RT entry occupies about 6 bytes—replacement instruction
specifications are represented using 8 bytes in the executable, but this represen-
tation is quite sparse—so the total sizes of the two structures are 512 bytes and
12 KB, respectively. For the general-purpose configuration, we assume a 2-stage
decoder, so DISE expansion introduces no overhead. For the embedded configu-
ration, we assume an a priori 1-stage decoder. Here, the DISE-enhanced config-
uration requires an additional pipeline stage and suffers an increased branch
misprediction penalty. The DISE interface and its cost do not impact the use of
DISE for code decompression, so they are not explicitly modeled. We model the
DISE miss handler by flushing the pipeline and stalling for 30 cycles.

The simulator models power consumption using the Wattch framework
[Brooks et al. 2000], a widely used research tool for architecture power analy-
sis, and CACTI-3 [Wilton and Jouppi 1994], a cache area, access and cycle time,
and power consumption estimation tool. Our power estimates are for 0.13 µm
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technology. The structures were configured carefully to minimize power con-
sumption and roughly mirror the perstructure power distributions of actual
processors. For a given logical configuration, CACTI-3 employs both squarifica-
tion and horizontal/vertical subbanking to minimize some combination of delay,
power consumption, and area. We configure both the instruction cache and RT
as 2-way interleaved, single-ported (read/write) structures that are accessed at
most once per cycle.

Benchmarks. We perform our experiments on the SPEC2000 integer and
MediaBench [Lee et al. 1997] benchmarks. The SPEC benchmarks run on the
general-purpose processor configuration, while the MediaBench codes run on
the embedded configuration. All programs are compiled for the Alpha EV6 ar-
chitecture with the native Digital Unix C compiler with optimization flags -O4

-fast (except in Section 4.3 in which we evaluate compression for the ARM ar-
chitecture and Section 4.7 in which we evaluate compression for different com-
pilers and optimization levels). Our simulation environment extracts all nops
from both the dynamic instruction stream and the static program image. They
are inserted by the Alpha compiler to optimize two idiosyncratic aspects of the
Alpha micro-architecture (cache-line alignment of branch targets and clustered
execution engine control). Our simulator does not model these idiosyncrasies,
so for us the nops serve no purpose and their presence may unfairly exaggerate
the benefits of compression. When execution times are reported for SPEC, they
come from complete runs sampled at 10% (100M instructions per sample) us-
ing the train input. MediaBench results are for complete runs using the inputs
provided [Lee et al. 1997]; no sampling is used.

Dictionaries. Compression profiles are constructed by static binary analysis
(except in Section 4.6). The compression tool generates a set of decompression
productions (the dictionary) via the algorithm presented in Section 3. Our de-
fault compression parameters are a maximum dictionary entry length of eight
instructions and no more than three register/immediate parameters per entry.
Except for the experiments in Section 4.4, a custom dictionary is used for each
benchmark. Except for the experiment in Section 4.6, each dictionary is con-
structed using a compression profile where weights encode static instruction
sequence frequency.

4.2 Compression Effectiveness

We begin with a comparison of the compression efficacy of DISE to that of
a previously proposed system that exploits dedicated decompression-specific
hardware [Lefurgy et al. 1997]. The dedicated approach does not support pa-
rameterized replacement. As a result, it cannot compress PC-relative branches
or share dictionary entries in certain situations, but it does have smaller dic-
tionary entries (no directives) and smaller codewords (no parameters), and so
it can profitably compress single instruction sequences.

We separate the impact of these differences in Figure 6. Bars represent
static compression ratio broken down into two components. The first (bottom,
shaded portion of each stack) is the (normalized) compressed size of the original
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Fig. 6. Dedicated and DISE-based feature impact on compression.

program text. The second (top white portion) is the size of the dictionary as a
fraction of original program text size. The combination of these two bars rep-
resents the total amount of data required to represent a compressed program.
The two numbers written on top of each bar are the total number of dictionary
entries, and the average number of instructions per entry, respectively. Each
bar gives the compression of a decompressor with a slightly different feature
set.

Dedicated Decompression Features. The first bar (dedicated) corresponds
to a dedicated hardware decompressor, complete with 2-byte codewords and
single-instruction compression [Lefurgy et al. 1997]. The compression ratios
achieved—about 70–75% of original text size, dictionary not included (note the
scale of the graph)—are comparable to those previously published [Lefurgy
et al. 1997]. In the next two bars, we progressively eliminate the dedicated
decompressor’s two advantages: single-instruction compression (−1insn) and
the use of 2-byte codewords (−2byteCW). Eliminating these features reduces
compression effectiveness to approximately 85%.

DISE Decompression Features. With dedicated-decompression specific fea-
tures removed, the next three bars add DISE-specific features. The use of pa-
rameterized replacement requires four additional bytes per dictionary entry to
hold the instantiation directives (+8byteDE). Note that this is a highly con-
servative estimate as there are five fields in a given instruction (opcode, three
register specifiers, and an immediate) and each can be modified using five or so
different directives. Reserving 32 bits for directives keeps the dictionary section
in the executable aligned and provides headroom for future directive expan-
sion. Without parameterization, larger dictionary entries require more static
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instances to be considered profitable. As a result, fewer of them are selected and
compression ratios degrade to 90% and above. Shown in the fifth bar, param-
eterization (+3param, we allow three parameters per dictionary entry) more
than compensates for the increased cost of each dictionary entry by allowing se-
quences with small differences to share entries; it improves compression ratios
dramatically (back down to 75–80%). The final bar (DISE)—corresponding to
the full-featured DISE implementation—adds the compression of PC-relative
branches. The high static frequency of PC-relative branches enables compres-
sion ratios of 65%, appreciably better than those achieved with the dedicated
hardware scheme.

