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Abstract

The Basic Linear Algebra Subprogram (BLAS) library is widely used in many super-
computing applications, and is used to implement more extensive linear algebra subroutine
libraries, such as LINPACK and LAPACK. To take advantage of the high degree of paral-
lelism of architectures such as the Fujitsu AP1000, BLAS level 3 routines (matrix-matrix
operations) are proposed.

This project is concerned with implementing BLAS level 3 (BLAS-3) for single precision
matrices on the AP1000, with emphasis on obtaining the highest possible performance, with-
out significantly sacrificing numerical stability. This paper discusses the techniques used to
achieve this goal, together with the underlying issues.

The most important techniques were the use of software pipelining and loop unrolling
for writing optimized assembler inner loops for matrix inner and outer products, which were
able to operate at more than 90% and 70%, respectively, of the AP1000’s theoretical peak
performance.

The efficiency of cell communication using wormhole routing on the AP1000, especially
the row/column broadcast, enabled a sustained performance of 80 to 90% of the theoreti-
cal peak for all the BLAS-3 routines. It also meant that many variations (using different
communication schemes) for matrix multiplication have more or less equivalent performance.
However, for future versions of the AP1000, optimizing communication must still be consid-
ered.

Techniques for improving the performance for large matrices (partitioning, to improve
cache utilization) and for small matrices (minimizing communication) are employed. The
latter have been developed for general rectangular AP1000 configurations.

1 Introduction

Libraries of linear algebra routines such as LINPACK [6] and LAPACK [1, 5] have been imple-
mented using certain basic linear algebra subprograms (BLAS) as primitives. The motivation
for this is a combination of portability and efficiency – the high-level routines are written in a
machine-independent manner in a widely-available language (usually Fortran 77), but the BLAS
may be coded in a machine-dependent manner in a high or low-level language. When porting
the linear algebra libraries to a new machine, it is easy to get them running by using a portable
(but possibly inefficient) implementation of the BLAS. Higher efficiency can then be obtained
by recoding the BLAS to take better advantage of the machine architecture.
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The Fujitsu AP1000 [12, 13] is a scalable array processor using wormhole routing and high-
performance SPARC-based cells. It is a distributed memory architecture with attributes that
should allow an efficient implementation of the BLAS level 3 (BLAS-3) procedures.

This project has the following purposes. Firstly, to evaluate the suitability of the AP1000 as
a numeric supercomputer. This needs some explanation: the BLAS-3 are increasingly regarded
as a “benchmark” for the numeric performance of modern supercomputer architectures. This
is because a well designed and balanced architecture must be able to achieve high performance
on the BLAS-3 if it expects to be able achieve high performance on more complex numerical
algorithms.

The second purpose is discover and compile the techniques used to obtain this performance on
the AP1000, which can assist the design of more complex numerical algorithms on the AP1000.
The third is to evaluate the suitability of the BLAS-3 itself on distributed memory architectures,
an issue only beginning to be addressed recently, as BLAS-3 was designed for shared memory
or cache-based processors. The final purpose is to be able to provide users with a workable
numerical library on the AP1000 which can reduce program development time and still yield
good performance.

1.1 The BLAS Level 3

BLAS Level 3 [7, 8] implement matrix-matrix operations, which, for n by n, matrices, involve
O(n3) arithmetic operations on O(n2) data items. This yields is a higher ratio of arithmetic
operations to data than for the BLAS level 2 (BLAS-2) [9, 10], although degenerate cases of the
BLAS-3 routines yield all BLAS-2 routines. Use of BLAS-3 is attractive on parallel machines
such as the AP1000 because the cost of a data transfer may be amortised over the cost of O(n)
arithmetic operations.

We restrict our attention to operations on single precision real matrices, since this is sufficient
to illustrate the essential implementation issues. The BLAS-3 perform multiply-add operations
of the form:

C ← αÃB̃ + βC

where Ã can be either A or AT (and similarly for B̃), multiply-add operations for symmetric
matrices, eg.:

C ← αAAT + βC, C ← αAT A + βC

where C is symmetric, and triangular matrix update operations for the form:

B ← αÃB, B ← αBÃ

where A is triangular and Ã can be A, AT , A−1. Matrices may be general rectangular, symmet-
ric or triangular but there is no special form of “packed” storage for symmetric or triangular
matrices.

Within each of the six BLAS-3 routines, there are either 4 or 8 different matrix “orientations”,
each requiring a different variant of the basic algorithm used. Combining this factor with the
requirement that the BLAS-3 routines operate on matrix “sub-blocks” rather than on whole
matrices themselves, and should be efficient over a large range of matrix shapes and sizes, the
difficulties in implementation are considerable. Our approach involves the BLAS-3 routines
calling a small library of more primitive matrix-matrix routines, so that the potentially large
code size required by the BLAS-3 routines can be kept manageable. It is the performance of
these more primitive routines that will be reported in this paper.

2 High Level Design Choices

In this section, the high level choices for the design of BLAS-3 on the AP1000 are described.
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2.1 The External Interface

In [16], the following options were considered for the external interface:
1. Host only. BLAS-3 are called only from host programs, and all matrices are stored on

the host.
2. Host and cell. BLAS-3 are called from the host, but operate on matrices stored in the

cell processors.
3. Cell only. BLAS-3 are called from cell programs only, and operate on matrices stored in

the cell processors.
Option 3, being the simplest and most efficient, as well as offering the largest amount of

memory, has been pursued. At this date, the authors of BLAS are “studying the options” for
the interface of the BLAS-3 for distributed memory architectures [11]. Their intermediate goal
is to design first the Basic Linear Algebra Communication subroutines (BLACS) [11], a set of
subroutines for communicating matrices between cells. Although this issue is important from
the user perspective, it is not so important from the point of view of implementation, so its
resolution can be deferred until a later date.

