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Automatic recognition of traffic signs in complex, real-world environments has become a pressing research concern with rapid
improvements of smart technologies. Hence, this study leveraged an industry-grade object detection and classification algorithm
(You-Only-Look-Once, YOLO) to develop an automatic traffic sign recognition system that can identify widely used regulatory
and warning signs in diverse driving conditions. Sign recognition performance was assessed in terms of weather and reflectivity to
identify the limitations of the developed system in real-world conditions. Furthermore, we produced several editions of our sign
recognition system by gradually increasing the number of training images in order to account for the significance of training
resources in recognition performance. Analysis considering variable weather conditions, including fair (clear and sunny) and
inclement (cloudy and snowy), demonstrated a lower susceptibility of sign recognition in the highly trained system. Analysis
considering variable reflectivity conditions, including sheeting type, lighting conditions, and sign age, showed that older en-
gineering-grade sheeting signs were more likely to go unnoticed by the developed system at night. In summary, this study
incorporated automatic object detection technology to develop a novel sign recognition system to determine its real-world

applicability, opportunities, and limitations for future integration with advanced driver assistance technologies.

1. Introduction

Trafhic signs are used to regulate, warn, and guide traffic on
roadways and facilitate coordinated road usage [1], and their
placement, orientation, and visibility are crucial for road
operation and safety. Given their importance, automatic
recognition of roadway signs by smart transportation
technology is a current research interest with numerous
potential applications [2]. Automatic sign recognition could
facilitate the interpretation of information received from the
detected signs by assisted and autonomous driving systems.
For instance, traffic operation and maintenance authorities
could develop traffic sign inventories and conveniently
identify traffic sign maintenance needs with the help of such
automated systems [3, 4]. In addition, rapid and accurate
recognition of traffic signs is important for improving traffic
safety, the primary goal of Intelligent Transportation Sys-
tems and Vision Zero initiatives [5-7].

While significant effort to develop a robust sign rec-
ognition system has been made by both academics and
industry practitioners [8-15], the sensitivity of the developed
systems to recognize signs in varying real-world conditions
is still hypothetical. Our descriptive research, then, con-
centrates on the question: how does the diversity of weather
and reflectivity conditions of the physical world influence
the recognition performance of a TSR system, given that the
system is developed by incremental training resources? To
address this crucial research question, our study leveraged a
state-of-the-practise object detection algorithm to develop a
robust TSR system that can successfully recognize a wide
range of traffic signs. The objective was to measure the
recognition efficiency of the developed TSR system in
various weather and reflectivity conditions with the aim of
assessing the implications of those variations on the rec-
ognition performance. The scope of this research is limited
to identifying the changes of performance pattern due to
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variations in real-world weather and reflectivity conditions
resulting from an industry-level object detection system.
Hence, comparing the detection performance in comparison
to other state-of-the-art TSR system in standard lighting,
weather and reflectivity conditions are beyond the scope of
this study. Additionally, our study emphasised on detection
sensitivity to TSR system training resources (i.e., images of
traffic signs from favourable environmental conditions)
which restrained us from analyzing asymmetrical impact
due to training resources with varying lighting and envi-
ronmental features.

The findings presented here will contribute to the overall
body of knowledge in several ways. The key contributions of
this study are listed below:

Besides intrinsic features of traffic signs (i.e., size, shape,
and color), which are mostly focused on earlier studies,
this study paid attention to external factors and their
influence on sign identification efficiency.

Traffic sign images collected from favourable lighting
and weather conditions are used as training resources
in the development phase of the TSR system and ex-
pected to establish a more proficient system with
gradually increased resources. The identified pattern of
progression will facilitate future research by providing a
benchmark for the correlation between training data-
sets and the expected efficiency of a TSR system that is
developed with the same system architecture.

As mentioned before, the TSR system was only trained
with images from favourable environmental condition
which implies the proficiency of the developed system
in identifying the signs in unfavourable condition
without being trained for such conditions.