The numbers on top of the bars—number of dictionary entries and average
number of instructions per entry—point to interesting differences in dictionary-
space usage between the dedicated and DISE schemes. While the two schemes
use roughly the same amount of total dictionary storage (see the portion of
each bar), recall that DISE requires twice the storage per instruction, mean-
ing the DISE dictionaries contain roughly half the number of instructions as
the dedicated ones. Beyond that, dedicated dictionaries typically consist of a
large number of small entries, including many single-instruction entries. DISE
dictionaries typically consist of a smaller number of longer entries. The dif-
ference is due to the absence of single-instruction compression—which means
that the average compression sequence length must be at least two—and the
use of 4-byte codewords which require longer compressed sequences to be prof-
itable. Parameterized replacement does not increase the average entry size, it
just makes more entries profitable since they can be shared among more static
locations.

Note that the total number of dictionary entries for the DISE schemes cannot
exceed 2K, since parameterized DISE codewords contain only 11 bits of RT
identifier space.

For the remainder of this evaluation, we present results for a representative
subset of the benchmarks.

4.3 Sensitivity Analysis

The results of the previous section demonstrate that unconstrained
(de)compression is effective. Below, we investigate the impact of instruction set
architecture, dictionary entry size (in terms of instructions), total dictionary
size, and the number of register/immediate parameters per dictionary entry.

Instruction Set Architecture. A program’s compressibility naturally depends
on the characteristics of the instruction set architecture (ISA) used to represent
it. While the Alpha is a high-performance workstation architecture, the ARM
architecture is designed to meet the needs of embedded real-time systems, open
platforms, and secure applications [Cormie 2002]. The ARM ISA provides a
somewhat denser encoding than traditional RISC ISAs (note that we are not
evaluating the ARM Thumb compressed representation described in Section 5).
Here we investigate the compressibility of programs built from the ARM ISA
versus the Alpha ISA. Because ARM was designed for embedded systems, we
limit our analysis to the MediaBench codes.
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Fig. 7. Alpha versus ARM ISA impact on compression.

Figure 7 presents compression ratios for both Alpha and ARM versions of the
benchmarks exploiting both dedicated-hardware and DISE-based approaches
to decompression. The compression ratios for both dedicated and DISE-based
compression are actually better for the ARM codes. The dedicated-hardware
case improves in large part because the ARM versions of these benchmarks
have a significantly higher occurrence of a small class of memory operations.
The dedicated hardware can compress single instructions, so these memory
operations are very effectively compressed. In fact, the number of single in-
struction sequences grows by a factor of 3 to 5 for each of these codes, and the
average sequence length drops dramatically. In addition, our manual analysis
of ARM programs reveals that they are more regular than Alpha programs,
resulting in better compression for both dedicated and DISE compression. This
regularity arises because there are fewer registers (16 versus 32), and a smaller
number of opcodes represent a larger portion of the total instruction mix. Be-
cause DISE does not benefit from the compression of the greater number of
singleton instructions, the dedicated case generally improves more than DISE.
Although DISE was more effective for the Alpha, dedicated and DISE-based
decompression appear equivalent (in terms of compression ratio) for the ARM
ISA. A final factor contributing to compression-ratio differences between Alpha
and ARM programs is the compiler used to build the binaries. We used the na-
tive Digital Unix compiler to build Alpha binaries and GCC version 2.95.2 (cross
compiler) for the ARM binaries. In Section 4.7 we show that different compil-
ers produce code of different compressibility, although this effect is small and
certainly does not account for the large differences in Figure 7.

Dictionary Entry Size. Postfetch decompression restricts (de)compression
sequences to reside fully within basic blocks. Although basic block size is small
in the benchmarks we consider, there may be benefit to restricting dictionary
entry size even beyond this natural limit. Small sequences may admit more
efficient RT organizations and tagging schemes and can reduce the running
time of the compressor itself. Our experiments (not graphed here) show that
4-instruction sequences allow better compression (up to 8%) than 2-instruction
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Fig. 8. Impact of dictionary size.

sequences, 8-instruction sequences occasionally result in slightly better com-
pression still, and 16-instruction sequences offer virtually no advantage over
those. Our algorithm simply never selects long instruction sequences for com-
pression because similar long sequences do not appear frequently in the codes
we studied.

Dictionary Size. Although DISE virtualization allows the dictionary to be
larger than the physical RT, a dictionary whose working set exceeds RT ca-
pacity will degrade performance via expensive RT miss handling. To avoid RT
misses, it is often useful to limit the size of the dictionary, but this naturally de-
grades compression effectiveness. Figure 8 shows the impact of dictionary size
on compression ratio. Note that we define dictionary size as the total number
of instructions, not the number of entries (i.e., instruction sequences).