2.2 Distribution of Matrices

To improve load balancing for operations on triangular matrices of sub-blocks of larger matrices,
matrices are distributed over AP1000 cells by the cut-and-pile or scattered strategy, rather than
storage by rows, by columns, or by contiguous blocks. In the scattered strategy, in which matrix
element ai,j is stored in cell (i mod Ny, j mod Nx), assuming that there are Ny ×Nx cells in the
AP1000 array.

However, all the above strategies can be covered by an m̄ × n̄ “blocked panel-wrapped”
strategy, which is sufficient for linear algebra applications in practice [11]. Here matrix element
ai,j is stored in cell ((i/m̄) mod Ny, (j/n̄) mod Nx) of an Ny × Nx AP1000. In this case, the
BLAS-3 routines themselves would have to know the appropriate storage parameters (m̄, n̄)
for each matrix and manage the appropriate data movements. Since the complexities resulting
from this extra flexibility are considerable, the implementation of a general matrix distribution
strategy on the AP1000 is not considered in this paper.

On the cells, the matrix sub-blocks were stored in row-major order (C convention) rather
than in column major order (the Fortran convention), although this decision does not greatly
affect implementation issues. Associated with the row-major storage scheme for an m× n (cell
sub-) matrix A is the last dimension of A, denoted ldA, where n <= ldA. This enables A to be
identified as a sub-matrix of a larger m′ × ldA matrix A′, where m <= m′.

2.3 Parallelism within or outside of BLAS-3 Routines

For implementing BLAS-3 on the AP1000, parallelism can be used in two ways:

• using all AP1000 cells in parallel to execute a single BLAS-3 routine call.

• executing independent BLAS-3 routine calls over different groups of AP1000 cells.

While some authors think the second way is important [2, 11], it introduces further complexities,
especially with respect to matrix distribution, so only the first has been pursued in our imple-
mentation. It should be noticed that, for sufficiently large matrices, the second way is unlikely
to offer a significant efficiency advantage.
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K 16 32 48 64 80 96 112 128 160 192
speed 6.9 7.5 7.5 7.6 7.80 7.77 7.72 7.74 7.67 7.33

Table 1: Speed (MFLOPs) of update4x4 loop-based K ×K matrix multiply on a 1× 1 AP1000

2.4 AP1000 Configuration

The AP1000 can be configured in a rectangular array of any shape. For a particular instance
of a BLAS-3 operation, the optimal shape will generally be one close to the shape of its output
matrix [14], assuming communication performance is the same on all AP1000 configurations.
However, this assumption is not generally valid, and the “natural” configuration yields superior
performance. Hence this option has been chosen for our implementation of the BLAS-3 for the
current 8 × 8 AP1000 currently installed at ANU. The complexity of high-performance coding
increases considerably for non-square configurations as is discussed in Section 3.3, but it is
important that these be fully implemented in the near future.

3 Implementation of the BLAS-3

In this section, we look at low level design (or implementation) choices used to implement the
BLAS-3 on the AP1000. Due to the high relative speed of communication to computation on the
AP1000, efficiency depends on writing optimized assembler routines to perform matrix update
inner loops, and then making appropriate “higher-level” choices regarding algorithm design and
partitioning strategies.

3.1 High Performance Computation

Here, we discuss the main assembler routines (“loops”) which form the core of the BLAS-3
computations, and then explain their implications.

3.1.1 The update4x4 inner loop

For the matrix multiply-add operation C ← C + AB, where all matrices are K ×K, the most
efficient inner loop for the SPARC cell architecture was found to be to update a 4×4 C sub-block
Ci..i+3,j..j+3 using the 4×K A sub-block Ai..i+3,0..K−1 and the K× 4 B sub-block B0..K−1,j..j+3.
For this update4x4 operation, Ci..i+3,j..j+3 is loaded into 16 of the SPARC’s FPU registers, and,
the kth iteration, 0 ≤ k < K, a small “outer-product” update is applied to these registers, ie. a
4× 1 segment of the A sub-block, Ai..i+3,k, is combined with a 1× 4 segment the B sub-block,
Bk,j..j+3. At the end of the K iterations, the updated register values are stored again in the C
matrix.

This amounts to a 4× 4 loop unrolling of (the outer indices of) an “inner-product” matrix
multiply loop, which in turn enables software pipelining techniques to give the optimal ordering
of the load, multiply and add instructions involved. For optimal performance, it was found
that at least 2 floating point instructions need to separate a load instruction and a multiply
instruction dependent on that load; 3 floating point instructions should separate a multiply
instruction and an add instruction dependent on that multiply; and also at least 2 floating point
instructions should separate a multiply instruction and the next load instruction modifying an
operand of the multiply instruction (this is due to the fact that the load may otherwise be
delayed until the multiply instruction is completed).

The ratio of arithmetic instruction to loads operations in this loop is (asymptotically) 4:1;
on the SPARC IU, this amounts to a ratio of 4:1 for the cycles consumed in servicing FPU
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K 16 32 48 64 80 96 112 128 160 192
speed 5.4 5.8 5.7 6.0 6.0 6.0 5.9 5.9 5.2 3.8

Table 2: Speed (MFLOPs) of outerproduct loop used to update a K × K matrix (for 16
repetitions) on a 1× 1 AP1000

arithmetic to issuing FPU load instructions. This latter ratio was further increased to 16:3
by using the load double word instruction. This however in turn required A to be stored in
transposed form, and A and B to have an even “last dimension”. The results for this loop
are given in Table 1; these are sustained figures using matrices A and B having at least half
their elements in cache before the multiply begins. This was chosen to approximate the cache
conditions for a multiplication over a larger AP1000, since part of A and B will already be
in cache from message receipt. Performance decreases slightly for K > 80 due to slight cache
conflict occurring. That the performance is better than 16/19 of the theoretical peak is due
to the fact the the SPARC IU consumes 2/3 of the time to issue a floating point arithmetic
instruction than does the FPU to execute it. Thus the update4x4 loop is limited almost equally
by SPARC IU and FPU performance, for the current AP1000 cell architecture.

