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of caching query results to support queries with procedures, rules and functions. In a client-server environment, caching query results on local workstation can not only parallelize queryprocessing among clients, but also reduce the bus contention and the server request bottle-neck [DR92]. Recently, this technique was also suggested to support query computations inextensible or object-oriented database systems where expensive computations are more likelyto happen [HS93].Di�erent issues concerning the caching technique have also been studied. [AL80, Rou82b,Val87, Rou91] proposed alternative methods for storing the cached data, [Sel88, Jhi88] dis-cussed the problem of selective caching and cache replacement, and in [RK86, Han87, BLT86],di�erent strategies for updating cached data are explored. Aside from the above work whichfocused on the problem of cache maintenance and management, the problem of how to iden-tify the useful cached data for computing queries, referred as query matching problem, wasaddressed in [Fin82, LY85]. In their work, however, query optimization was not consideredinclusively. This is not satisfactory because blindly using cached data in query computationswithout optimization may result in a query plan even worse than the one optimized fromthe original query without utilizing any cached results. Therefore, it is necessary to consideroptimization at the same time of query matching. The �rst time where query matching andoptimization are integrated was in [J+93]. However, since their work emphasized on supportingtransaction time using di�erential techniques, the matching and optimization problem was notaddressed su�ciently, and no performance evaluation was reported.In this paper, we describe the design of the Cache&Match Optimizer (CMO) on the ADMS 1database management system, and present a comprehensive performance evaluation. We modelthe cached query results with a structure called Logical Access Path Schema (LAPS) [Rou82a],and based on this, the CMO is able to perform the matching coincidently with the optimization,and generate an optimal plan using cached results. The integrated work is also enriched fromthe previous work that now it (1) can use multiple cached results in computing a query, (2)allows dynamic cache update strategies, depending on which is better, and (3) provides optionsfor di�erent cache management strategies. The advantages of CMO are exhibited by varietyof experiments on ADMS. These experiments were designed and conducted to evaluate theperformance of CMO, under alternative strategies and di�erent situations. The results showedthat with appropriate strategies, CMO can always improve substantially the performance.The rest of this paper is organized as following. In Section 2, we discuss the framework ofCMO and related issues. Section 3 describes the integration of query matching and optimiza-tion. Section 4 presents the experiment results from implementation. And �nally in Section 5,we give the conclusion and future research direction.2 The CMO Framework and Related IssuesThe CMO mechanism consists of two major functional components: the query matching opti-mizer and the cache manager. Incoming queries are optimized through the matching optimizer,1ADMS, the Advanced Database Management System, is a DBMS developed at the Department of ComputerScience, University of Maryland, College Park [RES93].2



which capitalizes on the LAPS in �nding pertinent cached results, in order to generate moree�cient plan. Query or intermediate results are saved on the disk and maintained by the cachemanager, which keeps track of all the cached data and decides which to replace when the cachespace is full. In the following, we discuss the concerned design issues for both modules, reviewthe related work, and describe the approaches we adopted in the implementation.2.1 Cache ManagementConventional relational database query languages always allow users to save the �nal queryresults in relations [S+79, SWK76]. Under certain conditions, for example, when sorting isperformed or nested queries are present, query intermediate results must also be produced tofacilitate the query computations. Though theses intermediate results are mostly retained onlywithin the computation of a query, it is not hard to keep them over a longer time for potentialreuse. Throughout this paper, we assume intermediate results are generated during querycomputations. Intermediate and �nal query results are not di�erentiated and are both referredas temporaries. Cached temporaries are collected and maintained by the cache manager.Several key issues regarding cache management and the corresponding alternative approachesare discussed in the following:How to store the cached temporaries ?Temporaries can be stored as actual data in relations [AL80, BLT86], which are calledmaterialized views. Another approach is to store for each resulting tuple of the temporary,a number of Tuple Identi�ers (TID), instead of materialized values, which point to the cor-responding tuples in the base relations, possibly through several levels, that constitute theresulting tuple. This is a pointer based approach for caching, variations of this approach havebeen proposed in [Rou82b, Val87] and called ViewCache in [Rou91].While limited disk space prohibits unlimited data caching, pointer caching is more space-e�ective since each tuple is represented by a small number of �xed length pointers. However,extra page references to higher level relations or temporaries are required when materializingthe tuples from pointer caches, in contrast to materialized data caching.From the view of query matching, the