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U S A  

A new method for solving systems of two simultaneous nonlinear a' ,c  andlor transcendental 
equations in RZ, which is based on reduction to simpler one-dim >lial non-linear equations is 
presented. This method to approximate a component of the wlution d .s not require any information 
about the other component in each iteration. It generates .: hequence of points in R which converges 
quadratically to one component of the solution and afterwards it evaluates the other component using 
one simple computation. Moreover, it does not require a good initial guess of the solution for both 
components and it does not directly need function evaluations. A proof of convergence is given. 

KEY WORDS: Implicit function theorem, nonlinear equations, Newton's method, reduction to one- 
dimensional equations, nonlinear SOR method, m-step SOR-Newton method, quad- 
ratic convergence, numerical solution, zeros. 
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1. INTRODUCTION 

Suppose that F = ( f , ,  . . . , fn)T: D c Rn+Rn is a Frechet differentiable mapping on an  
open neighborhood D* c D  of a solution X * E D  of the system of nonlinear 
equations 

Starting with an initial guess X O ,  Newton's method for the attainment of an  
approximation of X *  is given by 

If, in addition, the Frechet derivative at  X *  is nonsingular and F 1 ( X )  is Lipschitz 
continuous, then the Newton iterates will converge to X *  provided the initial 
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172 T. N. GRAPSA AND M. N. VRAHATIS 

guess Xo is sufficiently close to X*. In this case the convergence of Newton's 
method at X* is quadratic [9], that is 

I I x " "  - x * I I ~ c I I x ~ - x * ~ ~ ~ ,  for some C, p=O, 1, ... (1.3) 

The quadratic convergence of Newton's method is attractive. However, the method 
depends on a good initial approximation [4], and it requires in general n 2 + n  
function evaluations per iteration, besides the solution of an n x n linear system. 

There is a class of methods for solving systems of nonlinear equations which 
arise from iterative methods used for systems of linear equations, [7-10, 121. These 
methods to solve (1.1) use reduction to simpler one-dimensional nonlinear 
equations of the components f , ,  f,, . . . , f,. The best-known method of this type is 
the nonlinear successive overrelaxation, (SOR), method which solves the equation 

for Xi and then sets 

provided that w ~ ( 0 , 1 ] .  Now, if the solutions of (1.4) are computed exactly then we 
obtain the exact nonlinear SOR process. Moreover if m steps of the one- 
dimensional Newton's method are applied to (1.4) to yield an approximate 
solution, then we obtain the m-step SOR-Newton process. 

Suppose, now, that F:D c Rn+Rn is continuously differentiable on an open 
neighborhood D* c D of a point X* E D  for which F(X*) = O. Assume further that 
F'(X*) is an i21-matrix [9]. Then the iterates of the nonlinear SOR, exact 
nonlinear SOR and m-step SOR-Newton will converge to X* provided that 
o ~ ( O , l ] .  In this case the convergence of the above processes at X* is linear [9]. 

In this paper we implement the well-known Implicit Function Theorem [3, 91 to 
obtain a method for solving systems of two-dimensional nonlinear equations. This 
method although uses reduction to simpler one-dimensional nonlinear equations, 
as the previous methods use, yet it generates a sequence of points in R which 
converges quadratically to one component of the solution, while the other 
component is evaluated by one simple computation. Moreover this method does 
not directly need any function evaluation, unless it is required for the computation 
of the various partial derivatives. 

In Section 2 the derivation and the description of the new method are presented. 
In Section 3 a proof of convergence is given. Lastly, in Section 4, numerical 
applications are given. 

2. DERIVATION O F  THE METHOD 

NOTATION 2.1 In what follows, a, f denotes the partial derivative of f with 
respect to the ith variable, S denotes the closure of the set S, diag(a,,. . . ,a,)  
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SIMULTANEOUS NONLINEAR EQUATlONS 173 

defines the diagonal matrix with elements a , ,  . . . , a ,  and f (X,, .) defines the 
mapping derived by holding XI  fixed. 

In the development of our analysis we shall implement the following theorem. 