2. Literature Review

Researchers and practitioners have attempted to establish
automatic traffic sign detection systems over the last few
decades that have increased in complexity as technology has
advanced. The most conventional form of research has fo-
cused on systems that attempt to extract signs from their
environments for identification based on colour and shape.
In terms of colour-based recognition, a valuable set of in-
vestigations used RGB space [16-18]. A clustering method in
a colour space was developed by Tominaga [19] for sign
detection. Ohlander et al. [20] also used a recursive region
splitting method to achieve colour segmentation and applied
Hue, Saturation, Intensity (HSI), and sign area. In terms of
shape-based recognition, studies used the basic sign shapes
of circles, triangles, or rectangles [9, 11, 21-26]. This method
does overcome brightness issues found with colour-based
methods. However, a significant difficulty for shape-based
detection is the rotation angle and distortions of signs. All
road signs in this method require a nonzero angle between
the optical axis of each camera and the normal vector to the
sign surface and should be as high as 30°, depending on the
distance between the sign and the cameras. The complexity
of automatic shape-based detection increases for signs with

Journal of Advanced Transportation

acute viewing angles as well as signs with torn corners and
occluded parts.

Methods based on statistical machine learning and ar-
tificial intelligence (AI) have become prevalent, providing
researchers with new tools to develop more efficient and
reliable TSR systems using classification techniques, such as
artificial neural networks (ANNSs) [27, 28] k-nearest
neighbour (KNN) [13, 29], support vector machine (SVM)
[8, 18], and random forest [30, 31]. In 2005, Gil-Jimenez
et al. [32] explored shape classification algorithms using
SVMs for TSR. They found that using statistical classification
methods such as SVM, colour, and shape, traffic signs can be
roughly recognized. In 2006, Gao [33] did further research
on shape and colour using human vision models, testing on
98 British traffic signs in various viewing conditions. The
results were that the recognition rate increased to as high as
95%, especially for immobile traffic signs. In another study
[34], unified visual saliency with Histograms of Oriented
Gradients (HOG) featured learning for TSR. Here, the
authors combined SVM with the HOG feather learning
method and were able to achieve a high recognition rate. In
2010, Prisacariu et al. [35] proposed a real-time system that
introduced region-based 3D tracking to single view detec-
tion, followed by adaptive boosting cascades and SVM to
improve accuracy. Huang et al. [36] developed a method for
detecting and recognizing speed-limit signs using only gray-
level information. Hechri and Mtibaa [37] proposed and
tested road sign detection using shape-filtering methods,
with a multilayer, perception neural network classification
model. Other studies have refined the details of real-time
TSR. Sheng et al. [38] proposed treatment for recognizing
signs of different colours, such as red/yellow/blue versus
grayscale, and a probabilistic neural network to achieve final
recognition. Li et al. [39] proposed a fuzzy shape recognizer
to improve the robustness of traffic sign detection. Although
it highlighted some success in sign detection and recogni-
tion, the authors emphasised the need to investigate and
improve the overall performance in different weather and
light conditions. However, while these studies were focused
on developing TSR systems with higher accuracy through
advanced techniques of machine learning and artificial in-
telligence, they were often silent on the implications of real-
world variables on sign recognition.