Nontrivial compression reductions of 1–5% in code size are possible with
dictionaries as small as eight total instructions, and 12% reductions are possi-
ble with 32-instruction dictionaries (e.g., vortex). 512-Instruction dictionaries
achieve excellent compression, 70–80% of original program code size on all pro-
grams. Increasing dictionary size to 2K instructions yields small benefits. Only
the larger benchmarks (i.e., eon, perlbmk, and ghostscript) reap additional ben-
efit from an 8K instruction dictionary. The remaining benchmarks are unable
to exploit the additional capacity.

Number of Parameters. Parameterized decompression allows for smaller,
more effective dictionaries, because similar-but-not-identical sequences can
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Fig. 9. Impact of parameters.

share a single dictionary entry as in Figure 4. This is a feature unique to DISE
among hardware decompression schemes; Figure 9 shows its impact.

Compression ratios improve steadily as the number of parameters is in-
creased from zero to three; the difference between zero and three parameters is
about 15% in absolute terms. Compression improves even further if more than
three parameters are used, but there is little benefit to allowing more than six
parameters. This diminishing return follows directly from our dictionary entry
size results. Each instruction contains no more than three registers (or two reg-
isters and one immediate). Since most dictionary entries are 2–4 instructions
long, they cannot possibly contain more than 12 distinct register names or im-
mediate values. Of course, in practice the number of distinct names is much
smaller. Contiguous instructions tend to be data dependent and these depen-
dences are expressed by shared register names. Parameterized replacement
therefore has the nice property that a few parameters capture a significant
portion of the benefit. The final bar (6+6byteCW) repeats the 6-parameter ex-
periment, but uses longer—6 rather than 4 byte—codewords to realistically
represent the overhead of encoding additional parameters. The use of longer
codewords makes the compression of shorter sequences less profitable, com-
pletely overwhelming the benefit achieved by the additional three parameters.
Three parameters—the maximum number that can fit within a 32-bit codeword
and still maintain a reasonably sized RT identifier—yield the best compression
ratios.

Other experiments (not presented) show that parameterization is slightly
more important at small dictionary sizes. This is an intuitive result, as smaller
dictionaries place a higher premium on efficient dictionary space utilization.
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Fig. 10. Impact of dictionary customization.

4.4 Dictionary Programmability

One advantage of DISE (de)compression is dictionary programmability, the
ability to use a perapplication dictionary. Although previous proposals for
postfetch decompression [Lefurgy et al. 1997] did not explicitly preclude pro-
grammability, a programming mechanism was never proposed and the impact
of programmability was never evaluated. In DISE, dynamic dictionary manip-
ulation is possible via the controller.

Custom Versus Fixed Dictionaries. We consider the impact of programma-
bility by comparing three compression usage scenarios. In application we create
a custom dictionary for each application and encode it into the executable. All
the data presented thus far assumes this scenario. The other two scenarios
assume a fixed, system-supplied dictionary that either resides in kernel mem-
ory or is perhaps hardwired into the RT. In these scenarios, the system pro-
vides the compression utility. The first of these, suite, models a system with a
limited but well-understood application domain. Here, we build a dictionary
using static profile data collected from the other applications in the benchmark
suite. The second (other-suite) models a system with little or no a priori knowl-
edge of the application domain. Here, dictionaries are built using profile data
from programs in the other benchmark suite. One advantage of system-provided
(i.e., fixed) dictionaries is that they do not consume space in the compressed ap-
plication’s executable.

Figure 10 shows the impact of each usage scenario on compression ratio.
We actually show the results of two experiments, limiting dictionary size to
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512 and 2K total instructions. Not surprisingly, at small dictionary sizes, an
application-specific dictionary (application) outcompresses a fixed dictionary
(suite and other-suite), even when considering that dictionary space is part of
the compressed executable in this scenario and not the other two scenarios.
Being restricted to relatively few compression sequences while limiting the
overall cost of the dictionary to the application places a premium on careful
selection and gives the application scenario an advantage. As dictionary size
is increased, however, careful selection of sequences becomes less important
while the fact that entries in fixed dictionaries are “free” to the application
increases in importance. With a 2K instruction dictionary, “inversions” in which
an application-agnostic dictionary outperforms the application-specific one are
observed (e.g., g721, gsm, pegwit). Of course, these are achieved using very
large fixed dictionaries which would not be used if the application were forced
to include the dictionary in its own binary.

The suite scenario often outcompresses other-suite implying that there is
idiomatic similarity within a particular application domain. For instance, a
few of the MediaBench programs have many floating-point operations whose
compression idioms will not be generated by the integer SPEC benchmark suite.
The one exception to this rule is ghostscript, which arguably looks more like
an integer program—it is call-intensive in addition to loop intensive—than an
embedded media program.

Hybrid Custom/Fixed Dictionaries. From the data in Figure 10, it is ap-
parent that there are unique virtues to both customized (application) and
fixed (suite and other-suite) approaches to building and using dictionaries. Cus-
tomized dictionaries allow for the best compression of the program, but the
dictionary itself must be encoded in the program binary, sometimes negating
the benefit of customization (e.g., g721.dec). Fixed dictionaries have the bene-
fit that they need not be represented in the program binary, but they usually
result in poorer compression of the program itself (although this is not always
true for reasons described above). A hybrid approach for dictionary construction
attempts to achieve the best of both worlds.