pointer caching is more attractive than the datacaching because (1) more temporaries can be retained in a limited cache space, and (2) unlikedata caches which have only projected attributes, pointer caches virtually serve as indices tothe base tuples and, thus, can select any attributes of the underlying relations whether or notused in the queries. This makes pointer caching more versatile than data caches. Nevertheless,both pointer and data caching are evaluated by the CMO processor.What to cache ?In a systemwhich provides unbounded disk space, we can simply cache everything generatedand leave the decision of using these cached temporaries to the query optimizer. However, amore realistic situation is when we bound the available space for caching. In this situation,a cache replacement strategy must be employed to decide which temporaries to replace whenthe cache space is full. The problem of choosing a good replacement strategy so that the mostpro�table results can always be cached was addressed in [Sel88]. We incorporated the suggested3



heuristic cache replacement strategies in the cache manager and experimented with them undera bounded cache space environment. The purpose here, however, is not to compare amongstthe di�erent replacement strategies, but rather observe the performance change of CMO underdi�erent available cache spaces, though the results might shed a light into the choice of properreplacement strategy under certain query load.How to update outdated cached temporaries ?Cached temporaries become outdated when their composing base relations are updated,and thus must be updated before they can be further used. Di�erent strategies regardingwhen to update the outdated caches include: (1) immediate update (i.e., when relevant baserelations are changed), (2) periodical update, and (3) on-demand update (i.e., only when theyare requested). As for the cache update method, aside from updating via re-execution, thetechnique of incremental update (or di�erential computation) [LHM86, BLT86, Rou91] cane�ciently update a temporary if only a little part of it is changed. For the second updatemethod, logs must be maintained to support di�erential computations.It was analyzed in [Han87] that none of the combinations of update strategy and updatemethod is superior to all the others under all situations. As it is practically prohibitive toexperiment with all possible combinations, on-demand strategy has been adopted in our im-plementation because it can batch consecutive updates into a single update (and thus reducethe excessive overhead of multiple smaller updates) and always prevents the unnecessary up-dates to never-used caches. The CMO, however, dynamically chooses between re-executionand incremental computations, depending on their corresponding estimated costs. The perfor-mance of the CMO mechanism under di�erent levels of relation update loads is evaluated indetail in the experiments.How to keep track of the cached temporaries ?To facilitate the searching and matching against the cache pool, the LAPS [Rou82a] is usedto keep track of all the cached temporaries e�ciently. Instead of recording each cached tempo-rary independently, the LAPS integrates the cached temporaries along with their logical accesspaths which captures the logical and derivation relationships among them. The integration ofnew cached temporaries and logical access paths into the LAPS is fairly direct and has beendeveloped in [Rou82a]. A LAPS subcomponent has been embedded in the CMO and allowsthe coexistence of multiple and equivalent caches which may have been derived from di�erentpaths.2.2 Query Matching and OptimizationThe task of generating the optimal plan, which may or may not use the cached temporaries,for a given query can be conceptually divided into two parts: matching and optimization.MatchingThe problem of detecting if a cached temporary is useful for the computation of a query hasbeen investigated in [Fin82, LY85]. The solution usually involves a theorem proving algorithmwhose computation complexity, in general, is exponential. However, restrictive algorithms were4



proposed in [Fin82, LY85] for formulas that contain only attributes, constants, comparisonoperators (<;>;=), and logical connectives (and, or, not). We have extended the methodfrom [Fin82] for more general use in the CMO optimizer. Besides, rather than using only onematched cache in a query, the CMO optimizer is capable of using multiple matched temporariesto answer the query more e�ciently. More detail is described in the next section.OptimizationOptimization is required not only because there may be di�erent combinations of matchedcaches from which the query can be computed, but also because it is not always bene�cial touse caches. A possible solution, as mentioned in [Fin82], is a two phase approach; during the�rst phase, the query is transformed into a number of equivalent queries using di�erent cachedtemporaries, and during the second phase, all the revised queries are fed to a regular optimizerto generate an optimal plan. Without elaborate pruning, this approach is not satisfactorybecause the search space for both phases is extremely large, and even when only a few numberof revised queries are produced from the �rst phase, it can still duplicate the search space forthe following phase.A better approach is to integrate the matching steps with the optimization and thus, unifythe search spaces and avoid duplicate e�ort. [J+93] �rst described this approach and used astate transition network to model the space, along with some pruning heuristics. The CMOoptimizer we implemented here is also one phase.In summary, the one-phase CMO provides the options