For high K-factor matrices (eg. A is 32×256, B is 256×32) that are “pre-loaded” into cache,
the update4x4 loop operates at about 7.9 MFLOPs. This indicates the maximum performance
of the loop itself, free from cache effects. An optimization for C being N × N gives a further
1% improvement.

Even with the optimization options available for the SPARC C compiler, comparable per-
formance at present cannot be achieved using loops written in the C language. Originally, the
update4x4 loop was written in C, with local variables being mapped correctly to FPU registers,
and assignment statements in a 1-1 correspondence with SPARC FPU instructions. This failed
because the compiler tried to “optimize” the instructions by re-ordering them, destroying the
software pipelining effect so that the performance went down to about 5.5 MFLOPs!

3.1.2 The outerproduct loop

An N × N matrix B may be updated by 1 × N vectors a and b using B ← B + aT b. This is
called an “outer product” or “rank 1” update. For this outerproduct loop, B is grouped into
rows (or columns) of 4, ie. Bi..i+3,0..N−1 (B0..N−1,j..j+3), and the corresponding 1× 4 segment of
a (b), ai..i+3 (bj..j+3) is loaded into the FPU registers. For each k (k = 0, 4, 8, . . . , N −1), a 4×4
sub-block of the B rows (columns), Bi..i+3,k..k+3 (Bk..k+3,j..j+3), and bk..k+3 (ak..k+3) are loaded
into the FPU registers, a small outer product operation is performed, and the B sub-block is
stored again.

Again this amounts to a 4 × 4 loop unrolling, with similar software pipelining techniques
to the update4x4 loop, with the additional constraint that 2 floating point operations should
separate and add instruction and store instruction that is dependent on it.

The ratio of arithmetic instructions to load/store operations in this loop is (asymptotically)
8:9. On the SPARC IU, this amounts to a ratio of 8:11 for the cycles consumed in servicing
FPU arithmetic to issuing FPU load/store instructions, which can be increased to 1:1 using
load/store double word instructions. For the same reason as for update4x4, the performance is
better than this ratio indicates, as indicated in Table 2. The performance of this loop is bound
by the SPARC IU.

Originally, outerproduct loop was tested on the SPARC 1+, achieving only about 75%
of the performance indicated above. The AP1000 cell’s performance is superior since it has a
“copy-back” cache, whereas the SPARC 1+ has a “write-through” cache, which causes delay
due to cache flushing upon each store instruction.
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3.1.3 Implications

Both loops were implemented as “leaf” procedure calls, ie. parameters are passed via SPARC
output registers. This permitted negligible overhead for procedure calling, even for moderate
matrix sizes.

Although update4x4 is designed for the BLAS matrix multiplication routines and outer-
product was designed for the BLAS matrix update routines, the former has clearly superior
relative performance, which is likely to improve further with a modified AP1000 cell configura-
tion. This means that effort should be taken to regroup and possibly even re-order the outer
product computations of the BLAS-3 matrix update routines, so that update4x4 can be used
to perform as much as possible of the overall computation (Section 3.4).

One important consequence of the update4x4 loop is that for a sufficiently large K, whether
the result matrix C is in the cache is largely irrelevant, since a cache miss on accessing an element
of C can occur at most twice, as opposed to K/4 times for each of A and B. Thus, the cache
need only contain elements of A and B, and K be sufficiently large (ie. K > 64), for the loop to
be able to achieve its maximum performance. This means that in parallel matrix multiplication,
it is better to communicate A and B rather than A and C, as communicating the latter will
force B out of the cache. It also assists the asymptotic efficiency of the partitioning methods
(Section 3.2.3).

3.2 Parallel Matrix Multiply-Add Operations

In this section, parallel matrix multiply add operations, eg. C ← C + AB where A,B,C are
matrices distributed over the AP1000 cells, are considered. In [16], the “full-systolic” and “semi-
systolic” methods were described.

A third parallel matrix multiplication method, called the “non-systolic” method, exploits
the AP1000’s fast xy broadcast routines.

for (k=0; k < Nx; k++)
y-broadcast B cell sub-block from row k;
x-broadcast A cell sub-block from column k;
perform local cell sub-block multiplication;

This method must use explicit matrix transpose if one of the operands is transposed.
All three methods use the xy communication routines. Table 3 indicates the relative efficiency

of each method. Here, the cell sub-block of the matrix B followed directly after, in main memory,
that of A, to ensure they would map into separate areas of the AP1000’s cell’s direct-mapped
cache [12], as far as possible.

For the 2×2 AP1000, the semi-systolic method was slightly faster for K/Nx = 128, being at
7.3MFLOPs/cell, due to the fact that it performs 2Nx−1 (as opposed to 2Nx) communications.
The table indicates that the full-systolic method, with its startup time to rotate A and B is the
slowest, by a small margin; the difference between the other two methods is negligible, due to
the fact that the xy send and xy broadcast routines have virtually the same performance.