Figure 11 presents the impact of hybridization. We partition both 512 and
2K entry RTs (the RT must house both the custom and fixed part of the dic-
tionary) in six incrementally different ways. The percent under each bar in-
dicates the portion of the total dictionary devoted to custom entries. 100% is
completely custom, and 0% is entirely fixed. The white (top) portion of each bar
represents the custom portion of the dictionary that must be encoded in the
binary. So that all benchmarks share exactly the same fixed portion, our fixed
entries are derived from all of the benchmarks within each benchmark suite
(including the benchmark being compressed). As a result, the 0% figures differ
slightly from the suite bars (which exclude the benchmark being compressed)
in Figure 10.

Ignoring custom dictionary overhead for the moment (top white portion of
each bar), each set of bars exhibits one of three basic shapes: (1) compression
ratio (gray bar only) increases as less of the dictionary is dedicated to custom
entries, (2) compression ratio decreases, or (3) compression ratio decreases,
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Fig. 11. Impact of hybrid custom/fixed dictionary.

then increases. The first case (e.g., crafty, 2K-entry RT) is most natural and
common. As the total dictionary becomes less customized to the application
being compressed, the compression ratio will naturally get worse (i.e., increase).
We see this in almost all SPEC benchmarks and most of the MediaBench codes
with small (i.e., 512-entry) RTs.

The second case (compression ratio actually improves when more of the dic-
tionary is devoted to fixed entries) is, at first, unintuitive. The origin of this
odd occurrence is that an entry is only added to the custom dictionary if the
compression benefit (in the program) exceeds the cost of adding the entry to
the dictionary. As a result, it is often the case (particularly for large RTs) that
the custom portion of the dictionary is not full, and converting custom entries
to fixed entries does not in fact reduce the number of custom entries but it does
increase the number of fixed entries. The end result is that there are actually
more total entries in the dictionary resulting in better compression. This most
naturally occurs for small programs and large dictionaries, so we see it for a
number of MediaBench codes with 2K RTs.

The third case (compression ratio improves, then degrades, e.g., g721.dec/2K)
is the natural combination of the first two cases. The ratio improves at first
because fixed-dictionary entries are being added without impacting the custom
entries, but at some point, the fixed dictionary cuts into valuable custom entries,
degrading compression ratios.

Now we consider the overhead of the custom dictionary (top white portion of
each bar). Naturally, this decreases as more of the dictionary is devoted to fixed
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Fig. 12. Impact of instruction cache and dictionary.

entries. In some cases, the reduced custom dictionary overhead is overshadowed
by the degraded compression of the binary (e.g., ghostscript.gs, 512-entry RT),
but most codes actually benefit from dedicating at least some of the dictionary to
fixed entries. Crafty/2K is a nice example; it achieves the best total compression
when only 20% of the dictionary is customized. Most of the codes exhibit a
similar valley around 20% or 40%. Although sometimes the best compression
is achieved with a completely fixed dictionary (e.g., g721.dec), there is usually a
significant jump from the 20% bar to the 0% bar, suggesting that some amount
of customization is useful.

4.5 Performance Impact

The performance of a system that uses DISE decompression depends on the
average access times of two caches: the instruction cache and the RT, which
acts as a cache for the dictionary. Since each is accessed in an in-order front-
end stage, penalties are taken in series and translate directly into end latency.

The next two sections of the evaluation focus on performance and energy,
variations in which are due to trade-offs between the instruction cache and RT.

Instruction Cache Performance. Figure 12 isolates instruction cache per-
formance by simulating an ideal DISE engine, an infinite RT with no penalty
per expansion. The figure shows the relative performance of 15 instruction-
cache/dictionary configurations: each of three cache sizes used in conjunc-
tion with each of five (de)compression dictionary sizes—0 (no decompression),
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128 entries, 512, 2K, and an unbounded dictionary. We show performance (IPC;
higher bars are better) normalized to that of a configuration with a 32 KB in-
struction cache and no (de)compression. Performance, naturally, decreases with
cache size, in some cases significantly (e.g., crafty suffers five times the number
of misses with a 16 KB cache versus a 32 KB cache). Of the three components
of average access time—hit time, miss rate, and miss penalty—only the miss
rate is impacted by DISE; we fix the miss penalty and ignore the possibility
that smaller caches could be accessed in fewer pipeline stages.

While larger dictionaries can improve static compression ratios, small ones
suffice from a performance standpoint. For many programs, much of the static
text compressed by larger dictionaries is not part of the dynamic working set,
and its compression does not influence effective cache capacity. About half of
the programs (e.g., gap, parser, and perlbmk) benefit little from dictionaries
larger than 128 total instructions, and only crafty and vortex show significant
improvement when dictionary size is increased beyond 2K instructions.

Counterintuitively, compression may hurt cache performance by producing
pathological cache conflicts that did not exist in uncompressed (or less aggres-
sively compressed) code. This effect is more likely to occur at small cache sizes.
A prime example is ghostscript. Although not immediately evident from the
figure, on the 8 KB and 4 KB caches, the 512 instruction dictionary actually un-
derperforms the 128 instruction dictionary. The pathological conflict—actually
there are two clustered groups of conflicts each involving 4–5 sets—disappears
when the larger, 2K instruction dictionary is used. We have verified that this
artifact disappears at higher associativities (e.g., 8-way). The same effect oc-
curs, but to a far lesser degree, in gap and twolf. The presence of such artifacts
argues for the utility of programmable compression.