of using di�erent cache replacementstrategies, data and/or pointer caches, and incremental and/or re-execution updates. In thenext section, we describe the integration of matching and optimization in more detail.3 Integrating Query Matching and OptimizationIn this section, we describe a matching optimizer for the class of PJS-queries| queries whichinvolve only relational algebra operators: projection, selection and join. A graph search basedalgorithm [Nil80] (referred as state transition network in [J+93, LW86]) is used to �nd theoptimal plan. The input to the optimizer is an initial query graph (or state) which representsthe uncomputed query, and a LAPS which models the cached temporaries. A state is reducedto a successive state when a part of the query is computed or matched by a cached temporary.The cost of the access path for this computation or cache is estimated and accumulated inthe successive state. Thus, starting from the initial state, successive states are generated untila �nal state, which represents the totally computed query is reached, and the path with thelowest cost is selected as the optimal plan. We formalize the framework in the following.A PJS-query q is expressed in SQL as:select �aq from �rq where fq ,where �rq = r1; r2; : : : ; rk are operand relations, �aq = a1; a2; : : : ; al are attributes projected fromthe relations, and fq is a boolean formula for which the resulting tuples must satisfy. We cantherefore represent any query q as q = (�aq; �rq; fq), and view �aq; �rq and fq as sets as well aslists. If �rq contains any derived relations, the query can be expanded to an expression which5



involves only base relations, we use q = ( �Aq; �Rq; Fq) to denote such expanded expression where�Rq now contains base relations only. By using the same notations, we use v = (�av; �rv; fv) toemphasize that temporary v is directly computed from the operand set �rv without producingany intermediate results in between. We call this the incremental notation for v. Similarly,the expanded notation for v is given by v = ( �Av; �Rv; Fv).3.1 The Logical Access Path SchemaThe LAPS is a directed graph whose nodes, which reference to base relations and cachedtemporaries, are connected with edges that represent derivation paths.De�nition 1 A Logical Access Path Schema (LAPS) is a directed graph (N;E) where N is aset of nodes corresponding to base relations and cached temporaries, and E is a set of directedhyperedges corresponding to logical access paths such that for any temporary v = (�av; �rv; fv) 2N ,1. x 2 N; for all x 2 �rv, and2. there is a hyperedge e = (�rv; v) 2 E leading from the set of operand nodes �rv toward v,and labelled with fv.Initially, the LAPS contains base relations only. When subsequent queries are processed,it is augmented by integrating the cached temporaries along with their logical access paths.The integration steps are straight forward and were described in [Rou82a].3.2 Query MatchingGiven a query, the optimizer must be able to identify the cached temporaries that can be usedto compute the query. A temporary is useful if it can be used alone to compute the results ofa sub-query of the given query. Formally, we say a (sub-)query q is derivable from v (or v isa match of q) if there exist an attribute set A and a formula F such that, for any databaseinstance d, q(d) = �A(�F (v(d)))where q(d); v(d) denote the result and content of q and v under instance d, respectively. In thefollowing, we describe without proof the conditions under which a temporary v is su�cientlyquali�ed to be a match of a query q.Condition 1 (Operand Coverability) �rv = �rqRather than using a looser condition �Rv = �Rq, this condition requires the exactly same setof parent operands. However, this will not lose any generality when we capitalize on the LAPSto integrate the matching and optimization. 6



Condition 2 (Quali�cation Coverability) 8x1; x2; : : : ; xn (fq ! fv), and, there exists arestricting formula f r on v such that 8x1; x2; : : : ; xn (fq $ fv ^ f r).x1; x2; : : : ; xn are the attributes appearing in the corresponding formulas, `!;$' are sym-bols for logical implication and logical equivalent. This condition guarantees that every tuple tin the result of q has a corresponding tuple t0 in v such that t is a sub-tuple of t0, and thereexists a formula f r through which these t0 can be selected from v.The problem of testing 8x1; x2; : : : ; xn(fq ! fv), known as the satis�ability problem, isin general NP-hard [RH80]. However, restrictive algorithms have been proposed for formulasinvolving only attribute variables, constants, comparison operators and logical connectives[Fin82, LY85]. We have extended the method from [Fin82] to a more general one used in ourimplementation, detail is given in the Appendix.Condition 3 (Attribute Coverability) �av � (�aq [ �(f r)), where �(f r) are attributes ap-pearing in f r.This condition assures that temporary v contains all the attributes that are projected inthe target list of query q, as well as those required to evaluate f r.Lemma 1 v is a match of q if all the above three conditions are satis�ed, in particular, q(d) =��aq(�fr(v(d))) for all database instance d.So far we only talked about how to compute a query by directly selecting from a singletemporary, we have not, however, said anything about how to use multiple temporaries in com-puting a query. This will be achieved by embedding the optimizer with a matching algorithmbuilt based on the knowledge given above. We describe it in the following subsection.3.3 Integrating Matching with OptimizationThe input to the optimizer includes a query and the LAPS. The query is represented by aquery graph, whose nodes initially