3.2.1 Explicit vs implicit matrix transposition

Most of the BLAS-3 routines require multiply-add operations in which the operands (A, B) may
be transposed. As explained in [16], it is possible to avoid explicit matrix transposition if only
one of the matrices is to be transposed using “systolic” or “semi-systolic” parallel multiply-add
methods. It is not obvious whether this will improve efficiency as this means communicating the
result matrix C (causing extra cache conflict if update4x4 is used), whereas the fast AP1000
wormhole routing promises low relative overhead for the explicit transpose.
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C ← C + AB by C ← C + AT B by
(-systolic) method: (-systolic) method:

K/Nx full- semi- non- semi- (implicit) non- (explicit)
16 4.2 4.4 4.4 4.3 4.1
32 5.8 6.0 6.0 5.9 5.8
64 6.5 6.7 6.8 6.7 6.7
96 7.0 6.9 7.0 6.9 6.9
128 7.1 7.2 7.2 7.1 7.1
160 7.1 7.2 7.1 7.1 7.1

Table 3: Speed in MFLOPs/cell of parallel multiply-add methods on an 8 × 8 AP1000 with
K ×K matrices

For explicit matrix transposition, the simplest method of just exchanging data between cells
appears to be the most efficient. The bottleneck for this algorithm is at the diagonal cells,
through each of which Nx − 1 messages must pass and change direction, so that the time is
expected to be proportional to Nx− 1. This is verified by timings which yield a communication
rate of 1.4MByte/s/cell for an 8 × 8 AP1000 (64 ≤ K/Nx ≤ 256); the timings also indicate
that the relative overhead compared with matrix multiplication time is small for K/Nx ≥ 32,
reducing to about 0.5% for K/Nx = 128.

Table 3 indicates that for square matrices, there is little difference between the explicit and
implicit methods, except for small matrices, which favour the implicit method.

3.2.2 Fast xy communication experiment

The xy communication routines are fast for moderate messages sizes, such as those indicated in
Table 3. This is largely because the sending cell does not have to copy the message and that
the parts of the message in cache can be sent more quickly using a “cache line send” function
[15]. However, the receiving cell still has to copy its message from ring buffer to the user space,
which, as well as consuming comparable time to the actual (DMA) message receive itself, further
disturbs the cache.

For implementing libraries such as the BLAS-3, performance is more important than pro-
gramming effort. It is desirable then to avoid the receiving cell message copying if possible,
preferably by direct DMA receive into the user space. As it is not currently possible to do this
using the current AP1000 CellOs, modified x brd() and y brd() routines were written so that
these functions returned a pointer to the ring buffer where the message was directly received and
the copy to user space avoided1. This method has the added bonus that the messages in the A
and B sub-blocks, being received in the ring buffer one after the other, map into non-overlaping
areas of the cache.

The performance of these variations was tested for the non-systolic multiply add method,
and generally halved the communication overhead. Thus, for K/Nx = 128, performance of
7.5MFLOPs/cell was achieved, 90% of the theoretical peak.

3.2.3 Workspace and partitioning methods

As explained in [16], BLAS-3 routines operate on sub-blocks of larger matrices, rather than
whole matrices as such. Using the scattered distribution strategy, these sub-blocks are therefore

1In the case of ring buffer “wrap around”, the message would be still copied to user space. Since a large
(512KB) ring buffer can be used on the AP1000, this point does not significantly affect efficiency.
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A′
0l B′

lj A′
1l A′

2l . . . A′
(m/k0−1)l

Figure 1: The contents of the workspace for a partitioned multiply-add operation

generally not contiguous in memory when mapped to the AP1000 cells, which is inconvenient for
both message passing and cache management. Furthermore, the matrix multiply-add operation
also involves scaling by constants α and β. These problems can be most easily overcome by
copying (parts of) the A, B and in some cases C sub-blocks into contiguous blocks in a BLAS-3
“workspace” area, which may then be scaled if needed2.

This however is at odds with the philosophy of the authors of BLAS-3 [1], who see as
undesirable any large (static) storage for BLAS-3 workspaces. On the other hand, the issue of
workspace needs be re-considered for distributed memory machines, which generally have large
aggregate memories, and temporary storage generally needs to be allocated for message transfer
in any case.

Using dynamic storage allocation to create a workspace is a reasonable solution as extra
storage is only required for the duration of a BLAS-3 procedure call. Furthermore, with the use
of suitable partitioning methods on N × N matrices, an O(N), or even an O(1), workspace is
sufficient for reasonable performance. An “outer product”-based O(N) workspace partitioning
method, capable of high asymptotic performance, will now be described.

Consider an M × K global matrix A having an m × k (sub-) matrix A′ on a particular
AP1000 cell, where m = M/Ny, k = K/Nx. Divide A′ into k0×k0 sub-blocks denoted A′

ij where
0 ≤ i ≤ dm/k0e, 0 ≤ j ≤ dk/k0e and the optimal block size k0 = 128 is chosen from Table 3.
Let B be a K ×N global matrix divided up in a similar way.

The method involves at step l copying the “block-column” A′
0l, A

′
1l, . . . , A

′
(m−1)l into a con-

tiguous workspace, for l = 0, . . . , k/k0 − 1. On the jth sub-step (j = 0, . . . , n− 1), B′
lj is copied

to the workspace and is multiplied by each of the k A′ sub-blocks already there. The layout
of these sub-blocks in the workspace is shown in Figure 1. Here, one can see that A′

il and B′
lj

map into different areas of the AP1000’s 128KB direct-mapped cache. For this reason, almost
half of the workspace is unused. The total size of the workspace is k0(m + n− 1) words, and it
can be seen that the cost of copying (with scaling, if needed) a sub-block into the workspace is
amortised over the k/k0 times it is used to perform a multiply-add.

