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Multiple stochastic integrals of higher multiplicity cannot always be expressed in terms of simpler stochastic integrals, especially
when theWiener process is multidimensional. In this paper we describe how the Fourier series expansion ofWiener process can be
used to simulate a two-dimensional stochastic di�erential equation (SDE) using Matlab program. Our numerical experiments
use Matlab to show how our truncation of Itô’-Taylor expansion at an appropriate point produces Milstein method for the
SDE.

1. Introduction

Numerical analysis for stochastic di�erential equation (SDE)
has seen a considerable development in recent years. �ere
are many numerical methods for solving SDEs. Kloeden and
Platen [1] described a method based on the stochastic Taylor
series expansion but themajor di
culty with this approach is
that the double stochastic integrals cannot be easily expressed
in terms of simpler stochastic integrals when the Wiener
process is multidimensional. In the multidimensional case,
the Fourier series expansion ofWiener process has been used
to represent the double integrals by [1–3] but it needs to
generate many random variables at each time. �erefore, it
takes a lot of time to compute and also it is hard to extend to
higher order.

�ere have been many studies for the numerical res-
olution of Stochastic di�erential equations. Davie [4] uses
coupling and gives order one for the strong convergence
for stochastic di�erential equations (SDEs). Kanagawa [5]
investigates the rate of convergence in terms of two prob-
ability metrics between approximate solutions with i.i.d
random variables. Rachev and Ruschendor� [6] developed
Kanagawa’s method by using the Komlós et al. theorem in
[7]. Fournier [8] uses the quadratic Vaserstein distance for the
approximation of the Euler scheme and the results of Rio [9]

which gives a very precise rate of convergence for the central
limit theorem in Vaserstein distance. Also, Rio [10] provided
precise bound estimates. Under uniform ellipticity, Alfonsi et
al. [11, 12] studied the Vaserstein bound for Euler method and
they proved an �(ℎ(2/3−�)) for a one-dimensional di�usion
process where ℎ is the step-size and then they generalize the

result to SDEs of any dimension with �(ℎ√log(1/ℎ)) bound
when the coe
cients are time-homogeneous. Cruzeiro et al.
[13] get an order one method and under the nondegeneracy
they construct a modi�ed Milstein scheme which obtains an
order one for the strong approximation. Charbonneau et al.
[14] investigate the Vaserstein bound [15] by using the weak
convergence and Strassen- Dudley theorem. Convergence of
an approximation to a strong solution on a given probability
space was established by Gyöngy and Krylov in [16] using
coupling. Davie in [17] applied the Vaserstein bound to
solutions of vector SDEs anduses theKomlós et al. theorem to
get order one approximationunder a nondegeneracy assump-
tion. �e rest of this paper is organized as follows. Section 2
reviews some results concerning SDE. Section 3 presents
some existing schemes for numerical resolution of SDE. In
Section 4 we show the theoretical and implementation of
Milstein scheme using the Fourier method. In the last section
we give numerical example to the show the convergence
behaviour.
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2. Stochastic Differential Equations (SDEs)

De�nition. Let {�(�)}�≥0 be a �-dimensional standard Brow-
nian motion on a probability space (Ω,F,P) equipped with
a �ltration F = (F�)�≥0, 	 = 	(�, 
) a �-dimensional vector
function (called dri� coe
cient), and � = �(�, 
) a � × �-
matrix function (called di	usion coe
cient).

�e stochastic process� = �(�) considered in this paper
can be described by stochastic di	erential equations

�� (�) = 	 (�, � (�)) �� + � (�, � (�)) �� (�) ,
� ∈ [0, �] . (1)

Let the initial condition �(0) = 
 be an F0-measurable

random vector inR
�. AnF�-adapted stochastic process� =

(�(�))�≥0 is called a solution of equation (1) if

� (�) = � (0) + ∫�
0
	 (�, � (�)) ��

+ ∫�
0
� (�, � (�)) �� (�)

(2)

holds a.s.
�e conditions that the integral processes,

∫�
0
	 (�, � (�)) ��,

∫�
0
� (�, � (�)) �� (�) ,

(3)

are well de�ned are required for (2) to hold and for the
functions 	(�, �(�)) and �(�, �(�)) we have the following
conditions that

�∫�
0
�2 (�, � (�)) �� < ∞, (4)

and almost surely for all � ≥ 0,
∫�
0
|	 (�, � (�))| �� < ∞. (5)

And these conditions imply that (4) and (5) are well de�ned.
One important property for the stochastic integral is that

∫�
0
�(�) �� (�) = 1

2 ∫
�

0
� (�2 (�)) − 1

2 ∫
�

0
��

= 1
2�
2 (�) − �

2 ,
(6)

and for more details on stochastic integral see [1].