correspond to relations, and edges correspond to the querypredicates. A query graph is reduced to a new one by replacing a connected sub-graph with asingle new node which corresponds to either a new intermediate result or an existing cachedtemporary found in the LAPS. Thus, starting from the initial query graph, successive reducedquery graphs (which represent partially computed queries) are generated until the �nal state,which consists of only one node and no edges, is reached. We use intermediate results to referto those intermediate objects manipulated during the optimization which are not actuallycomputed and cached yet, and formalize the query graph and reductions in the following.De�nition 2 A query graph (or a state ) is a connected, undirected graph G(N;E) where1. each node n 2 N denotes a relation, a cached temporary, or an intermediate result, andis associated with a schema �(n) and a projected attribute list a(n) � �(n),7



2. each hyperedge e 2 E connects a subset of nodes N(e) � N , and is labelled with a formulaf(e).The query graph is used to model the original query as well as any partially processedqueries during the optimization. More precisely, a query graph (N;E) represents a query(�aq; �rq; fq) where �aq = [n2Na(n); �rq = N; and fq = ^e2Ef(e). We say e is a k-connector if itconnects k nodes, i.e. jN(e)j = k. An edge is a join edge if k � 2, it is a selection edge if k = 1.Since any formula can be transformed into a conjunction of sub-formulas [CL73], the initialquery can always be represented by a query graph2.A state is reduced by assigning an access path to the sub-query induced by one of its joinedges. Given a state q = (N;E) and an edge e 2 E, let Eeext be the set of edges which connectat least one node from N(e) with at least another node not from N(e), and Ees be the selectionedges incident on any node in N(e), then the sub-query induced by e is a query qe(�aqe; �rqe; fqe)such that1. �aqe = a(N(e))[ (�(N(e))^ �(Eeext)),2. �rqe = N(e),3. fqe = f(e) ^ f(Ees),where a(N(e)) = [n2N(e)a(n), �(N(e)) = [n2N(e)�(n), f(Ees) = ^e2Eesf(e) and �(Eeext) arethe attributes appearing in the formulas labelled on the edges in Eeext.There are two di�erent reductions, the selJoin-reduction corresponds to computing the in-duced sub-query directly from the operands of the sub-query; the match-reduction correspondsto using a matched cached temporary. A selJoin-reduction is illustrated in Figure 1.(a), wherestate q0 is selJoin-reduced to q2 on edge e1;2. Note the induced sub-graph qe1;2 , bounded bydashed rectangle in q0, is replaced by a new node i1 in q2 which corresponds to a new in-termediate result. The access path to evaluate the sub-query is optimized depending on theprimitives provided by the underlying DBMS and the cost estimation. Formal de�nition isgiven in the following.De�nition 3 (selJoin Reduction) State q = (N;E) is selJoin-reduced, on a given join edgee 2 E, to a new state q0 = (N 0; E 0) by constructing1. N 0 = N �N(e) [ fn0g, where n0 62 N and a(n0) = a(N(e)), �(n0) = �aqe ,2. E 0 = E � feg�Ees �Eeext [Eeext0 , where Eeext0 is a new set of edges formed from Eeext byreplacing each occurrence of nodes from N(e) with the new node n0.2Whenever possible, we transform the initial query into a query graph consisting of only 1-connectors and2-connectors. However, for some rare predicates, higher degree connectors are required, e.g., `R1.a + R2.b =R3.c' can only be represented by a 3-connector. 8
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Based on these two reductions, a dynamic programming searching strategy is used to �nd theoptimal plan3. It performs a breadth-�rst search and restricts the state space by eliminatingisomorphic states. Formally, two states qx(Nx; Ex); qy(Ny; Ey) are isomorphic, denoted asqx �= qy , if there exists a 1-to-1 mapping  : Nx ! Ny such that for each pair of v 2 Nxand  (v) 2 Ny , they either denote the same base relation or cached temporary, or they areboth intermediate results and �Rv = �R (v)4. The cost of a state, cost(q), is computed as thetotal cost of the path leading from the initial state to state q. The cost model of the ADMSoptimizer uses weighted sum of CPU and I/O time and takes into account the costs of pointercache materialization and incremental updates. The searching algorithm is outlined in thefollowing.Step 1 Let q0(N0; E0) be the initial state. T := fq0g, S := ;. Repeat Step 2 for jN0j � 1times.Step 2 S := T , T := ;. For each q(N;E) 2 S, and each join edge e 2 E, do the following,2.1 apply selJoin-reduction to q on e, let q1 be the reduced state; apply match-reductionto q on e if applicable, let q2 be the reduced state.2.2 If there exists no q0 2 T such that q0 �= q1, then T := T [ fq1g, otherwise ifcost(q0) > cost(q1) then T := T � fq0g [ fq1g. Do the same thing for q2.Step 3 Output the path leading from q0 to the single �nal state in T as the optimal plan.Continuing on the example of Figure 1.(a), its searching space is given in �gure (b) wherethe selJoin-reduction and match-reductions are drawn in solid and dashed arrows respectively.Three iterations are performed, with a �nal state generated at the lowest level. Note that in thiscase, q1 is further match-reduced to q6 by using a matched temporary v3, and q8 correspondsto the plan of using two matched temporaries v1 and v2. Isomorphic states are reected bythose arrows that come into the same state.4 Experiments: Performance EvaluationA CMO component has been incorporated in the ADMS. It sits on top of the storage accessmodule which provides a single selJoin operator. A selJoin, with an appropriate environmentsupport, replaces the three selection, projection and join operators. In essence it is a joinoperator in which the inner relation may be empty, in which case, it becomes a straightforward selection operator on the outer relation. Projection of a subset of attributes andduplicate elimination is supported on the y during output using main memory hashing. Intoday's large main memory computing environments, duplicate elimination can be done more3An A* algorithm was used in an early version of the ADMS optimizer, however, experiments showed thatit does not bene�t much in reducing the searching space and �nding the \real" optimal plans.4Di�erent de�nitions of isomorphism were implemented and experimented in ADMS, the one given hereturned out to have a manageable searching overhead while not sacri�cing too much in the quality of the outputplan. 10