THEOREM 2.1 (Implicit Function Theorem) Suppose that 5 D c R 2 - +  R is defined 
and continuous, together with its partial derivatives d l f '  and a,l; on an open 
neighborhood Do c D of'a point X0 = (Xy, for which f (XO) = 0 and a, f (Xo) f0 .  
Then there exist open neighborhoods J, c R and J, c R of the points Xy and X: 
respectively such that jbr any X, E J1, the equation f(X)=O has a unique solution 
X 2 = 4 ( X , ) ~ J Z  Moreover the mapping 4: J ,+R is continuous, it has a continuous 
derivative in J, and 

Proof See 13, pp. 184-188; 9, pp. 128-1291 

Remark 2.1 The XI and X, of the above theorem can change roles. Thus, if at 
some point 8, f f 0 then in a neighborhood of it the equation f(X)=O can be 
expressed by the same equation in the form X, =g(X,) [3]. 

Suppose, now, that F = ( f , ,  f2)T: D c R2 -+ R2 is twice-continuously differentiable 
on an open neighborhood D* c D of a solution X*=(X:,X:)T~D of the system of 
nonlinear equations 

Our interest lies in obtaining an approximate solution of (2.1). To do this we 
consider the sets Si, i =  l , 2  to be those connected components o f f  ;'(O) containing 
X* on which 8,f; f 0 for i =  1,2 respectively. Then according to the above theorem 
there exist open neighborhoods JT c R and JT , i  c R, i =  l , 2  of the points X: and 
X: respectively such that for any XI  EJT the equations h(X) =0, i =  1,2 define X, 
as a single-valued function of XI,  thus 

Furthermore the functions 4i: JT+R are continuous and have continuous deriva- 
tives in J: which are given by 

Suppose now that Xo=(Xy,Xi)T is an initial approximation of the solution 
where X ~ E J T ,  then using Taylor's formula we can expand the 4i(X1), i =  1,2 
about Xy. So, we get 
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174 T. N. GRAPSA AND M. N. VRAHATIS 

or. using (2.2) and (2.3) we can form the following linear system 

where XS.'= S , ( X : ) ,  i = I ,  2 are the corresponding soiutions of the equations 
f.(Xy, . )=O.  Equivalently we can write the above linear system with the following 
form 

where the matrix A,, and the column vector V, are defined as follows 

Suppose now that det.A,#O then the solution X of (2.6) gives a new 
approximation of the solution X *  of (2.1). Thus in general we can obtain the 
following iterative scheme 

XPL'=diag(l,O)XP+A;'l/,, p=O, 1 , . . .  (2.7) 

where 

A P = [ u , , l = [ ? , J ( X ~ , X $ . ' ) ] ,  i , j = 1 , 2 ,  

provided that the matrix A ,  is nonsingular. 
Note that the above process does not require the expressions 4, but only the 

values ~ 4 "  which are given by the solution of the equations .fi(XT, . ) = O .  So, by 
holding the X ,  fixed, we solve the equations 

f;(Xp, rf) = 0, i =  1,2 (2.8) 

for rf in the interval (a,a + f i )  with an  accuracy 6. Of course, we can use any one of 
the well-known one-dimensional methods [9, 11. 12, 141 to solve the above 
equations. Here we use the traditional one-dimensional bisection (see [2,13] for a 
discussion of usefulness), since frequently the steps B are long and also a few 
significant digits for the computations of the roots of the equations (2.8) are 
required. So, to solve an equation of the form 

where Y :  [ y , ,  y,] c R+ R is continuous, we recommend the following iterative 
scheme, which is a simplified version of the bisection method [15-171 
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SIMULTANEOUS NONLINEAR EQUATIONS 175 

with to  =;., and h = 7 ,  - ;., and where for any real number a, 

Of course, (2.10) converges to a root t* in (g,, 7,) if for some t,, n= 1,2,.  . . holds 
that 

sgn Y(r,). sgn Y ( t , )  = - 1. (2.12) 

Also, the minimum number of iterations p, that are required in obtaining an 
approximate root t' such that It'- t *  ga, for some e ~ ( 0 , l )  is given by 

,LL = [log, ( h  . E -  ' ) I ,  (2.13) 

where the notation [ P I  refers to the least integer that is not less than the real 
number z: 

Lastly, from the (2.7) we can easily see that the computation of the first 
component of X P  does not require any information about Xe. Then, obviously 
we can obtain from (2.7) the following process 

where 

W,= [F2 f ; (X ; ,  X $ ~ ~ ) / d e t  A,, -?, f , ( X f ,  X$.')/det A,]. 