DISE Engine Performance. In contrast with the preceding, here we are con-
cerned with all aspects of RT performance. RT hit time is determined by the
DISE engine pipeline organization. The PT and RT are logically accessed in
series. In a 2-stage decoder, serial PT/RT access could be hidden with no ob-
served penalty, because both are very small structures. However, adding DISE
to a single-cycle decoder requires either an additional pipeline stage that re-
sults in a one-cycle penalty on every mispredicted branch or, if the PT and RT
are placed in parallel in a single stage, a one cycle penalty on every PT match.
Although not shown, the performance of these configurations is quite intuitive.
The cost of elongating the pipeline is proportional to the frequency of mispre-
dicted branches in the instruction stream, about 0.5–1%. The cost of a one cycle
delay per expansion is proportional to expansion frequency, quite high for ACFs
like (de)compression which make heavy use of DISE. While the pipelined ap-
proach seems less aesthetically pleasing because it penalizes ACF free code,
any system for which heavy DISE use is anticipated—primarily one for which
expansion will be more frequent than branch misprediction—should use it. A
complete discussion of the performance implications of DISE implementation
is available elsewhere [Corliss et al. 2003a].

The other components of RT access time are miss rate and the cost of servic-
ing a miss. The RT miss rate is a function of virtual dictionary working set size
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Fig. 13. Performance impact of RT misses.

and the physical RT configuration, primarily the capacity. RT misses are quite
expensive. We model the RT miss penalty by flushing the pipeline and stalling
for 30 cycles. Figure 13 shows the performance (i.e., IPC) of systems with several
virtual dictionary sizes (128, 512, 2K instructions) on RTs of several different
configurations (128, 512, and 2K instruction specification slots arranged in four
instruction blocks, both direct mapped and 2-way set-associative). Performance
is normalized to the “large instruction cache” (32K or 16K) DISE-free config-
uration, while the DISE experiments all use smaller caches (16K or 8K) so
that the DISE configurations use no more hardware than the baseline. For this
reason, slowdowns—normalized performance of less than 1—are sometimes ob-
served, especially for the small physical RT configurations. Since the RT miss
penalty is fixed, performance differences are a strict function of the RT miss
rate.

As the figure shows, a large virtual dictionary on a small physical RT pro-
duces an abundance of expensive RT misses which cause frequent execution
serializations. A 2K-instruction dictionary executing on a 128 entry RT can
degrade performance by a factor of 5 to 10 (e.g., vortex). Although RT virtu-
alization guarantees correct execution, to preserve performance, dictionaries
should not exceed the physical size of the RT. The instruction conflict pathology
described in the previous section is again evident in twolf. On a 2K-instruction
RT, the 512-instruction dictionary outperforms the 2K-instruction dictionary,
even though neither generates RT misses.
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The MediaBench programs typically require smaller dictionaries and are
more loop oriented than their SPEC counterparts. 2K-instruction dictionaries
are rare even when no limit is placed on dictionary size, and dictionaries tend
to exhibit better RT locality. As a result, larger dictionaries perform relatively
better on small RTs than they do in SPEC.

4.6 Energy Implications

In a typical general-purpose processor, an instruction cache accesses accounts
for as much as 20% of total processor energy consumption. Other structures,
like the data cache and L2 cache, may be as large or larger than the instruction
cache, but are accessed less frequently (the instruction cache is accessed nearly
every cycle) and typically one bank at a time (all instruction-cache banks are
accessed on each cache access cycle). In an embedded processor, which may
contain neither an L2 nor a complex execution engine, this ratio may be even
higher.

Postfetch decompression can be used to reduce energy consumption, both in
the instruction cache and in total. Energy reduction can come from two sources:
(i) reduced execution times due to compressed instruction footprints and fewer
instruction cache misses, and/or (ii) the use of smaller, lower-power caches.
However, there are two complementary factors contributing to an increase of
energy consumption. First, the DISE structures themselves consume energy.
Second, the use of a smaller instruction cache may decrease effective instruction
capacity beyond compression’s ability to compensate for it, increasing instruc-
tion cache misses and execution time. These effects must be balanced against
one another. The potential exists for doing so on a perapplication basis by se-
lectively powering down cache ways [Albonesi 1999] or sets [Yang et al. 2002].
A similar strategy can be used for the RT.

Energy and EDP. Figure 14 shows the relative energy consumptions and
energy-delay products (EDP, a metric that considers both energy and execution
performance) of several DISE-free and DISE (de)compression configurations.
Energy bars are normalized to total energy consumption of the DISE-free sys-
tem with the larger (32 KB or 16 KB) instruction cache, respectively. Each
bar shows three energy components: instruction cache (light), DISE structures
(medium), and all other resources (dark). Note that instruction cache energy
is about 15–25% of total energy in a general-purpose processor and 35–45% in
an embedded processor. The EDP for each configuration is shown as a triangle.
There are eight total configurations, uncompressed and compressed with three
RT sizes for each of two instruction cache sizes. Since RT misses have a high
performance penalty and thus energy cost, we use virtual dictionaries that are
of the same size as the physical RTs.