Relation 100 1k 2k 5k 10kCardinality 100 1,000 2,000 5,000 10,000Size (KB) 20 208 408 1,008 2,016Relation 100s 1ks 2ks 5ks 10ksCardinality 100 1,000 2,000 5,000 10,000Size (KB) 10 95 200 496 976Table 1: Synthetic RelationsDatabases RelationsDBMIX 1k, 2k, 5k, 10kDBMIX-S 1ks, 2ks, 5ks, 10ksDB100 100, 1000, 10000, 100000DB1k 1k, 1k0, 1k00, 1k000DB5k 5k, 5k0, 5k00, 5k000Table 2: Five Di�erent Databasese�ciently and very often at no I/O cost. Two access methods, sequential and index access, areprovided for each relation. Three join methods: nested loop, index, and hash join are availablefor selJoin.4.1 The Experiment EnvironmentThe experiments were carried out by running a centralized ADMS on a Sun SPARCstation 2.All the experiments were run under a single user stand-alone mode, so that the bene�t fromCMO can be measured in terms of elapsed time. Di�erent databases and query loads wereused throughout the experiments so that the impact from the CMO parameters as well as fromthe system's environment can be observed.DatabasesSynthetic relations are generated according to the characteristics of the Wisconsin Benchmark[BDT83]. Table 1 outlines the cardinalities and sizes of each relation used in the experiments.The set of shorter version is obtained from the regular one by eliminating the last two stringattributes, which are 104 bytes in length. Throughout the experiments, each tested databaseconsists of four relations from Table 1. Table 2 lists all the used databases, note that theprimes (0) indicate the di�erent relation instances of the same relation schema, cardinality andattribute value distributions.Workload and Query CharacteristicsThe query workload is generated by a customized random query generator. By specifyingdesired query characteristics, di�erent copies of query streams can be generated that all satisfythe given characteristics. First, except for the update query frequency, we assigned equal-frequency among single-relation selection and 2 to 4-way join queries. Second, for each query11



stream against a certain database, the query selectivities are set within a wide range so thatthe numbers of tuples generated in the query results range from less than a hundred, a couplehundreds and thousands, to several hundred thousands.
HighQC MedQC LowQCFigure 2: Three Levels of Query CorrelationsFor each n-way join query, the quali�cation is formed by n� 1 two-way join predicates anda few random selection predicates. The generation of these predicates depends on both theselectivities and attribute reference distribution speci�ed for the query stream, where the latterassigns each attribute with two probabilities of being used in a join and selection predicate.We restrict the number of join attributes so that common sub-expressions can recur in queriesand, thus, the e�ectiveness of CMO can be observed. Intuitively, the query correlation of aquery stream can be measured as the number of distinct equal-join predicates appearing in it.Figure 2 shows three classes of query correlations used in generating the tested query streams.The circles denote the relations, the nodes denote the join attributes, and the edges denote thepossible join predicates. Note that a maximum of 6, 16, and 24 distinct join predicates can begenerated in HighQC, MedQC, and LowQC respectively. Selection predicates are chosen fromrandom attributes subject to the speci�ed query selectivities.To allow best chance of data caching, every query is projected on all attributes of itsparticipating relations. This makes no di�erence to pointer caching, but requires more spacefor data caching. Updates are restricted to the last three string attributes to maintain thecardinalities during the experiments. However, the qualifying predicates in the updates arerandomly chosen from all attributes. Throughout the experiments, each query stream containsat least 50 queries. When not mentioned explicitly, the defaults for the tested database andthe query correlation are DBMIX and MedQC respectivelyPerformance MetricsThe total elapsed time of a query stream, including query optimization time and query com-putation time, is taken as the main metric in evaluating the performance outcome. Throughthe whole experiments, each run (query stream) was repeated several times and the averageelapsed time was computed.4.2 Experiment ResultsThree major experiment sets were run to evaluate the CMO. The �rst set compared varia-tions of CMO (with di�erent cache management strategies) under di�erent degrees of cachedspace availability. The second set of experiments were conducted to observe the performance12



degradation of CMO, under three di�erent strategies of cache updates and di�erent degrees ofupdate selectivities and frequencies. And �nally, we evaluated the performance impacts fromthe factors of database sizes and query characteristics. The overhead of CMO is also shown atthe end of this subsection.