A few examples of recent studies do couple the application
of statistical machine learning and artificial intelligence with
the influence of exogenous factors on sign detection and
recognition. For instance, Sajjad et al. [40] developed a deep
learning-based sign detection system as a part of an auton-
omous driving demonstration. Although the developed sys-
tem performed well in a controlled environment, the
detection and navigation accuracy are yet to be tested in real-
world scenarios with complex challenges. Wang et al. [41] also
developed an Al-based lightweight sign detection system that
outperformed the Microsoft COCO benchmark [42]. How-
ever, the developed system was tested solely on images
extracted from diverse real-world settings and not continuous
detection from real-world driving condition videos that
would include the added complexity from continuous sign
tracking. The analysis performed by Muhammad et al. [43] on
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multiple state-of-the-art approaches for sign detection from
Swedish Traffic Sign Dataset [44] also suffered from similar
limitations. Tabernik and Skocaj developed a convolutional
neural network- (CNN-) based system capable of recognizing
200 categories of signs. While the literature demonstrated
excellent performance on the tested dataset, the pair did not
compare the developed TSR system’s performance variations
for different lighting and weather conditions. Garcia-Garrido
et al. [45] tested a sign detection, classification, and tracking
system under different weather and light conditions
employing an algorithm designed to use a camera mounted
on a vehicle’s windscreen. While the authors stated that the
developed TSR system was tested in different weather and
reflectivity conditions, additional information regarding
recognition performance in varying environmental scenarios
was absent in the paper. Phu and Lwin Oo [46] introduced an
RGB colour-based thresholding technique for sign detection
and recognition, using an adaptive neuro-fuzzy inference
system (ANFIS) to recognize different features points. Al-
though they concluded that the system yields good results in
sunny, cloudy, and rainy weather conditions, supporting
analysis for this claim was not provided in the paper. Lim et al.
[47] proposed a system for real-time recognition of speed
limit signs in different illumination conditions using modified
census transform (MCT) and support vector machine (SVM).
High detection and recognition rates were obtained. How-
ever, the influence of incremental training on TSR system
performance remained unaddressed. Hassaballah et al. [48]
presented their conceptually similar research on detecting
objects (i.e., vehicles) in adverse weather conditions. They
restored visibility by improving raw image quality before
object detection and tracking. The user’s perspective of the
testing dataset was static for all the different weather con-
ditions collected from images. In real-world driving scenarios,
the adverse weather conditions introduce added challenges of
uninterrupted detection and tracking with continuously
changing environments and backgrounds.

From our review, it is evident that numerous studies have
been proposed to detect and recognize road traffic signs.
While plenty of proposed methods rely on computer vision
and artificial intelligence tools, challenges still exist in the
field, including the effects of weather, reflectivity variations,
limited classes of sign recognition, and human-machine
interactivity. More importantly, the majority of established
TSR systems have not been tested for real-world environ-
mental challenges. To address these research gaps in sign
recognition systems, we introduce a YOLO-based TSR system
for detection and recognition of key regulatory and warning
traffic signs in real time. Our study measured its performance
in a variety of weather and reflectivity conditions and con-
sidered their influence on recognition ability. We contribute
to the existing TSR system foundations by pairing it with an
industry-level detection system and evaluating its perfor-
mance in complex real-world scenarios. Furthermore, we
developed several editions of the TSR system by training the
system, introducing increasing numbers of traffic sign images
to its training process. We went on to measure each edition’s
ability to provide direction on the necessary resources re-
quired to attain a certain level of success from TSR systems.

3. Data Collection

The data collection process played a pivotal role in our re-
search progress as the diversity of collected data mandated the
individuality of this research. In the beginning, a subset of
available on-road traffic signs, coupled with signs used in
earlier studies, was selected for investigation. Our initial se-
lection criteria covered the majority of basic regulatory signs
while expanding to include common warning signs. Ulti-
mately, eight types of signs from two sign classes (i.e., reg-
ulatory and warning) were used, as listed in Table 1. Signs with
different specifications (i.e., age and sheeting types) were
collected from across Canada. Altogether, a total of twenty-
eight signs were used for data collection. Fifteen of these signs
were made of ASTM D4956 Type XI (usually known as and
will be referred as diamond grade) sheeting with high
reflectivity, and the remaining thirteen signs were made of
Type I (usually known as and will be referred as engineering-
grade) sheeting with low reflectivity. Out of twenty-eight
signs, fifteen signs were new (age <l-year), while thirteen
signs were three years or older. Although the collected sign
inventory was diverse with respect to these features, we were
unable to acquire each sign type in the different ages and
sheeting types, proving to be an analysis limitation con-
cerning reflectivity in sign recognition. Therefore, the analysis
of reflectivity was performed by grouping signs into sign
classes and comparing the performance of each sign class.

Once procured, the signs were installed on an access-
controlled roadway segment (with a length of 750 meters in
each direction) specifically built for research purposes at the
University of Alberta, Edmonton, Alberta, Canada (Figure 1).
A total of ten signposts were evenly spaced at designated spots
on the test track, five for each direction of traffic. Each
signpost was equipped with an adjustable holding mechanism
to facilitate the placement and removal of traffic signs. On
each round of data collection, ten signs were installed on the
signposts. After installation, a vehicle equipped with a video
recording camera drove along the roadway segment at 40 km/
h recording the installed traffic signs. Although only ten signs
were installed on the test track at any given time, all the
available signs for this study were used by changing and/or
moving them after each recording, thus generating different
combinations for every round. For each combination of traffic
signs, three recordings were made on each round to ensure
the availability of superior quality videos for any given sce-
narjo. To maintain a standard recording environment, the
elevations of the signs on their posts, as well as the position
and angle of video camera inside the car, were kept consistent.