With the update4x4 loop as the core of the multiply-add operation, the position of the cell’s
result (sub-) matrix C ′ in cache is essentially irrelevant. This is fortunate as C ′ need never be
copied into the workspace; if it had to, it would be very difficult to amortise the cost of the
copying of A′, B′ and C ′ to and from the workspace simultaneously. Also, when an A′ sub-block
is copied to the workspace, it must transposed for the update4x4 loop.

This idea can be efficiently integrated into the parallel non-systolic multiply-add method as
follows (similarly for the semi-systolic method). If a cell is currently broadcasting its A′ sub-
matrix to other cells, for each sub-block of A′, it copies the sub-block into the workspace and
the broadcasts it from there (similarly if it is broadcasting B′). As sending a message is much
faster than receiving one for the AP1000 xy communication routines, the copying of the next
sub-block by the sending cell is overlapped with the receiving of the previous sub-block on the
receiving cells. Although the message size of 4k2

0 bytes is convenient for the AP1000 ring buffer,
eventually the sender cell gets well ahead of the receiving cells for very large matrices. This can
cause ring buffer overflow unless the AP1000 cells are synchronized periodically.

The performance of this partitioning method are given in Table 4. As the maximum matrix
size corresponds to 4MB, results for a 4× 4 AP1000 are given; the results for an 8× 8 appear

2While some authors have implemented distributed matrix multiplication without copying of the input matrices
[14], this is not in general possible for the BLAS-3 as the input matrices can be the same (eg. C ← AAT ).
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partitioning
N/Nx yes no

128 7.18 7.23
256 7.44 5.40
384 7.52 5.73
512 7.58 5.49
640 7.60 —
728 7.59 —
896 7.63 —

1024 7.65 —

Table 4: Speed in MFLOPs/cell of parallel C ← C + AA using non-systolic method on an 4× 4
AP1000 with N ×N matrices

identical for the corresponding matrix sizes. These results indicate the performance achievable
for the BLAS-3 general multiply operation C ← αAB + βC, over 90% of the theoretical peak
on the AP1000.

3.2.4 Implicit partitioning methods

For linear algebra algorithms to be efficiently implemented on architectures like the AP1000, the
computational data must be divided into “blocks” that fit within the cache, and the computation
must be reorganized so that as many operations as possible be performed on them while in cache.
This is possible with matrix multiplication, as well as LU decomposition [3] and Singular Value
Decomposition [4].

While the “explicit” partitioning method described above is entirely adequate for the BLAS-
3, especially as it has consistent performance over varying matrix sizes, for other applications it
might not be desirable to have to copy matrices to workspaces. An alternative is to use implicit
partitioning methods which simply re-order the computations to make the best use of the cache.
Such a scheme for the matrix multiplication C ← C + AB on a single AP1000 cell will now be
described.

Divide the K ×N matrix B into k0 × n0 sub-blocks, where k0n0 does not exceed the cache
size, and K/k0 > 1. Now with B stored in row-major form and thus having ‘’last dimension”
ldB ≥ N (assume for sake of simplicity that ldB = N), then such a sub-block B′ will not be
stored contiguously in main memory, and hence the rows of B′ will map into non-contiguous
areas in a direct-mapped cache.

Assume that A is an N ×K matrix is stored in transposed form. The idea is that while B′

is in the cache, take each appropriate 4× k0 “piece” of A and perform the update4x4 operation
n0/4 times, on each of the k0 × 4 pieces of B′. During this time, most of B′ and the “piece” of
A′ should be in cache, so that the performance should be high.

The underlying idea here is that only a large portion of one of the matrices (in this case B)
need ever be in the cache at any one time. Certainly, a “piece” of A will sometimes map into
the same area of cache as B′, causing cache misses, but as the former is small, this happens
sufficiently rarely to degrade performance seriously. It was found that with k0 = 128, the optimal
value of n0 was 128. Table 5 summarizes the performance for K = 128 (the performance for
K > 128 was very similar).

The results indicate that the implicit method achieved good cache utilization except where
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partitioning
N yes no

128 7.56 7.57
256 7.55 5.54
384 7.63 6.80
512 5.51 5.51
640 7.64 6.47
728 7.60 6.46
896 7.63 6.47

1024 5.52 5.52

partitioning
N yes no

384 7.63 6.80
416 7.38 6.71
448 7.13 6.60
480 7.61 6.53
512 5.51 5.51
544 7.63 6.80
576 6.99 6.47
608 7.61 6.70

(a) for 128 ≤ N ≤ 1024 (b) detail of 384 ≤ N < 640

Table 5: Speed in MFLOPs/cell of parallel C ← C +AB using “implicit” partitioning on a 1×1
AP1000 with A being N × k0 and B being k0 ×N with k0 = n0 = 128

ldB was a multiple of 512.3 The reason for this is as follows. For ldB = 128q and n0 = 128, row
i of B′ can be thought as mapping into the (qi mod 256)th “row” of the cache, where the cache
is conceptually divided into 256 rows of length n0. If q is a power of 2, then for a sufficiently
large k0, rows i and i + 2log2k0−1 must map into the same area of cache. Otherwise, each row of
B′ will map into different areas of cache, and the performance will be high4. For ldB not being
a multiple of 128, the performance will be between these two extremes, as here, only parts of
the different rows of B′ will map into the same area of cache.

It is possible to avoid this loss of performance by decreasing k0 (or n0). For example, with
k0 = 64, the multiplication for the 128 × 512 B runs at speed 7.45 MFLOPs, and for k0 = 32,
that for the 128× 512 B runs at speed 7.18 MFLOPs.