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Figure 3: E�ect of Cache Management4.2.1 E�ect of Cache ManagementWe compare the performance of data caching (DC) and pointer caching (PC) under threedi�erent replacement strategies:LRU: the least recently used | in case of a tie, LFU, LCSLFU: the least frequently used | in case of a tie, LRU, LCSLCS: the largest cache space required | in case of a tie, LRU, LFUThese are shown on the six curves labelled accordingly in Figure 3 for each combination of thedatabases (DBMIX, DBMIX-S) and query streams (QS1, QS2) we tested.As can be seen all PC curves are roughly the same but among them, PC/LCS is the best.In set QS1/DBMIX, the pointer caching runs faster than the data caching approach on allcache space ranges from 0 to 25 MB (we assume that disk space is su�cient for retaining13



intermediate results within a query). This suggests that when fair amount of intermediateresults are generated and written to and read from the disk, the materialization cost of PC iscompensated by its e�cient write cost. As the cache space increases, the PC reduces the queryprocessing time sharply even with a very small cache space. In this case, with 2 MB cachespace, every useful temporaries are cached under LCS strategy. For DC, all three replacementstrategies reduce the elapsed time as cache space increases, among them, LCS seems to be thebest. However, even with cache space more than 10MB, the performance of DC/LCS is stillworse than that of PC/LCS with only 2MB.The inferiority of data caching can be attributed to the large overhead in writing andreading the intermediate results. To make it more competitive, the same experiment wasperformed again on a smaller database within which the tuple length is now only around halfof the original one. The results are shown in Figure 3.b, where DC now becomes closer toPC in performance. Some savings can be achieved by projecting out some of the non-usefulattributes of the intermediate results. However, such a projection reduces the potential reuseof these intermediate results in other queries which may need these attributes. Thus, for datacaching, there is a dilemma between reducing the intermediate size and enhancing the chanceof cache reuse. Pointer cache, on the other hand, does not have this problem at all, sinceall attributes are implicitly inherited in the non-materialized cache. The results from anotherquery stream QS2 are also shown in Figure 3.c and d, and as can be seen, are similar to thosefrom QS1.If cache e�ectiveness is measured as the time reduced in query computation divided by thecache size, it is clear that pointer caching has much better cache e�ectiveness than data caching.And for this reason, we believe that pointer caching is the proper choice in implementing aCMO mechanism. In the rest experiments, only pointer caching with LCS replacement strategyis considered and the cache size is set to 4MB.4.2.2 E�ect of Relation UpdatesIn this experiment, we evaluate the CMO performance degradation under relation updates.Three variations of CMO are evaluated under di�erent degrees of update frequency and selec-tivities. CMO/INC uses incremental update only, CMO/REX uses re-execution update only,and CMO/DYN allows both methods and leave the decision to the optimizer. The perfor-mance of a regular optimizer (REG) without caching and matching technique is also includedfor comparison. Both relation update frequency (no. of update queries / no. of total queries)and update selectivity (no. of updated tuples / relation cardinality) are controlled. For eachraw query stream (which contains no update queries), 15 variations are produced by interleav-ing the raw stream with 5 di�erent degrees of relation update frequencies and 3 di�erent levelsof relation update selectivities. The frequencies range from 0%; 5%; 10%; 15% to 25%, and theupdate selectivities range from LS (1%� 5%), MS (6%� 10%) to HS (6%� 10% for 2=3 of theupdate queries, and 40%� 50% for the other 1=3).Four di�erent query streams are experimented, Figure 4 depicts the average throughputsamong all four query streams under di�erent situations. At a �rst glance, the CMO curves,no matter what update strategies are used, perform better than REG in all LS, MS and HS14
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(c) HSFigure 4: E�ect of Relation Updatessets (except CMO/INC in set HS), and decline elegantly as update frequency increases. Thisis no surprise since the cost of updating a outdated temporary is amortized among thosesubsequent queries that are able to use it before it becomes outdated again. And of course, asupdate frequency increase, the cost is amortized among fewer queries and thus the throughputdecreases.In LS, CMO/REX performs worse than the other two since re-execution update do not takeadvantage of incremental computation. CMO/INC is better than CMO/DYN at 5% and 10%update frequencies, but as the frequencies increase, it is outperformed by CMO/DYN. This isattributed to the increase of update logs