2.1. Existence and Uniqueness 
eorems. �e following the-
orem, which will be stated without proof, gives su
cient
conditions for existence and uniqueness of a solution of a
stochastic di�erential equation.

(i) Measurability: let 	: [0,∞)×R� → R
� and �: [0,∞)×

R
� → R

�×� are jointly Borel measurable in [�0, �] ×
R
�.

(ii) Lipschitz condition: there is a constant � > 0 such
that |	(�, 
)−	(�, �)| ≤ �|
−�|, and |�(�, 
)−�(�, �)| ≤
�|
 − �|, for all � ∈ [�0, �] and 
, � ∈ R.

(iii) Growth condition: there is a constant� > 0 such that
|	(�, 
)|2 ≤ �2(1 + |
|2), and |�(�, 
)|2 ≤ �2(1 + |
|2),
for all � ∈ [�0, �] and 
, � ∈ R.

�eorem 1. Under these conditions ((i)–(iii)) the stochastic
di	erential equation (1) has a unique solution �(�) ∈ [�0, �]
with

sup
�0≤�≤�

� (|� (�)|2) < ∞. (7)

Proof. See Kloeden and Platen [1], �eorem 4.5.3.

2.2. Strong Convergence for SDEs. Let (Ω,F,P) be a proba-
bility space satisfying the following:Ω is the set of continuous
functions with the supremummetric on the interval [0, �],F
is the �-algebra of Borel sets, and P is the Wiener measure.
We consider an approximate solution 
ℎ of (1) which uses a
subdivision of the interval [0, �] into a �nite number � of
subintervals which we assume to be of length ℎ = �/�. Also
we assume the approximate solutions
ℎ are randomvariables
on Ω. Now we say that the discrete time approximation 
ℎ
with the step-size ℎ converges strongly of order � at time
� = �ℎ to the solution�(�) if

� ����
ℎ − � (�)����	 ≤ �ℎ
	, ℎ ∈ (0, 1) , (8)

where the strong convergence will be in  	 space and �(�)
is the solution to the stochastic di�erential equation. � is a
positive constant and � is independent of ℎ.
3. Numerical Method for

Approximating the SDEs

�ere are many numerical methods for solving stochastic
di�erential equation; here we will mention two important
schemes. �e �rst one is the Euler-Maruyama scheme which
will give strong order 1/2 and the second one is the Milstein
scheme which has an order one for the strong convergence.
We will illustrate by a numerical example their convergence
behaviour of Milstein scheme.

Suppose we have the stochastic di�erential equation

��� (�) = 	� (�, � (�)) �� +
�
∑
�=1

��� (�, � (�)) ��� (�) ,

�� (0) = �(0)� ,
(9)

where " = 1, . . . , � on an interval [0, �], for a �-dimensional
vector�(�), with a �-dimensional Brownian path�(�).

In order to approximate the solution, we assume [0, �] is
divided into� equal intervals of length ℎ = �/�.

3.1. Euler-Maruyama Scheme. �e simplest numerical
method for approximating the solution of stochastic
di�erential equations is the stochastic Euler scheme (also
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called Euler-Maruyama scheme) which utilizes only the �rst
two terms of the Taylor expansion and it attains the strong
convergence � = 1/2.

Firstly, consider the Euler-Maruyama approximation
scheme.