All videos recorded in the afternoon underwent weather
impact analysis to filter for the influence of light. In total, 795
videos were recorded covering different weather and
reflectivity conditions. Ninety seven (12%) of those were
unusable due to exogenous factors (e.g., placement errors
and obscured visuals). From the remaining videos, 15%, all
with favourable conditions (i.e., daytime and sunny
weather), were set aside for the image extraction required for
TSR system development. The remaining videos were la-
belled and batched according to the weather and reflectivity
conditions during recording.



TaBLE 1: Selected traffic signs for this study.
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4. Sign Recognition System Development
and Testing

In order to overcome the inherent limitations of self-created
TSR systems, the search for an established system architecture
based on artificial intelligence led us to YOLO. YOLO is an
industry-grade object detection system that is extremely fast
and accurate [49]. We chose version 3 (v3) for our study as it
includes a new object classifier network that has outperformed
earlier versions in different types of object detection. We then
trained that classifier network to detect the traffic signs listed in
Table 1 and subsequently tested its sign recognition ability in
varying weather and reflectivity conditions.

Since adequate training datasets are the most important
input for a deep learning approach, initial efforts went to-
wards the extraction of video frames containing traffic signs,
with the intention to gradually increase the number of
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images in the dataset. Each extracted image was labelled
using Labellmg software [50] to extract individual regions of
an image, create a bounding box, and generate annotation in
a YOLOvV3 compatible format, with a total of 4,445 anno-
tations generated from the extracted frames. Once the an-
notations were generated, a python script was written to find
corresponding images since image labelling software only
develops individual annotations. Without finding the image
for a specific annotation, the training process could not be
executed. After developing a set of images with annotations,
the images were further augmented to simulate potential
variations of light, weather conditions, and physical
distortions.

Using a python script, shape-based modification included
rotating the captured frames at specific angles (i.e., 0°, 15°, 30°,
and 45°) to imitate possible physical distortion of traffic signs
that might be experienced on the video. Colours were also
modified using the python script, to replicate various light
scenarios by changing hue, saturation, and contrast of
extracted image frames. While it would be impractical to
account for all possible shape and colour-based inconsis-
tencies experienced in real world, the augmented dataset
provided some primary criterion for the algorithm to learn.
Examples of data acquisition and shape and colour-based
augmentation of image frames are provided in Figure 2.

Once the preprocessing of training data was finished, the
images were fed into the YOLOV3 object detection system
with a Darknet-53 feature extractor to develop our TSR
system. YOLOV3 used a variant of Darknet [51] that orig-
inally had a 53-layer convolutional neural network (CNN)
trained on ImageNet [52]. For the task of recognition, 53
additional CNN layers were stacked onto it, making it a 106-
CNN layer underlying architecture for YOLOV3. As a result,
the residual skip connection and upsampling features of the
TSR system were enhanced. YOLOV3 performed recognition
on feature maps of three different sizes at three different
places in the network. Object recognition from images in
different scales is a unique feature of YOLOv3, making it
ideal for this study since traffic signs are small in relation to
the larger image. Its recognition uses a detection kernel
shaped as 1 x1 x [B x (5+ C)]. Here, B is the number of
possible predicted bounding boxes on a cell of the feature
map, 5 is the four bounding box attributes and one object
confidence, and C is the number of sign classes.

The first detection was made by the 82 layer. For the
first 81 layers, the image was down sampled by the network,
such that the 81* layer had a stride of 32. For instance, if we
had an image of 416 x 416 pixels, the resultant feature map
would be 13 x 13. If one detection is made here using the
1 x 1 detection kernel, this gives us a detection feature map
of 13 x 13 x 48. The default value of B = 3 for YOLOV3 as it
predicts 3 bounding boxes for every cell, where each
bounding box specialises in detecting a certain kind of
object; C is the number of classes, 11 in our case reflecting
the number of detection signs. Hence, the kernel size is 1 x
1 x 54 for each region on the image.