processing as the update frequency increases. Thismakes CMO/INC less advantageous. In MS, except at 5% frequency, CMO/DYN performs thebest; CMO/INC now swaps position with CMO/REX from LS. And �nally in HS, CMO/INCdeclines drastically, and performs even worse than REG for frequencies greater than 10%.CMO/DYN still performs the best in this set.The readers might wonder why CMO/DYN, which is supposed to be theoretically moreinformed under all circumstances, is inferior to CMO/INC at update frequencies 5% and 10%in LS. We analyzed the statistical pro�le and found out that CMO/DYN sometimes chose lesse�cient paths than CMO/INC and/or CMO/REX. This is due to the inaccuracy of the costestimation which may cause the wrong choice between incremental and re-execution updatewhen their costs are closed. Even if the optimizer always predicts accurate costs, choosingthe optimal plan for individual query does not guarantee the global optimality for all queries.Therefore, CMO/DYN sometimes decides not to use a outdated cache (because of its highupdate cost) for the current query whose high cost actually can be compensated by the speed-up of some follow-up queries which use it. These two problems of accurate cost estimationand multiple query optimization actually are general problems to query optimization but notwithin the scope of this paper. Overall, though, CMO is cost e�ective in most environmentswhere queries arrive in no ad hoc manner and, thus, there is no good way to predict whatqueries will appear in the stream. 15
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(c) HighQCFigure 5: E�ect of Query Correlations4.2.3 E�ect of Query Correlation and Database SizesIn this set of experiment, we observe the impact of the database environment on the CMOperformance. Figure 5 shows the performance improvement of CMO over REG under threeclasses of query correlations LowQC, MedQC, and HighQC. For each class, the results of threerandom generated query streams (QS1, QS2, QS3) are presented each of which consists of70 queries. The portion below the horizontal dashed line denotes the total elapsed time ofthose queries that do not �nd any matched caches for use. It shows that CMO reduces thetotal elapsed time in all classes with a signi�cant amount. And as query correlation increases,the improvement increases. Figure 6 depicts the matching rates for the three classes, wherematching rate is computed as the number of matched temporaries used in the queries dividedby the total number of selJoins performed in the queries. The curve for each class is obtainedby averaging among the three query streams. It can be seen from the �gure that the higherthe query correlation is, the faster and higher the corresponding matching rate curve grows.We also observed the e�ect of query selectivities. Figure 7 compares the results betweentwo classes of query selectivities: low selectivities of 0:0001� 0:05 (LS) and high selectivitiesof 0:0001� 0:3 (HS). Intuitively, query matching should have been more advantageous in alarge database with small selectivity queries, because it tends to save a large computation bycaching a small amount of results. However, our results show that for the higher selectivityqueries (HS), the relative improvement of CMO over REG is still as good as that in the lowerselectivity one (LS), though elapsed time has almost doubled in HS.To see the e�ect of database size, three di�erent size databases were experimented inanother set. We have adjusted the query selectivities for each query stream so that the queryresult sizes do not diverge too much among all three database sizes. The purpose of doing sois to observe the improvement trend for di�erent size databases supposed that the query resultsizes are fairly small and unchanged. Figure 8 shows the results, where CMO consistentlyshorten the elapsed time from REG. However, no drastic di�erences in relative improvementcan be told among the three database sizes.Finally, we compare the optimization overhead of CMO with REG. Table 3 lists the averageoptimization time per query for each set of experiments we described above. Though CMO16
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(b) HSFigure 7: E�ect of Query Selectivities
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Figure 8: E�ect of Database Sizehas around 50%� 60% more optimization time than REG, the extra overhead introduced byCMO is relatively small when compared to the time saved in query computations. Note thatthis has been demonstrated in all the above experiment results where the elapsed time includesboth query optimization and computation time.Exp. 4.2.1 Exp. 4.2.2 Exp. 4.2.3REG 0.084 0.087 0.088CMO 0.133 0.135 0.149Table 3: Ave. Optimization Time (second/per query)5 ConclusionThis paper describes the ADMS query optimizer which matches and integrates in its execu-tion plans query results cached in pointers or materialized views. The optimizer is based onthe Logical Access Path Schema, a structure which models the derivation relationship amongcached query results, for incrementally identifying the useful caches while generating the opti-mal plan. The optimizer features data caching and pointer caching, di�erent cache replacement17