(
+1)� = 
(
)� + 	� (#ℎ, 
(
)) ℎ +
�
∑
�=1

��� (#ℎ, 
(
)) Δ�(
)� , (10)

where Δ�(
)� = ��((# + 1)ℎ) − ��(#ℎ) and our numerical

approximation to�(#ℎ) will be denoted 
(
).
3.2. 
e Milstein Scheme. We shall now introduce the Mil-
stein scheme which gives an order one strong Taylor scheme.
We could obtain theMilstein scheme by adding the quadratic
terms

�
∑
�,�=1

%��� (#ℎ, 
(
))�(
)�� (11)

to Euler scheme which gives the following scheme


(
+1)� = 
(
)� + 	� (#ℎ, 
(
)) ℎ +
�
∑
�=1

��� (#ℎ, 
(
)) Δ�(
)�

+
�
∑
�,�=1

%��� (#ℎ, 
(
))�(
)�� ,
(12)

where

Δ�(
)� = �� ((# + 1) ℎ) −�� (#ℎ) ,
�(
)�� = ∫(
+1)ℎ


ℎ
{�� (�) − �� (#ℎ)} ��� (�) ,

%��� (�, 
) =
�
∑
�=1

��� (�, 
) 3���3
� (�, 
) .

(13)

�e implementation of the Euler scheme is easy to do
as it only needs to generate the normal distribution for the

standardBrownianmotionΔ�(
)� but it is not easy to generate

the integral �(
)�� for the Milstein scheme when we have two
or more dimensional SDEs. We will show by a numerical
example in the next section how we could generate the

integral �(
)�� using the Fourier method when we have two-
dimensional SDEs.

Before the implementation ofMilstein schemewe need to
mention some facts about the two-level approximation.

4. Two-Level Approximation

We need to generate the increments Δ�(
)� when we approx-
imate the solution to (1) by using Milstein or other schemes;
therefore Levy’s construction of the Brownian motion will
be used to simulate a sequence of approximations which
converge to the solution.

�at is,

Δ�(�,
)� = Δ�(�+1,2
)� + Δ�(�+1,2
+1)� , (14)

where 4 ∈ N and Δ�(�,
)� = ��((# + 1)ℎ(�)) − ��(#ℎ(�)) with
ℎ(�) = �/2�.

We will call the two-level approximation in (14) the trivial
coupling. We could generate the normal distribution in (14)
for the increments for a given level 4 by �rstly generating

the increments in the LHS Δ�(�,
)� and then conditionally
generating the increments in the RHS. We do the same
process for each level 4 + 2, 4 + 3 and so on.

We will see from the following section that the extension
of Milstein to � ≥ 2 is not easy to do. However we could
implement special class of equations for Milstein scheme

using only Δ�(
)� . �is could be done from the observation

that�(
)�� +�(
)�� = 26(
)�� where 6(
)�� = (1/2)Δ�(
)� Δ�(
)� if 7 ̸= 9
and 6(
)�� = (1/2){(Δ�(
)� )2 − ℎ}.
4.1. Empirical Estimation of the Error of a Numerical Method.
Usually we do not know the solutions of the stochastic dif-
ferential equation explicitly; therefore we could not directly
estimate the mean error �|�(�) − 
ℎ| which is the absolute
value of the di�erence between the approximation solution
ℎ
and the solution�(�) of an SDE (1). Assume the approximate
solution 
ℎ converges to the solution�(�) as we decrease the
step-size and go to zero. �en we can estimate the order of
convergence for a particular scheme by repeating : di�erent
independent simulations of sample paths. We will use the
following estimator {; = (1/:)�(|
(�) − 
̂(�)|)} for di�erent
approximation solutions 
(�) and 
̂(�) for di�erent range value
of ℎ. So for any numerical method if we have a bound for the
error �|
ℎ − 
ℎ/2| ≤ �1ℎ
 then �|
ℎ/2 − 
ℎ/4| ≤ �1(ℎ/2)
 and
then �|
ℎ/4 − 
ℎ/8| ≤ �1(ℎ/22)
 and so on. �erefore we will
get a geometric series; then we will obtain

� ����� (�) − 
ℎ���� ≤
∞
∑
ℎ=0

�1 ( ℎ
2�)


= �1ℎ

1 − 2−
 . (15)

So from (15) we could estimate the convergence and the
constant.

4.2. Two-Dimensional Stochastic Di	erential Equation. In
this section, we consider the two-dimensional stochastic
di�erential equations and we need to test the convergence
by using Milstein scheme. �e SDEs that we will choose to
implement our methods on are

��1 (�) = �2 (�) ��1 (�) + (�1 (�) + �) ��2 (�) ,
��2 (�) = B−�22(�)��1 (�) + (�1 (�) − �2 (�)) ��2 (�) ,

for 0 ≤ � ≤ 1, with �1 (0) = 2, �2 (0) = 0,
(16)

where �1 and �2 are independent standard Brownian
motions.