3.3 Adaption to a rectangular AP1000 configuration and the BLAS-2 limit

We aim to implement a subset of the BLAS on a general rectangular AP 1000 configuration.
We suppose that the configuration has Ny by Nx cells, and that matrices are stored using the
scattered strategy described in Section 2.2. Preliminary results for matrix transpose and matrix
multiply-add are described in Sections 3.3.1 and 3.3.2. In these Sections, the algorithms are
also efficient on non-square matrix shapes. These shapes can approach (and reach) the BLAS-2
matrix-vector operations, hence the term “BLAS-2 limit”.

3.3.1 Matrix transpose

The matrix transpose operation B ← AT is nontrivial if Nx 6= Ny. We have implemented the
following algorithm (ctranscz). Consider the j-th column A.j of A, which is to be transposed
to form the j-th row of B. The column A.j is distributed over cells with cidx = j mod Nx, and
the j-th row of B should be distributed over cells with cidy = j mod Ny. Thus, each cell with
cidx = j mod Nx potentially has to send a message to all Nx cells with cidy = j mod Ny, and
each of these cells potentially has to receive a message from all Ny cells with cidx = j mod Nx. In
fact, because of the definition of the scattered strategy, the number of messages to be sent by each
cell is at most Nx/G, and the number to be received is at most Ny/G, where G = GCD(Nx, Ny).

3These results do not take into account communication, so that they cannot be directly compared with Table 4.
4This situation is analogous to the sudden degradation of performance in interleaved memory vector processes,

when the vector stride equals the number of interleaved memory banks.
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configuration time speed
Nx Ny msec Kbyte/sec/cell
1 64 250 250
2 32 99 631
3 21 81 786
4 16 81 771
5 12 127 525
6 10 91 736
7 9 123 518
8 8 48 1304

Table 6: 1000 by 1000 matrix transpose

A naive program would simply iterate over the column index j. However, this would waste
most of the bandwidth available in the T-net, because only Ny cells would be sending and Nx

receiving at any one time. It is more efficient to block several columns and send all messages
associated with them at once. Our present implementation blocks up to max(Nx, Ny) columns,
so there is at most one message from any cell (x, y) to any other cell (x′, y′). We could block up
to LCM(Nx, Ny) columns and retain this property, but this would increase the chance of ring
buffer overflow (we assume that messages are sent using xy send).

In order to attain reasonable efficiency, it is desirable for each cell to precompute permuta-
tions πs and πr, where πs is associated with sending messages (part of a column of A), and πr is
associated with receiving messages (part of a row of B). More precisely, a sending cell has part
(say v) of a column of A. Elements of v have to be sent to several other cells, but these elements
are not stored in contiguous locations in v. The permutation πs is defined so that πsv has all
elements which are to be sent to a particular cell in contiguous locations. Similarly, a receiving
cell receives several messages into adjacent blocks of memory, then has to “unscramble” them
using the permutation πr in order to obtain its share of a row of B in the locations defined by
the scattered strategy.

A similar algorithm (ctransrz) transposes each row of A to a column of B. To minimise
startup overheads, we choose ctranscz if A is M by K with M > K, and ctransrz if M < K.

Table 6 gives the time required (in msec) and the overall communication speed (in Kbyte/sec
per cell) for 1000 by 1000 single-precision matrix transpose on various CAP configurations. It
is apparent that, for matrices of this size, the time to form the transpose is much less than the
time for matrix multiplication.

3.3.2 Matrix multiplication

Consider the matrix multiply-add operation C ← C + AB, where A is M by K, B is K by N ,
and C is M by N . We have implemented three algorithms, based on the “non-systolic” method
of Section 3.2, and choose whichever is the most efficient. This depends, at least to a good
approximation, on which of M , N and K is the smallest.

Method A performs K rank-1 updates to C, i.e. C ← C +
∑

A.jBj., where A.j is the
j-th column of A and Bj. is the j-th row of B. In a naive implementation, the cells with
cidx = j mod Nx would broadcast A.j horizontally (using x brd), the cells with cidy = j mod Ny

would broadcast Bj. vertically (using y brd), each cell would perform a local rank-1 update, and
this cycle would be repeated K times. However, it is better for each cell to accumulate a
moderate number k of rows and columns and then perform a single rank-k update.

The problem with method A is that there are 2K startup overheads associated with the
broadcasts of the K columns of A and K rows of B. The “non-systolic” algorithm described
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Matrix dimensions Configuration Nx ×Ny

M K N 4× 8 7× 8 8× 8
1 1000 1000 4.06 3.53 3.83
10 1000 1000 4.80 4.57 4.60

1000 1 1000 3.08 2.97 2.94
1000 10 1000 5.68 5.39 5.47
1000 1000 1 4.18 3.53 3.81
1000 1000 10 5.02 4.57 4.52
1000 1000 1000 6.20 6.43 6.77

Table 7: Speed (MFLOPs/cell) of matrix multiply-add

above for the case Nx = Ny is faster because several columns (or rows) are broadcast at the
same time. This is difficult to achieve if Nx 6= Ny.

Method B is designed for the case of small N . The matrix B is transposed (using the
algorithm ctranscz described above), then each row of BT is broadcast vertically (using y brd).
Each cell computes a local matrix-vector product, and then the vector results are summed
horizontally (using a generalisation of x fsum). The important point is that the (large) M by
K matrix A remains in place, while only the (small) K by N matrix B and (small) M by N
matrix C move between cells.

Method C is simply the dual of method B, and is efficient if M is small.
Similar methods can be developed for the “semi-systolic” multiply-add (Section 3.2). In this

case, the x fsum communication is avoided.
In Table 7 we give speeds in for the combination of methods A, B and C (cmatmulz) on

three different configurations. The speed exceeds 50 percent of the theoretical peak speed (8.33
MFLOPs/cell) unless min(M, K,N) = 1.