DISE (de)compression can reduce total energy and EDP even though the
trade-off between cache and RT instruction capacity highly favors the cache.
In the first place, accessing two 16 KB structures consumes more energy
than accessing a single 32 KB structure. Although wordline and bitline power
grows roughly linearly with the number of RAM cells in an array, the power
consumed by supporting structures—wordline decoders, sense-amplifiers, and

ACM Transactions on Embedded Computing Systems, Vol. 4, No. 1, February 2005.



64 • M. L. Corliss et al.

Fig. 14. Impact of compression on energy.

output drivers—is largely independent of array size. Multiple structures also
consume more tag power. Our simulations show that a-32 KB single-ported
cache consumes only slightly over 40% more energy per access than a single-
ported 16 KB cache, not 100% more. Beyond that, however, an RT is less space
efficient than an instruction cache because it must store perinstruction instan-
tiation directives as well. When we combine these factors, we see that in order
to save energy over a-32 KB configuration, we must replace 16 KB of cache
(storage for 4K instructions) with a-3 KB RT (storage for 512 replacement in-
struction specifications). Fortunately, the use of parameterized replacement
enables even small dictionaries to cover large static instruction spaces, making
this organization profitable.

For most benchmarks, the lowest energy (or EDP) configuration combines an
instruction cache with an appropriately sized dictionary and RT. Note that the
lowest energy and the lowest EDP are often achieved using different configu-
rations. In general, DISE is more effective at reducing EDP than energy, as it
trades instruction cache energy for RT energy. Typical energy reductions are 2–
5%, although reductions of 18% are sometimes observed (e.g., ghostscript with
16 KB instruction cache and 512-instruction dictionary). Without RT misses (re-
call virtual dictionaries are sized to eliminate misses), performance improve-
ments due to instruction cache miss reductions account for EDP reductions
which often exceed 10% (e.g., eon, gap, perlbmk, vortex) and sometimes reach
60% (e.g., ghostscript).

Targeting Compression to Reduce Cache Accesses. A third way to reduce
instruction cache energy—and thus total energy and EDP—is to reduce the
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Fig. 15. Impact of profile-based code compression on energy.

number of instruction cache accesses. To this point, our compression profiles
have been based on static instruction sequence frequency. As a result the stati-
cally most frequently occurring sequences are compressed. Alternatively, com-
pression profiles may encode dynamic sequence frequency, allowing us to com-
press sequences that appear frequently in the dynamic execution stream. Our
compression algorithm easily builds compression dictionaries for this scenario.
It simply weighs each instruction sequence in a compression profile by an inci-
dence frequency taken from some dynamic execution profile. Although this will
likely not reduce code size by as much as the static alternative, compression in
this manner will further reduce cache energy.

In Figure 15, we repeat our experiment using dynamic-profile-based dictio-
naries (note that we have chosen the inputs to these benchmarks to be different
from those used in the dynamic profiling step). By greatly reducing instruc-
tion cache power, especially for larger dictionaries, dynamic (de)compression
provides more significant reductions in both energy and EDP. 10% energy re-
ductions are common (e.g., eon, gap, vortex, ghostscript, gsm) as are 20% EDP
reductions. Note that the additional EDP reduction comes from the correspond-
ing energy reduction, not from a further reduction in execution time.

4.7 Impact of Compiler and Optimization

Thus far our results have all come from a single compiler performing a large
number of execution-time reducing optimizations. In this section we evaluate
the impact of compiler and optimization on compressibility. Specifically, we
evaluate the impact of various optimization levels (e.g., −O2 versus −O3), var-
ious optimizations (e.g., function inlining and loop unrolling), and compilers
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Fig. 16. Impact of compiler and optimization level.

(e.g., GCC versus a native C compiler). We find that the highest optimization
levels do not result in the best code compression, so space-critical applications
may benefit from less aggressive optimization. For the first experiment we ex-
amine only SPEC benchmarks because the MediaBench codes have the same
character. We also only examine C compilers, so we replace eon (C++) with vpr.

Optimization Levels. Figure 16 graphs the impact of optimization level (for
GCC 3.3.1, labeled gcc, and the native Digital Unix C compiler, labeled cc) on
compressibility.1 The top and bottom graphs present the same data, except that
all figures in the top graph are normalized to the corresponding uncompressed
case (thus all light gray bars reach 1), and in the bottom graph all figures for
a particular benchmark are normalized to the uncompressed gcc-O0 case. The
bottom graph allows direct intrabenchmark comparisons (i.e., lower bars imply
smaller codes).

From the top graph, it is apparent that lower optimization levels (for both
compilers) result in better compression relative to uncompressed code (for that
optimization level). The reason for this is that optimization removes regularity
from programs. Highly compressible idioms are perturbed by common opti-
mizations such as constant propagation, constant folding, common subexpres-
sion elimination, and instruction scheduling. That the dictionaries are often
smaller for unoptimized code supports this.

Unoptimized code results in the best relative compression, but it does not nec-
essarily result in the smallest program. Figure 16 (bottom) illustrates this point.
Although unoptimized code results in the best relative compression, it dramati-
cally increases the size of the uncompressed executable. For most benchmarks,
performing a small amount of optimization (i.e., −O1 or −O2) results in the
best total compression. In some cases, optimization level dramatically impacts

1Note that GCC does not have a −O4 optimization level.
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Fig. 17. Impact of function inlining and loop unrolling.

compressibility (e.g., the parser benchmark compiled with GCC is more than
25% smaller when compiled with −O2 versus −O3).