For the two-dimensional SDEs (16), we could simply
implement the Eulermethod by only generating somenormal
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distributions. Now, we need to apply Milstein method to (16)
and show the convergence between the �nal solutions of these
methods. We need to �nd an approximation for the Milstein
scheme for two-dimensional SDE.

For the SDEs (16), we have the Milstein scheme


(
+1)� = 
(
)� +
2
∑
�=1

��� (
(
)) Δ�(
)� +
2
∑
�=1

%��� (
(
))�(
)�� . (17)

But the major di
culty here is that the double stochastic
integrals

�(
)�� = ∫(
+1)ℎ

ℎ

(�� (�) − �� (#ℎ)) ��� (�) (18)

for 7 ̸= 9 cannot be so easily expressed in terms of simpler
stochastic integral when the Wiener process is multidimen-
sional. �erefore we will use the Fourier series expansion of
Wiener process to represent the double integrals.

Before explaining the Fourier method let us start by
applying the Milstein scheme (17) to (16) and then explain
which terms that the Fourier method will be represented to.
Before writing the Milstein approximation, we need to �nd
the derivative terms %���(
) = ∑�(3���/3
�)���(
) for the
SDEs (16).

We have

%111 = B−�22 ,
%112 = �1 − �2
%121 = �2
%211 = −2B−2�22
%221 = �2 − B−�22
%222 = � + �2
%122 = �1 + �
%212 = (−2�2) (�1 − �2) B−�22 .

(19)

�en, the Milstein approximation for (16) is


(
+1)1 = 
(
)1 + 
(
)2 Δ�(
)1 + (
(
)1 + #ℎ) Δ�(
)2
+ B−(�(�)2 )2�11 + (
(
)1 − 
(
)2 )�12
+ 
(
)2 �21 + (
(
)1 − #ℎ)�22


(
+1)2 = 
(
)2 + B−(�(�)2 )2Δ�(
)1 + (
(
)1 − 
(
)2 ) Δ�(
)2
− 2
(
)2 B−2(�

(�)
2 )
2�11

+ (
(
)2 − B−(�(�)2 )2)�21 + (
(
)2 − #ℎ)�22
− 2
(
)2 B−(�

(�)
2 )
2 (
(
)1 − 
(
)2 )�12.

(20)

Here in this approximation we have the double Wiener
integrals�11,�12,�21, and�22.�e doubleWiener integrals
�11 and �22 in (20) are easily computed from the Wiener

increments Δ�(
)1 and Δ�(
)2 , respectively, so

�11 = ∫(
+1)ℎ

ℎ

(�1 (�) − �1 (#ℎ)) ��1 (�)

= 1
2 {(Δ�

(
)
1 )2 − ℎ} ,

�22 = ∫(
+1)ℎ

ℎ

(�2 (�) − �2 (#ℎ)) ��2 (�)

= 1
2 {(Δ�

(
)
2 )2 − ℎ} .

(21)

On the other hand, the double Wiener integrals

�12 = ∫(
+1)ℎ

ℎ

(�2 (�) − �2 (#ℎ)) ��1 (�) ,

�21 = ∫(
+1)ℎ

ℎ

(�1 (�) − �1 (#ℎ)) ��2 (�)
(22)

could not be expressed in terms of simpler stochastic integrals
when the Wiener process is multidimensional. �erefore, for
these integrals the Fourier series expansion will be used to
approximate them.

Now we will explain the idea of Fourier method as
described in Kloeden, Platen [1, 18]. �e Brownian bridge
process

�� (�) − �
ℎ�� (ℎ) for 0 ≤ � ≤ ℎ (23)

has the Fourier series

�� (�) − �
ℎ�� (ℎ)

= 1
2	�,0

+
∞
∑
�=1

(	�,� cos(24�Hℎ ) + ��,� sin(24�Hℎ )) ,

(24)

where 7 = 1, . . . , �.
Here the coe
cients 	�,� and ��,� are independent random

variables with�(0, ℎ/242H2) distributed and we could derive
them from the Fourier integrals,

	�,� = 2
ℎ ∫
ℎ

0
(�� (�) − �

ℎ�� (ℎ)) cos(
24�H
ℎ ) ��,

��,� = 2
ℎ ∫
ℎ

0
(�� (�) − �

ℎ�� (ℎ)) sin(
24�H
ℎ ) ��.