3.4 Inverted Triangular Matrix Update Operations

Consider multiplying a rectangular matrix B by the inverse of an N ×N triangular matrix, A
on a Nx ×Nx AP1000. Firstly, we require the possible scaling of A (and hence B) so that A’s
diagonal is unit (in BLAS-3, it is up to the user to ensure that this is possible, ie. that A is
non-singular).

If A is upper triangular, a column of zeroes can be introduced in column j, j = N − 1, ..., 1
in parallel by the row broadcasting of the jth column of A, A.j ; then, the “outer product”
update A← A−A.jAj. is performed. Each cell communicates O(n) data per O(n2) arithmetic
operations, where n = N/Nx is the cell sub-block size, so the algorithm is efficient.

The A.j correspond to a pre-multiplication by a “parallel” elementary matrix (row update)
operation matrix E.j , so that A−1 = E1. . . . E(N−1).. Thus, using this to form B ← A−1B, we
can perform the corresponding (parallel) row updates on B:

B ← B −A.jBj., for j = N − 1, ..., 1

The algorithm is similar for the post-multiplication of A−1, except that the columns of B and
the rows of A are broadcast.

The non-inverted triangular update operation can be performed in a similar way, or, if the
matrices are small enough, by a direct matrix multiply. Two implementations of triangular
matrix updates are given below.
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N/Nx A−1B BA−1

Nx = 1 Nx = 2 Nx = 8 Nx = 1 Nx = 2 Nx = 8
32 3.6 2.9 3.5 2.9
64 4.8 4.0 5.0 4.1
128 5.6 5.1 5.1 5.6 5.1 5.1
180 5.4 5.1 5.6 5.2
256 4.4 4.1 3.0 2.8

Table 8: Speed in MFLOPs/cell for B ← A−1B, B ← BA−1 for N×N matrices on the AP1000
(A is non-unit upper triangular)

3.4.1 Straightforward implementation

The results of directly implementing the above algorithm (with careful optimizations of all
important pieces of the code) on the AP1000 are given in Table 8. The outerproduct loop is
used to perform the update, and the efficiency of the basic algorithm without communication
can be viewed from the Nx = 1 columns. For this algorithm, it is only important that B be kept
in the cache; the performance for the BA−1 drops sharply as N → 256 since the columns of B
are being updated, rather than the rows. For the same reasons as those explained in Section
3.2.4, this increases cache sensitivity. It is difficult to design an effective partitioning strategy
for this implementation.

The effect of communication on performance was much the same for Nx > 2 as Nx = 2.
Communication overhead can be decreased further by using the fast versions of the xy broadcast
routines, as described in Section 3.2.2. The performance does not quite approach that of the
outerproduct inner loop; this is partly due to the scaling of a row/column of B with the
corresponding diagonal element of A must occur directly before that row/columns is broadcast.
With a unit diagonal A for N/Nx = 128, the speed increases to 5.8 MFLOPs for a 1 × 1
AP1000 and 5.2 MFLOPs for an 8 × 8 AP1000. Also, it is necessary to copy columns into
contiguous messages for the xy routines. However, the main constraint on performance is the
accumulated latency of many small broadcast operations, as well as the extensive use of the
slower outerproduct loop.

3.4.2 Blocked implementation

Techniques for improving the LU decomposition algorithm on the AP1000 [3] can similarly be
applied to the inverted triangular update algorithm. Consider the case of A−1B, where A is
N ×N and upper triangular. The idea is to group ω row updates together, where Nx|ω and the
blocking factor ω > 0 is some function of N and Nx. Only the ω rows of B that are broadcast
are updated using outerproduct loop (before their broadcast); these rows are grouped together
into an ω ×N ′/Nx matrix B′; similarly, the corresponding parts of the columns of A that were
broadcast are “gathered” into an N/Nx×ω matrix A′ (the columns of A need not be broadcast
individually, although the rows of B must be). Thus, the remaining N ′ columns of B (where
N ′ ≤ N −ω) are updated with the product A′B′, so that the update4x4 loop may be employed.

The performance of this version is given in Table 9 with the empirically found optimum
ω = 2

√
NxN ′. This formula represents a tradeoff between the proportion of work done in

the update4x4 (low ω) and a good K-factor (high ω) of the update4x4 loop. Note that for
N/Nx ≤ 360, the performance is still improving; this is because A′ and B′ are relatively small
matrices for this choice of ω, and hence can still fit in cache. For Nx ≥ 4, speed improves at
constant N/Nx, since the average K-factor increases with N . Although this is a considerable
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N/Nx Nx = 1 Nx = 2 Nx = 4
32 3.6 3.4 3.5
64 5.3 5.0 5.2
128 6.3 6.1 6.3
180 6.5 6.4 6.4
256 6.6 6.6 6.7
360 6.8 6.9 6.7

Table 9: Speed in MFLOPs/cell for blocked B ← A−1B for N ×N matrices on the AP1000 (A
is non-unit upper triangular)

improvement over the unblocked version, performance is still below that of the update4x4 loop,
mainly because of the tradeoff mentioned above.

4 Future Research

As well as deciding for what matrix sizes and shapes the alternative algorithms of Section 3.3
should be employed for the “BLAS-2” limit, all algorithms presented here need to be adapted
to a non-square AP1000 configuration.

Secondly, an implementation and evaluation of BLACS [11] on the AP1000 needs to be
undertaken; at this point, the blocked panel-wrapped matrix distribution scheme needs to be
addressed. When a consensus on the external interface of the BLAS-3 on a distributed memory
architecture is reached, this will have to be built into the AP1000 implementation. This will
complete the research component of this project.