The feature map from layer 79 was subjected to a few
convolutional layers before being upsampled by two-
times to dimensions of 26 x 26. The map was then depth
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FIGURE 1: (a) Plan of data collection test track. (b) Vehicle. (c) Camera used for recording videos of traffic signs.

concatenated with the feature map from layer 61 and
subjected to a few 1 x 1 kernel convolutional layers to fuse
the features. The second detection was made on the 94"
layer, yielding a detection feature map of 26 x 26 x 255. A
similar procedure was followed where the feature map
from layer 91 was subjected to convolutional layers before
being depth concatenated with a feature map from layer
36. Like before, a few 1 x 1 kernel convolutional layers
followed to fuse the information. The final detection was
made at 106™ layer, yielding a feature map of
52 x 52 x 255. YOLOV3 used nine anchor boxes, three for
each image scale. Training YOLO on a custom dataset
required using K-means clustering to generate these nine
anchors. The anchors were arranged in descending order

of dimension, assigning the three biggest anchors for the
first scale, the next three for the second scale, and the last
three for the third scale.

Training the TSR system began by feeding the annotated
training images into the YOLOV3 network. Training images
used for all versions of the TSR system were collected from
favourable lighting (i.e., daylight) and weather (i.e., sunny)
conditions. Continuous monitoring of average loss for each
epoch was made from the beginning of the training process.
The objective of observing the average loss value was to stop
the training after it reached a certain threshold or a point
where the loss value became stationary, and it could be
assumed that the network had converged. The training
usually converged at a loss rate of 0.03 over a certain number
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FiGure 2: Different stages of data preprocessing.

of epochs (130 — 200 epochs). The training process involved
iteratively updating the weights of the neural network based
on the number of mistakes made on the training dataset.
Weights represent the strength of the connection between
neuron units, which helped to determine how much in-
fluence the input would have on the output. Every neuron of
the network was given an input value and a bias value and
was then multiplied by a weight value that was adjusted
during each iteration of training.

Once the training task was completed by attaining a
target average loss rate of 0.03, the most recent weight
generated by the system was executed on Darknet to analyse
the testing video dataset. These recorded videos contained
the chosen traffic signs in different light, weather, and
reflectivity scenarios. In order to obtain labelled videos,
screenshots were captured during analysis by the developed
TSR system. Additionally, a .csv file containing the infor-
mation pertaining to the recognized traffic signs and image
frames of labelled traffic signs from the analysed video was
automatically stored in a secure server after each test video
analysis was completed. An overview of the entire sign
recognition system development and testing process is
summarized in Figure 3.

In this study, five versions of the TSR system were de-
veloped by gradually increasing the number of training
images, allowing us to explore the impact of training datasets
on recognition performance. Each version, therefore, had a
different training dataset but maintained the same param-
eters as outlined in Table 2. Training datasets for each
version were prepared from extracted images recorded in
bright, sunny conditions to maintain a standard training
environment. In each version of the TSR system, 20%
training images contained traffic signs and reminder of the
training data were images without traffic signs. The number

of annotated and augmented images of traffic signs used for
the training and validation of each system version is listed in
Table 2.

5. Analysis of TSR System Performance
and Progress

To perform analysis of system performance, a set of pa-
rameters was chosen from the literature. A combination of
these parameters was used exclusively to evaluate the
identification accuracy of different versions of the developed
TSR system. The recognition performance of each sign type
was evaluated using three parameters: precision, recall, and
Fl1-score. To measure these parameter values, the recogni-
tion criterion was defined by measuring the number of True
Positives, False Positives, and False Negatives on each
dataset. The analysis was based on the following definitions
of the parameters.

True Positive: TSR system successfully recognized (i.e.,
identified and classified) the presence of a test sign

False Positive: TSR system incorrectly recognized (i.e.,
identified and/or classified) the presence of a test sign

False Negative: TSR system failed to recognize (i.e.,
identify and recognize) the presence of a test sign

Using the above definitions, three key parameter values
were calculated, and the following definitions were used to
determine the parameter values:

Precision is the fraction of correct recognition instances
out of total successful recognitions (equation (1)).