strategies, and di�erent cache update strategies.An extensive set of experiments were conducted and the results showed that pointer cachingand dynamic cache update strategies substantially speedup query computations and, thus, in-crease query throughput under situations with fair query correlation and update load, Therequirement of the cache space is relatively small and the extra computation overhead intro-duced by the caching and matching mechanism is more than o�set by the time saved in queryprocessing.For the future research, we would like to apply the ADMS-CMO techniques to concur-rent queries and investigate how results cached from a query (user) can be used in an-other concurrent query (user). Also we would like to extend the CMO optimizer for theADMS+[RK86, RES93] client-server. In this environment, query results are cached in localclient workstation disks and used to achieve parallelism in query processing.AppendixThe satis�ability problem is to test if 8x1; x2; : : : ; xn (f1 ! f2) is true. That is, for all possiblevalues of attributes x1; x2; : : : ; xn, if f2 always evaluates to true whenever f1 is true. And ifthis is the case, then �nd a restricting formula f r such that 8x1; x2; : : : ; xn (f1 $ f2 ^ f r). Wewill consider query quali�cations constructed from attributes, constants, comparison operators(>;=; <), and logical connectives (^, _). The same problem has been addressed in [LY85], whotransformed it into a directed graph problem. However, it was not clear how the restrictingformula can be constructed and how e�cient the algorithm is. Therefore, we used a moree�cient but restrictive algorithm extended from [Fin82].An atom is a predicate of the form x � y, where x is an attribute, y is either an attributeor a constant, and � is a comparison operator. A clause is a disjunction of atoms, denoted asC = A1 _ A2 _ : : :An. From elementary logic [CL73], we can transform each formula into aconjunctive form as f = C1^C2 ^ : : :Cm. The following lemma gives su�cient conditions anda constructive way for the satis�ability check. Note that all universal quanti�ers are bound tothe attributes appearing in the scoped formula.Lemma 2 1. 8(f1 ! f2) if and only if, for each C2;j 2 f2, 8(f1 ! C2;j)2. if there exists a C1;i 2 f1 such that 8(C1;i ! C2;j), then 8(f1 ! C2;j)3. if for each Ai 2 C1;i, there exists a Aj 2 C2;j such that 8Ai ! Aj, then 8(C1;i ! C2;j)What remains to be solved is the testing of 8Ai ! Aj . This test can be easily checkedwhen Ai; Aj contain no arithmetic operators. First, it evaluates to false if Ai and Aj containdi�erent attributes. If they have the same attributes, then a look-up table, as shown in Table 4,is used. The entry in table (a) indicates the relationship between constants c and c0 under which(x �1 c)! (x �2 c0) is true, a blank entry means under no situations can it be true. In table (b),a checked entry indicates that (x �1 y)! (x �2 y) is true, where both x and y are attributes.18



�1n�2 x = c0 < � > �x = c = < � > �< � �� < �> � �� > � (a) Unary Atoms�1n�2 x = y < � > �x = y p p p< p p� p> p p� p (b) Binary AtomsTable 4: Look-Up Table for Ai ! A2When 8(f1 ! f2) is true, we also need to �nd a restricting formula so that the tuplessatisfying f1 can be extracted from the tuple satisfying f2. The simplest restricting formulais f1 itself since 8(f1 $ f2 ^ F1). However, in some cases, a restricting formula with fewerpredicates can be computed from f1. This may bene�t the query computation since fewerpredicates need to be evaluated. The following lemma tells how to get a restricting formula byeliminating redundant clauses from f1.Lemma 3 Suppose 8(f1 ! f2) is true. If there exist clauses C1 2 f1; C2 2 f2 such that8(C1 $ C2), then f r = f1 � fC1g is a restricting formula, i.e. 8(f1 $ f2 ^ f r).Note that 8(C1 $ C2) can be detected by checking both 8(C1 ! C2) and 8(C2 ! C1).An algorithm based on the above lemmas is embedded in the ADMS Cache&Match optimizer.The algorithm is sound but not complete in the sense that it is always correct when it returnstrue for the satis�ability check, but might return false when actually the answer should betrue. However, this will not error the query processing, except that in some rare cases wherequery expressions are complicated, potential useful cached temporaries might be ignored. Wethink this is acceptable since covering all cases needs a more general algorithm of prohibitivecomputation complexity.References[AL80] M.E. Adiba and B. G. Lindsay. Database snapshots. In Procs. of 6th VLDB, 1980.[BDT83] D. Bitton, D.J. DeWitt, and C. Turby�ll. Benchmarking database systems, a sys-tematic approach. In Procs. of 9th VLDB, 1983.[BLT86] J.A. Blakeley, P. Larson, and F.W. Tompa. E�ciently updating materialized views.In Procs. of ACM-SIGMOD, 1986. 19
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