Function Inlining and Loop Unrolling. Next, we assess the impact on com-
pression of particular optimizations. Specifically, we consider function inlin-
ing and loop unrolling, because these two transformations can significantly
increase code size. In Figure 17, we evaluate the impact of all combinations of
performing inlining and unrolling (in the context of GCC’s highest optimiza-
tion level). Each bar is labeled with +i or −i indicating whether or not function
inlining is performed and +u or −u indicating whether or not unrolling is per-
formed. From this graph, it is clear that most of the benchmarks benefit from
some amount of unrolling, because this transformation causes the baseline code
size to increase. Conversely, many of the benchmarks (e.g., crafty, gap, jpeg,
and mpeg2) have little or no opportunity for inlining, because the bars with
and without inlining are nearly identical. And some benchmarks (e.g., parser,
perlbmk, and ghostscript) benefit from both. Aside from gap, for these bench-
marks compression is unable to significantly compensate for the code bloat
due to these transformations. One might expect better results given that these
transformations introduce redundant (and presumably compressible) code, but
it appears that other optimizations (e.g., instruction scheduling) are perturbing
the compression opportunity.

Optimizing for Both Code Size and Performance. Previously, we saw that
lower optimization levels result in better total compression. In most contexts,
performance is also an important concern. Figure 18 (top) graphs the execution
times of the benchmarks in Figure 16 relative to gcc-O0. The light and dark bars
are depth sorted to present figures for both the uncompressed baseline and the
compressed case, respectively. In one case (vortex compiled with cc using −O0)
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Fig. 18. Impact of optimization on performance and compression delay product (CDP).

the former is superior to the latter, so the baseline (light) bar is placed in
front, resulting in the dark portion showing on top. This situation arises
when compression degrades performance due to pathological instruction cache
conflicts. Generally, -O0 performance is abysmal, and performance improves
with higher optimization levels. In the spirit of the energy delay product (see
Section 4.6) we define compression-delay product (CDP) analogously, and plot
it in Figure 18 (bottom) so that we may optimize both compression and perfor-
mance. In most cases −O1 or −O2 results in the best CDP, because the compres-
sion is better, yet the loss in performance versus higher optimization levels is
minimal.

Compilers. Figures 16 and 18 also illustrate the impact of the compiler
on compression. Although the top graph in Figure 16 shows little difference
in the relative compression between gcc and cc, the bottom graph shows that
gcc usually produces slightly smaller codes resulting in smaller compressed
codes. We cannot be certain of the reason for this without reverse engineering
the Digital Unix C compiler to learn its optimizations and compare this with
GCC. Our hypothesis is that (following the trend that more heavily optimized
code is less compressible) the Digital Unix C compiler is a more aggressive
compiler customized to the Alpha processor, resulting in less regular and thus
less compressible code. Further study is necessary to prove this point.

5. RELATED WORK

The large body of work on code compression speaks to the importance of the
technique. In summary, the principal contribution of the present work is the
demonstration that a general-purpose dynamic code transformation mecha-
nism (i.e., DISE) can be used to effectively and efficiently implement dynamic
code decompression.
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Software-Based Approaches. Traditional static optimizations intended to
accelerate execution (e.g., dead-code elimination, common sub-expression elim-
ination, register allocation, and so on) often have the side effect of reducing code
size [Debray et al. 2000]. We use an already optimized uncompressed baseline
in our experiments. Code factoring replaces common instruction sequences with
calls to procedures containing these sequences. Factoring reduces code size at
the expense of increased execution time due to function call overhead [Cooper
and McIntosh 1999; Debray et al. 2000]. ISA extensions have been proposed to
reduce this overhead [Liao et al. 1999].

Nonexecutable compressed formats permit more aggressive compression but
require an explicit and expensive decompression step before execution. Systems
have been proposed for decompressing code at the procedure [Kirovski et al.
1997] and cache-line granularities [Lefurgy et al. 2000]. Although effective in
reducing code size, the performance of these systems degrades significantly.
An interesting extension to these works builds on the observation that decom-
pressing frequently executed code slows execution; therefore by compressing
only infrequently executed code, code size is reduced yet execution time is min-
imally degraded (say, 4% [Debray and Evans 2002]). In contrast, hardware post-
fetch decompression implementations like DISE can actually reduce execution
time and energy by specifically concentrating on (de)compressing frequently
executed code.

Ernst et al. [1997] describe a compressed code format (byte-code RISC or
BRISC) that may be directly interpreted (i.e., it does not require a separate de-
compression step). The representation includes a form of operand parameteri-
zation. Although highly effective in an interpreted environment, the approach
is too expensive for hardware implementation. Furthermore, the results rely on
the particular BRISC representation, while we show results for multiple ISAs.

ISA Extensions. Certain ISAs (e.g., ARM’s Thumb [Advanced RISC Ma-
chines Ltd. 1995] and MIPS16 [Kissell 1997]) support compact code via short-
form versions of commonly used instructions. Although there is no significant
overhead in decompression itself, performance suffers because the short for-
mats provide a limited register and opcode menu, increasing the number of in-
structions in short format regions (mode switches are required between short
and 32-bit code regions). A recent ISA extension, Thumb-2, better balances
the compression/performance trade-off, approaching the compression levels
of Thumb without as significant a performance degradation [Phelan 2003].
Nevertheless, dense instruction encodings do not exploit repetition of code
sequences like coarse-grained (i.e., multiple instruction) (de)compression
schemes. Dense encodings and coarse-grained (de)compression mechanisms are
orthogonal and can be used in conjunction.