Recall is the fraction of correct recognition instances
retrieved over total expected recognitions (equation (2)).
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TaBLE 2: Information on training traffic sign image datasets for each version of the TSR system.
Number of images
Groups
Ver. 1 Ver. 2 Ver. 3 Ver. 4 Ver. 5
Max. 30 km/h 264 808 1594 1978 2232
Max. 70 km/h 120 502 750 1146 1408
Max. 80 km/h 291 963 1673 2257 2435
Stop 622 1388 2512 3732 4454
Yield 1272 3178 4408 5476 6046
Max. 30 km/h ahead 388 984 1578 2006 2192
Signal ahead 686 1724 2722 3232 3482
Stop ahead 932 2038 2962 4370 5014
Yield ahead 310 550 852 1192 1456
Right curve ahead 848 2196 4072 5138 5726
Left curve ahead 560 1078 1634 2110 2264
Annotated and unannotated image 5054 10231 18258 23215 26714
Training and validation annotated image 6293 15409 24757 32637 36709

Fl-score is the weighted average of precision and
recall. Since this takes both False Positives and Neg-
atives into account, the Fl-score provides a more
useful interpretation of recognition performance
(equation (3)).

True Positive

Precision = — — (1)
True Positive + False Positive

True Positive
Recall = — —  (2)
True Positive + False Negative

Precision x Recall
Fl-score=2X—mF"m (3)
Precision + Recall

6. Implications of Weather Variations on TSR
System Performance

The automatic sign recognition system’s competence when
introducing varying weather conditions was analysed by testing
the videos through the established TSR system. Out of 370

videos considered (based on lighting conditions), 193 videos
were recorded in varying weather conditions, but consistent
daylight was chosen to keep results clear of any impact from
variations in light conditions. As already outlined, the com-
parison of recognition performance was between fair and
inclement weather conditions. Fair weather was represented on
104 videos among the tested datasets. Figure 4(a) primarily
compared the recall performance of tested sign types in in-
cremental versions of the developed TSR system for two types
of weather scenarios, inclement weather and fair weather. Each
horizontal bar represents the recall value of a specific sign for a
specific version of the TSR system. The incremental intensity of
green/blue color represents the higher version of the TSR
system. For instance, the bottom-most horizontal bar of
Figure 4(a) illustrated the recall value of Speed Limit signs for
version 1 of the TSR system, which was much higher in fair
weather (57.43%) than in inclement weather (17.77%). Table 3
outlines the version-specific parameter values irrespective of
sign types. Since the impact of weather conditions was not clear
from this illustration, we carried out several significance tests
on the evaluation parameters.
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FIGURE 4: (a) Comparison of recall metric on studied weather conditions. (b) Progression of average recall values with an increasing number
of training images. (c) Unidentified signs proportion of compared weather scenarios.



Journal of Advanced Transportation 9
P
TABLE 3: Version-specific parameter values (i.e., mean and standard deviation) at different weather conditions.
v Precision Recall F1-score
er.
Fair Inclement Fair Inclement Fair Inclement
1 90.98% 80.14% 77.23% 63.75% 83.54% 71.01%
(7.15%) (5.47%) (20.98%) (38.49%) (12.67%) (8.87%)
2 87.52% 75.18% 84.79% 86.72% 86.13% 80.54%
(10.68%) (8.45%) (11.80%) (18.57%) (13.21%) (13.86%)
3 88.05% 67.70% 95.36% 77.08% 91.56% 72.09%
(13.98%) (14.92%) (6.24%) (37.47%) (10.63%) (16.55%)
4 81.49% 58.19% 99.38% 94.86% 89.55% 72.13%
(16.16%) (18.09%) 1.77%) (7.89%) (5.19%) (24.40%)
5 71.23% 40.02% 98.75% 92.68% 82.76% 55.90%
(24.76%) (23.48%) (3.54%) (10.01%) (8.93%) (11.81%)

Significance test (two-sample t-test) results found that the
recall parameter in fair weather was significantly higher, at
95% confidence level, than in inclement weather conditions
for versions 1 and 2 of the TSR system. Based on the chi-
square contingency table test, the precision metric was found
to be significantly different in versions 1 through 3, whereas
an insignificant difference was observed on the F1-score for
versions 3 through 5. Hence, it can be stated that the devised
TSR system did not experience significant performance
variations due to weather on versions that were trained with
more than 20,000 training and validation images.