Finally, it is hoped that a production level implementation of the BLAS-3 be made available;
however, the programming effort involved is considerable. Double precision real and complex
versions of the BLAS-3 will be required for realistic scientific computations. Then the relative
performance and programming effort of linear algebra algorithms using the BLAS-3 with those
not using it can be compared. For future versions of the AP1000, the BLAS-3 software will also
need some maintenance to keep its performance optimal.

5 Conclusions

Conclusions are now given with respect to three of this project’s major aims.

5.1 Usefulness of techniques used for BLAS-3 for other applications

As the BLAS-3 comprise relatively simple and easy to visualize matrix operations, the techniques
used to obtain efficiency here may be applied to other areas (see [4]). For example, the design
of the inner loops described in Section 3.1, especially with respect to the reuse of data using
the FPU registers, need to be applied to any linear algebra algorithm’s inner loops, in order
to get optimal efficiency. On a higher level, regrouping computations into larger blocks is a
necessary technique for almost any efficient parallel implementation, but the techniques are
largely algorithm-dependent.

Once blocking is achieved, partitioning methods need to be employed; the “outer-product”
partitioning using workspaces generally corresponds to a partitioning method cutting across
the algorithm’s innermost loop. This method is relatively easy to implement, has consistent
performance, but has the cost of copying data to a workspace. The “implicit” method has
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different properties; generally, where an efficient partitioning scheme can be employed, either of
these techniques can be applied.

Finally, “systolic”, “semi-systolic” and “non-systolic” versions of many linear algebra algo-
rithms exist; the results presented above indicate that, all other things being equal, the efficiency
of the AP1000’s cell broadcast routines favour the latter choices, but also that as AP1000 com-
munication is relatively fast, optimizing communication is less urgent on the AP1000 than on
comparable architectures.

5.2 Suitability of the BLAS-3 for distributed memory architectures

This project can address this issue from the implementor’s point of view.
A major software engineering effort is required to get a robust implementation for the BLAS-3

yielding high performance over all the matrix sizes, shapes and orientations possible. Further-
more, it is fairly important to keep the code size bounded so as not to waste cell memory space.
For example, all 4 orientations for the 4 types of triangular matrices have been coded for the
inverted triangular update implementation described in Section 3.4.1. Considerable effort had
to be invested to keep the code size compact and yet efficient.

To keep code size manageable, we have designed the BLAS-3 in terms of libraries of more
primitive operations: parallel, AP1000-dependent matrix operations (eg. matrix transpose, non-
systolic matrix multiply-add operations), which are themselves designed in terms of of a library
of serial AP1000-independent matrix operations (eg. scale a matrix). These more primitive
procedures have been optimized according to their importance.

This question remains to be asked: is a set of more primitive parallel matrix operations more
appropriate than the BLAS-3 for distributed memory architectures? At least it must be asked
whether all of the matrix orientations (especially the transposes) offered by the BLAS-3 are
really necessary. The answers are beyond the scope of this paper, but in defense of the BLAS-3,
a great deal more programming effort is required to implement any linear algebra algorithm
on a distributed memory machine than on a shared memory machine, so the need for BLAS-3
becomes even more important, justifying the extra effort.

5.3 Suitability of the AP1000 for the BLAS-3

In this section, the suitability for the BLAS-3 (and hence numeric computation in general) of
various features of the AP1000 are summarized.

The FPU. The FPU currently used in the AP1000 is its main weakness as a numeric
machine, since its peak performance of 8.3 MFLOPs (single precision) is no longer exceptional
in state-of-the-art processor technology. AP1000 cells need more and/or faster and/or pipelined
FPUs. To take advantage of this, the SPARC IU will at least need a faster rate of issuing FPU
instructions5, as at present the outerproduct and to some extent even the update4x4 loops’
performances are IU bound. The other aspects of the AP1000 are sufficiently balanced to be
able support this kind of improvement, and the advantage of basing the AP1000 cells on the
SPARC architecture makes such improvements relatively easy.

The cache. The large, direct-mapped, copy back cache of the AP1000 is well-suited for high
performance numeric computations. The copy back method is important for the performance of
loops such as the outerproduct loop. The direct-mapped cacheing strategy, although requiring
more programming effort to achieve full utilization, is better than a smaller or slower cache using
a more sophisticated strategy.

Cell memory. The AP1000’s 16MB cell memory is very important as users generally want
to run computations on very large data sets on high performance supercomputers. To make

5Currently, the SPARC IU appears to require 2 cycles to do this, but presumably this could be reduced to one
cycle with a modification in the cell architecture.
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best use of cache and to amortize communication costs, considerable workspace area can be
made available. Finally, as explained in [16], the aggregate cell memories, rather than the host’s
memory, should be regarded as the “ultimate” storage area for AP1000 computations on large
sets of data.

Communication. The fast xy communication routines using the wormhole routed T-
Network, especially the efficient broadcast routines, are one of the best features of the AP1000,
enabling sustained performance very close to peak performance. Although originally designed
for small messages, this project has shown that they can be used, with a little care, for com-
municating large amounts of data. A useful addition would be variants of the xy routines that
performed DMA receive directly into a prescribed user buffer area. Although this may present
semantic difficulties and dangers to the programmer, these are not serious problems for numeric
computations which are typically single-process, and especially for the BLAS-3 which should be
implemented by non-naive users. To a lesser extent, the software implementation of stride DMA
send and receive [15] would also be useful.

Overall, the AP1000 is capable of achieving 80%-90% of its theoretical peak speed for the
BLAS-3 routines for a wide range of matrix sizes. Very few parallel supercomputers can achieve
such a high percentage, and this indicates that the AP1000 is a well balanced architecture. As
future versions of the AP1000 scale upwards in computational performance, we expect it will
remain a competitive cost-effective numerical supercomputer.
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