Moreover, since X$=q5,(XT)=$,(XT) we can also take either X';,' or X';,' to 
approximate the X t .  

Instead of the previous process, we can obtain an alternative process if we take 
into consideration that the components X ,  and X, can change roles. Thus, if Si ,  
i = 1.2 are those connected components of f [ ' (O),  containing X *  on which ? , f ,  # O  
for i =  1,2 respectively, then there exist open neighborhoods JTvi  c R, i =  1,2 and 
J T c  R of the points X: and X t  respectively, such that for any XTEJZ the 
equations h ( X )  = 0 ,  i = 1,2 have correspondingly the unique solutions X I  = 

g,(X,) E 7:. ,, i =  1,2. Moreover the functions g,: JT+R are continuous and have 
continuous derivatives in JT which are given by 
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176 T. N.  GRAPSA AND M. N. VRAHATlS 

Consequently, we can derive the following alternative process 

XP+ = diag (0, l)XP + Bp I Up, 

where 

provided that the matrix Bp is nonsingular. The X;.' in (2.16) denotes the solution 
of the equation f;.( -, X$) = 0. 

Obviously, the computation of X,+' in (2.16) does not require any information 
about X';. So we conclude with the following process 

where 

Moreover, since XT =g,(X:) =g2(XT) we can also take either X:.' or X:v2 to 
approximate the XT. 

Lastly, we give a geometric interpretation of the new method and a correspond- 
ing illustration of the main differences between Newton's method and new method. 
To do this. we write Newton's method as 

Now, the equations 

represent planes in the (X,,X,,X,)-space which are tangent to the surfaces 
X ,  = f ; ( X ) ,  i= 1,2 at the points (X, ,  X , ,  ,J;.(XP)), i =  1,2 respectively. Then the point 
XP" which is determined from (1.2) is the point of intersection of these two 
planes with the (XI ,  X,)-plane [9]. 

Instead of the above planes we consider the following ones. 

which are tangent to the surfaces X,=f,(X), i=  1,2 at the points (X,,X';.',O), 
i= l , 2  respectively. Then, the point Xp+'  which is obtained using (2.7) is the point 
of intersection of these two planes with the (Xl,X2)-plane. Or equivalently, Xpi ' 
is the intersection of the following lines in (XI ,  X,)-space 
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The geometric interpretation of the process (2.16) is analogous to the previous one. 

3. A PROOF O F  CONVERGENCE 

In this section we shall give a proof of convergence of the new method. We shall 
examine the convergence of the iterates of the process (2.14) which, obviously, is 
similar to the convergence of the iterates of (2.17). 

The results of the following theorem will be needed in the sequel. 

THEOREM 3.1 Suppose that f : E  c R+R is twice-continuously differentiable on an 
open neighborhood E* c E of a point X* E E for which f ( X * )  = O  and f l ( X * )  #O. 
Then the iterates XP, p=0,1, .  . . of Newton's method 

will converge to X *  prooided the initial guess is sufficiently close to  X*.  Moreover 
the order of conuergence will be two. 

Proof See [ l l ,  141. 

Now, we proceed with the following convergence result. 

THEOREM 3.2 Suppose that F = ( j ; ,  f2)T:  D c R2+ R2 is twice-continuously differen- 
tiable on an open neighborhood D* c D of a point X * = ( X T , X T ) T ~  D for which 
F(X*)  = O = (0,O) '. Let S, ,  i = 1,2 be those connected components of f ,- ' ( 0 )  contain- 
ing X* on which ?,f, # O  for i = 1,2 respectively and that d l f i ( X * )  $0,  i= 1,2. Then 
the iterates of (2.14) will rontlerge to  X* provided the initial guess X :  is sufficiently 
close to XT. Moreouer the iterates Xy,  p=0,1, .  . . have order of convergence two. 