Additional analysis of the average recall metric of dif-
ferent versions revealed a pattern of recognition perfor-
mance progression as the number of images increased. This
pattern revealed that the system required a higher number of
images to be trained when faced with scenarios such as
imperfect conditions (i.e., inclement weather) to match the
performance for perfect conditions. For instance, to attain
an 80% recall on signs in inclement weather, the TSR system
required training on more than 17,000 images. By contrast,
approximately 9000 training images would be adequate to
attain a similar performance for signs in fair weather con-
ditions. Finally, the analysis on the percent of unidentified
signs in imperfect conditions (%USIC) revealed that the
majority were set within inclement weather conditions
(average =56.46% and standard deviation =41.34%). With
the developed versions of the TSR system, the proportions of
unidentified signs were evenly distributed between fair and
inclement weather (Figure 4(c)), and several sign types were
completely identified with the higher numbered versions,
irrespective of weather conditions.

Since different inclement weather types bring different
identification challenges, the TSR system performance was
further analysed based on both inclement weather types (i.e.,
cloudy and snowy) compared to 89 videos. Figure 5(a)
showed the comparative performance of recall parameters
by the developed TSR systems in cloudy and snowy weather
conditions. Figures 5(b) and 5(c) illustrate sample identi-
fication snapshots of one sign in cloudy and snowy weather
conditions, respectively. The average recall value in cloudy
weather conditions (84.11%) was slightly higher than snowy
weather conditions (81.93%), considering all versions of the
TSR system. Most of the signs showed similar performance
in both inclement weather conditions, except signs with

white backgrounds (i.e., speed limit signs and speed limit
ahead signs). On average, identification of speed limit signs
was 9.43% higher in cloudy weather conditions. Similarly,
speed limit ahead signs in cloudy weather conditions ex-
perienced 5.06% higher identification rates.

7. Implications of Sign Reflectivity
Variations on TSR System Performance

The analysis of sign reflectivity was designed to compre-
hensively consider the reflectivity factors that influence
recognition performance. Hence, the signs were initially
compared based on two sheeting categories, namely, engi-
neering grade and diamond grade. Each sheeting type was
further divided into two lighting conditions, daytime and
night-time, presuming lighting conditions would play a
significant role in detectability. Finally, two more categories
for sign age were also taken into account, i.e., signs less than
one year old and signs three years or older, presuming that
reduction in reflectivity accumulates over the year due to
weathering, natural abrasion, and other factors. The goal in
this portion of the analysis was to establish the effect of these
factors on the TSR system’s accuracy.

The classification of the tests for this section was not made
sign-specific but was rather classed in a higher-order due to the
lack of availability of some specific signs in one of the two
sheeting types or different age groups. As a result, signs were
divided into two classes, namely, warning signs (e.g., curve ahead
and signal ahead) and regulatory signs (e.g., stop and speed
limit). Figure 6 shows the distribution of data samples in the
testing dataset that contained characteristics related to sheeting
type, lighting conditions, and sign age. The two sheeting types
selected for this study possess considerably different reflectivity
features. Engineering grade or Type I sheeting typically meets the
requirements of ASTM D4956 and contains some basic
reflectivity properties. On the other hand, diamond grade or
Type XI sheeting is designed to reflect close to 50% of the
available light to the driver, enabling them to better recognize
signs and at a greater distance [53]. Lighting conditions were
considered for the second level of reflectivity factors. All the
videos for daytime lighting conditions were collected between 10
am to 4 pm, and night-time data were collected from 1 hour after
sunset till 10 pm. Finally, the signs were sorted based on two
predominant age groups of available signs.
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FIGURE 5: (a) Performance comparison in studied inclement weather scenarios and sample sign identification by the TSR system in (b) cloudy and

(c) snowy weather.
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FIGURE 6: Share of samples according to sign age, sheeting type, and lighting conditions.