Hardware-Based Approaches. Fill-path decompression is a hardware tech-
nique in which compressed code in memory is decompressed by the instruc-
tion cache fill unit on a miss. Examples of fill-path decompression include the
compressed code RISC processor (CCRP) [Wolfe and Chanin 1992] and IBM’s
CodePack [Kemp et al. 1998]. Fill-path decompression schemes necessitate no
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processor core modifications and incur decompression cost only on instruction
cache misses. Although in rare cases they may improve performance (e.g., Code-
Pack implements a form of prefetching), they often use sequential and compu-
tationally expensive compression techniques (e.g., Huffman), resulting in sig-
nificant runtime overhead. In addition, they store uncompressed code in the
instruction cache, so the cache does not benefit from a compressed image and
the hardware must map uncompressed addresses to compressed ones. Finally,
the unit of compression is limited to the cache line, so individual instructions
(or bytes) are compressed rather than instruction sequences.

DISE performs postfetch decompression, allowing the instruction cache to
store compressed code while maintaining a single static (compressed) image
which does not require address translation structures. Implementations of post-
fetch dictionary decompression using custom hardware has been previously pro-
posed. One such system [Lefurgy et al. 1997] uses a very large dictionary (up to
8K entries, each consisting of one or more instructions) and 16-bit codewords
(which admit the compression of single instructions) to achieve impressive code
size reductions on PowerPC binaries. Another postfetch decompression sys-
tem [Lekatsas et al. 2000] uses variable length codewords and dictionary-based
compression of common instructions (not instruction sequences). Our imple-
mentation uses general-purpose hardware, a small dictionary, and supports
both parameterized and programmable decompression. Although not a funda-
mental limitation of DISE, our scheme currently uses only 32-bit word-aligned
codewords.

Operand factorization [Araujo et al. 1998] extends postfetch decompression.
Building on the observation that compressing whole instructions—i.e., opcodes
and operands together—limits the efficacy of a compression algorithm, operand
factorization compresses opcodes (tree patterns) and operands (operand pat-
terns) separately. After fetch, tree and operand patterns are decompressed and
reassembled to form machine instructions. Operand factorization is effective
for very large dictionaries. Via register/immediate parameterization, DISE sup-
ports a limited form of operand factoring within the framework of an existing
mechanism.

Nam et al. [1999] propose a VLIW postfetch decompression system that sup-
ports a variant of operand factorization. Individual VLIW instruction words are
compressed to indices in opcode and operand dictionaries. The number of in-
structions encoded by a single compressed instruction is a function of the num-
ber of operations that appear in each VLIW instruction (i.e., longer or shorter
encodings are not possible). Nam et al. also find that compressing similar but
not identical sequences (via instruction isomorphism) dramatically improves
compression effectiveness.

6. CONCLUSION

Code (de)compression is an important tool for architects of both embedded and
general-purpose microprocessors. In this paper, we present and evaluate an
implementation of dynamic code decompression based on dynamic instruc-

tion stream editing (DISE), a programmable decoding facility that allows an
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application’s instruction fetch stream to be transformed in a general way to add
functionality to the original program [Corliss et al. 2002, 2003a]. A DISE imple-
mentation of (de)compression has many advantages. It implements postfetch
decompression, allowing the instruction cache to benefit from a compressed
program image, and removing the need for mechanisms for translating uncom-
pressed addresses to compressed ones. DISE’s matching and parameterized
replacement functionality supports parameterized (de)compression, enabling
better dictionary space utilization. DISE’s programming interface also allows
individual applications to exploit custom (de)compression dictionaries. DISE’s
most compelling advantages, however, have to do with the fact that DISE itself
is an essentially existing mechanism that has nothing to do with decompres-
sion as such. The core DISE engine consists of well-studied and highly efficient
structures that already exist in current processors. The DISE mechanism has
many applications beyond code decompression, making its inclusion in a sys-
tem design easier to justify, and allowing decompression to be composed with
other added functionality.

This work includes an extensive experimental evaluation in which we not
only measure code compression itself, but also evaluate its impact on dynamic
characteristics such as performance and energy. We show that DISE enables
code size reductions of 25% to 35% and often results in better compression
than previously proposed custom compression hardware. We measure the im-
pact of DISE-specific features or attributes, such as parameterization, branch
compression, and demand-loading the dictionary. We find that the most unique
DISE feature (versus other hardware approaches to dynamic decompression),
parameterization, dramatically improves its ability compress (by up to 20%)
and allows PC-relative branches to be compressed. We also evaluate a number
of issues that have implications for any postfetch decompression mechanism.
For example, we find that application-customized dictionaries enable better
compression than fixed dictionaries, and a hybrid of the two is still better. We
find that very large dictionaries are unnecessary and that different compilers
using different optimizations produce code of different degrees of compressibil-
ity. We also quantify the impact of compression on performance (in some case
a 20% improvement) and energy (in some cases a 10% reduction).
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