(25)

For each 7 = 1, . . . , � and 4 = 1, . . . , I, when we integrate
(24) over the interval [0, ℎ], we will obtain the approximation
of multiple Stratonovich integrals

J	(�1 ,�2) =
1
2ℎK�1K�2 −

1
2√ℎ (	�2 ,0K�1 − 	�1 ,0K�2)

+ ℎ�	�1 ,�2 71, 72 = 1, . . . , �.
(26)
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function [w,v,J1,J2] = F year J(N,h)
N=5; % Here N=P for the truncation of the series in (26)
T=1; h=T/N; s=sqrt(h); N1=randn; N2=randn; N7=randn; w=s∗N1; v=s∗N2;

f=0; g1=0; g2=0; z=0; N3=randn(1,N); N4=randn(1,N); N5=randn(1,N); N6=randn(1,N);
for n=1:N;
f=f+(n.̂(−2)); c=(1/12)−((2∗(pi).̂2).̂(−1))∗f;
g1=g1+(n.̂(−1))∗N3(n);
g2=g2+(n.̂(−1)).∗N4(n);
z=z+(n.̂(−1)).∗(N3(n).∗N6(n)−(N5(n).∗N4(n)));
A=1./(2∗pi)∗z;
% to calculate formula (27)
end
B=(1/2)∗(w∗v);
d1=(−1/pi)∗sqrt(2∗h)∗g1−(2∗sqrt(h∗c)∗N7);
% to calculate formula (28)
d2=(−1/pi)∗sqrt(2∗h)∗g2−(2∗sqrt(h∗c)∗N7);
% to calculate formula (28)
J1=(1/2)∗h∗N1∗N2−(1/2)∗s∗(d2∗N1−(d1∗N2))+h∗A;
% to calculate formula (26)
J2=2∗B−J1;
end

Listing 1: Code to approximate the double integrals �12 and �21.

In formula (26), we have

�	�1 ,�2 =
1
2H
	
∑
�=1

1
4 (K�1 ,�N�2 ,� − N�1 ,�K�2 ,�) ; (27)

	�,0 = − 1H√2ℎ
	
∑
�=1

1
4 K�,� − 2√ℎ%	Q�,	;

where %	 = 1
12 −

1
2H2
	
∑
�=1

1
42 .

(28)

In addition, K�, K�,�, N�,� and Q�,	 are independent standard
Gaussian random variables.

For the truncation of Fourier series we require a conver-
gence rate of order ℎ for the global error for the Milstein

scheme andwewill use (26) to express the double integral�(
)��
for 7 ̸= 9. So in order to have this convergence rate we need to
compare the mean square error (MSE) of the approximation
of the iterated Itô integrals to the discretization error of the
Milstein scheme. As described in Kloeden and Platen [1],
Corollary 10.6.5, and equation 10.6.16 we require an MSE

bounded by �ℎ3 for some positive constant �. �e algorithm

of Kloeden et al. [18] has an MSE of order ℎ2/I and then

we obtain that �ℎ3 = ℎ2/I which gives ℎ = 1/�I. Hence
we want the number of terms in the truncated sum I to be

proportional to ℎ−1.
We know from the symmetry relation that for any

double integral we have �(
)12 + �(
)21 = 26(
)12 where 6(
)12 =
(1/2)Δ�1(
)Δ�2(
).

Table 1: �e error results for the Milstein scheme in 2� case.

step-size error (;)
0.0050 0.1318

0.0025 0.0673

0.00125 0.0347

0.00062 0.0177

0.00031 0.0088

5. Numerical Example

In the M-�le in Listing 1, I will approximate the value of
the double integrals �12 and �21 and some explanations are
shown for the formulas ((26)-(27)).

Now, a�er we represent the approximation of the double
integrals �11, �22, �12 and �21, we could substitute them
in the Milstein approximation in (20). A�er that we need
to estimate the error for the Milstein solution in two-
dimensional case and test the convergence order.