The performed analysis is summarized in Figure 7, which
shows enhanced performance for the newer and diamond
grade signs in night conditions. Figure 7(a) shows a com-
parison of recall parameters for both sheeting types obtained
from different versions of the developed TSR system. A sig-
nificance test on the recall metric for this part of the analysis

showed a significant difference at a 95% confidence level for all
versions of the developed TSR system, irrespective of sign class.
Further analysis was performed to associate the influence of
lighting on sign recognition for the two distinct sheeting types.
In general, diamond grade signs were found to be similarly
identifiable as engineering-grade signs in daylight (Figure 7(b)).
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FIGURE 8: Recall parameter comparison between (a) sheeting types in daytime lighting and (b) sheeting types in night time lighting with

different age groups.

Version 1 (Z value = 2.28) for regulatory signs and version 1 (Z
value =2.23), 2 (Z value=2.01), and 3 (Z value=2.08) for
warning signs showed significantly higher levels of recognition
for diamond grade signs during daytime. However, at night,
diamond grade signs showed significantly enhanced recog-
nizability for both sign classes in all versions (Figure 7(c)).
Figures 8 outlines daytime and night-time performance,
respectively, via sign class-specific recall values in each version
of the developed TSR system for the two sheeting type sce-
narios under scrutiny and further divided by sign age. At first
glance, the daylight recall results seem to outperform night-
time results, although both types of sheeting seem to produce
a comparable outcome with slight favouring of diamond
grade signs. Generally, the significance test results showed a
significant difference between the two sheeting types, irre-
spective of sign class and age, for an earlier version of the TSR
system at daylight condition (Figure 8(a)). More evolved
forms of the TSR system varied less in responses to sign age. A
striking difference in sign recognition performance was ob-
served at night. For night-time samples (Figure 8(b)), the

diamond grade signs provided all versions with a significantly
higher recall rate. The comparison between different ages of
engineering-grade signs showed significantly higher levels of
recognition of new signs (age <1 year) as compared to older
signs (age >3 years) in both sign classes (i.e., regulatory and
warning). On the contrary, sign recognition was less sensitive
to age for both sign classes when using diamond grade
sheeting. This part of the analysis proved beyond a reasonable
doubt that sheeting types of signs could play a significant role
in recognition by the TSR system, exclusively during the
night. Furthermore, older engineering-grade signs were more
likely to be missed by a well-developed TSR system at night, in
comparison to new engineering-grade signs, diamond grade
signs of both age groups, and sign images taken in daylight.

8. Conclusion and Future Research

This study has contributed to the development of a new,
robust automatic TSR system through the unique integra-
tion of industry-ready technology with an experimental
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investigation of the TSR system’s limitations and oppor-
tunities. The primary objective of the research was to study
the influence of weather and reflectivity variations on the
TSR system’s performance, particularly as the system was
improved consistently through the gradual increase in the
number of training images. The results from the recognition
performance analysis found that the impact of reflectivity
conditions was far more significant than that of weather
variations. However, scenarios with high reflectivity, fair
weather, and generous lighting proved to perform better
than their counterparts. Comprehensive significance testing
was conducted on the evaluation parameters to identify
statistically significant differences between the compared
scenarios. This study also revealed that, even if the TSR
system was trained with sign images from amenable natural
conditions, it could attain a relatively comparable level of
recognition based on imperfect real-world conditions.
Furthermore, this research provides a benchmark for the
resources required to train a TSR system of similar archi-
tecture with a specific level of accuracy. Our study not only
developed a real-time TSR system with the capability of
recognizing several sign types situated in real-world sce-
narios with varying environmental conditions but it also
specified the scope and restrictions of the established system.
While this study focused primarily on the performance
variations caused by changes of two factors (i.e., weather and
reflectivity), the implications of other factors such as rec-
ognition distances, deterioration due to damage, and other
exogenous variations will be explored in future studies. We
believe that this study will assist in the sustainable and
consistent growth of TSR system development as a part of
advanced driver assistance systems. In the broader field,
interested industry partners can work towards overcoming
the identified limitations of TSR systems, while researchers
can identify additional applications of this technology to
improve traffic operation and the safety of all road users.
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