�eMatlab code in Listing 2 calculates the Milstein error
over the interval [0, 1], with step-size (200, 400, 800, 1600,
3200) with a number of simulation (: = 20000).

It is obvious from Table 1 and the plotting in Figure 1
that the convergence seems to occur when we decrease the
step-size and we obtain �(ℎ) convergence. By estimating a
range of values of ℎ we could get the estimation of the con-
vergence and also the estimation of the constant by using (15),
so

� ����
ℎ − � (�)���� ≤ �
1 − 1/2ℎ ∀ℎ. (29)
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T=1; NN=10; h=T/NN; R=10000; q=0;
for r=1:R, x=2; y=0; xx=2; yy=0;

for m=1:NN, hh=h/2; N=10;
[wL,vL,J1L,J2L] = F year J(N,hh);

[wr,vr,J1r,J2r] = F year J(N,hh);
w=wL+wr; v=vL+vr; J1=J1L+J1r+wr∗vL; J2=J2L+J2r+wL∗vr;
u=x+y∗wL+(x+(m−1)∗h)∗vL+exp(−y.̂2)∗(1/2)∗(wL.̂2−hh)

+(x−y)∗J1L+y∗J2L+(x+(m−1)∗h)∗(1/2)∗(vL.̂2−hh);
y=y+exp(−y.̂2)∗wL+(x−y)∗vL−2∗y∗exp(−2∗y.̂2)∗(1/2)∗(wL.̂2−hh)

+(y−exp(−y.̂2))∗J2L+(y+(m−1)∗h)∗(1/2)∗(vL.̂2−hh)
−2∗y∗exp(−y.̂2)∗(x−y)∗J1L; x=u;

u=x+y∗wr+(x+(m−1/2)∗h)∗vr+exp(−y.̂2)∗(1/2)∗(wr.̂2−hh)
+(x−y)∗J1r+y∗J2r+(x+(m−1/2)∗h)∗(1/2)∗(vr.̂2−hh);

y=y+exp(−y.̂2)∗wr+(x−y)∗vr−2∗y∗exp(−2∗y.̂2)∗(1/2)∗(wr.̂2−hh)
+(y−exp(−y.̂2))∗J2r+(y+(m−1/2)∗h)∗(1/2)∗(vr.̂2−hh)
−2∗y∗exp(−y.̂2)∗(x−y)∗J1r; x=u;

u=xx+yy∗w+(xx+(m−1)∗h)∗v+exp(−yy.̂2)∗(1/2)∗(w.̂2−h)
+(xx−yy)∗J1+yy∗J2+(xx+(m−1)∗h)∗(1/2)∗(v.̂2−h);

yy=yy+exp(−yy.̂2)∗w+(xx−yy)∗v−2∗yy∗exp(−2∗yy.̂2)∗(1/2)∗(w.̂2−h)
+(yy−exp(−yy.̂2))∗J2+(yy+(m−1)∗h)∗(1/2)∗(v.̂2−h)
−2∗yy∗exp(−yy.̂2)∗(xx−yy)∗J1; xx=u; end

q=q+abs(x−xx)+abs(y−yy); end
(q/R)

Listing 2: Code for estimating the error for two-dimensional Milstein scheme.
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for the Milstein scheme 2-d case

y = p1 ∗ x + p2

Coefficients:
p1 = 0.97401
p2 = 3.1401
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Figure 1: Milstein method for the two dimension SDEs.
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simulation of iterated Itô integrals for multiple independent
Brownian motions,” 
e Annals of Applied Probability, vol. 11,
no. 2, pp. 470–487, 2001.

[4] A. M. Davie, “Pathwise approximation of stochastic di�erential
equations using coupling,” http://www.maths.ed.ac.uk/∼adavie/
coum.pdf.

[5] S. Kanagawa, “�e rate of convergence for approximate solu-
tions of stochastic di�erential equations,” Tokyo Journal of
Mathematics, vol. 12, no. 1, pp. 33–48, 1989.

[6] S. T. Rachev and L. Ruschendor�, Mass Transportation Prob-
lems, Volume 1,
eory; Volume 2, Applications, Springer-Verlag,
1998.

[7] J. Komlós, P. Major, and G. Tusnády, “An approximation of
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