Proof Obviously from (2.14) we can obtain 

or, after some algebraic manipulations 

Using (2 .2)  and ( 2 3 j  from the above relationship we get 
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Consider now the mapping 

Then obviously, for the above mapping the conditions of Theorem 3.1 are fulfilled. 
Consequently the iterates X:. p=O, I , .  . . of (2.14) converge to X :  and the order of 
convergence is two. 

Suppose now, that for some p we have XP =XT then from (2.14) we get 

Thus the theorem is proven. 

4. NUMERICAL APPLICATIONS 

To test the method of this paper, we applied the method (2.14) to the following 
systems 

The system (4.1) is a well-known test case [5, 61. It has two roots (O,O)T and 
(1.69541 521 , . . ,O.718608 19. . .)7' and its Jacobian at them is not singular. The 
Jacobian of the system (4.2) is singular at the root (O,O)T. Also system (4.2) has a 
particular difficulty since the values of the function F even for points which are 
not very close to the root (O,O)T, tend to be close to zero. The system (4.3) appears 
in some chemical applications [ I ,  p. 571 because it calculates the pH of a weak 
acid from its concentration. The system (4.3) has a particular difficulty since the 
values of the function F for points which are not very close to  the root 
(3.891 743658. . . ,0.9872169279.. . I T  cannot be computed with high accuracy. The 
Jacobian of the system (4.3) at its solution is not singular. 

In Tables 1, 2 and 3 we present the number of iterations N which are required 
in obtaining an approximate solution of the systems (4.1), (4.2) and (4.3) 
correspondingly, for requiring accuracy lo-' and lo-'', respectively by using the 
iterative schemes (2.14) and (2.10), for several starting points X y .  Further, we 
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Table I Results for system (4.1) 

St heme ( 2  14)  
-- - 

xy F =  lo-"  
- - 

N F E  AS 

- 1 5 20 50 
I 6 24 60 
2 5 20 50 
3 5 20 50 
4 6 24 60 
5 7 28 70 
6 6 24 60 
7 7 78 70 
8 9 26 90 

h'rwrnn'~ method 
-- - -- -- - 

27 X i  t = l O R  
- - 

N F E  
- - 

I - 1  5 30 
1 - 1  6 36 
2 - 1  D D 
3 - 1  9 5 4  
4 - 1  8 48 
5 - 1  8 4 8  
6 - 1  9 5 4  
7 - 1  8 4 8  
8 - 1  9 54 

Table 2 Results for system (4.2) 

Scheme ( 2  14) 
- 

X7 t = 1 0 - "  

h'ewton's method 
-- - 

x: xy E =  10 " 

N F E  N F E  

present also in these tables the corresponding results obtained by the Newton's 
method for the same points X:  while retaining the second component X y  fixed. 
So, in the following tables "E" indicates the requiring accuracy, "N" indicates the 
number of iterations, "FE" indicates the number of function evaluations, "AS" 
indicates the total number of algebraic signs that are required for applying the 
iterative scheme (2.10), and "D" indicates divergence. 

From these results we observe that, although the second component X!  of the 
starting points is near to the second component X r  of the solution for the cases 
(4.1), (4.2) and (4.3), yet iterative formula (2.14) using only the X y  is seen to be 
superior to the Newton's method for the cases (4.2) and (4.3). The results for the 
method based on (2.17) for all the cases (4.1)-(4.3) are analogous to the previous 
one. 
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Table 3 Results for system (4.3) 

Scheme (2 .14)  

x: ~ = l o - ~  

N FE AS 
- 

1 1 0 4 0  200 
2 8 32 160 
3 6 24 120 
4 5 2 0 1 0 0  
5 7 28 140 
6 8 32 160 
7 8 32 160 

Newton's method 

5. CONCLUDING REMARKS 

The method we have analysed in this paper compares favourably with the 
Newton's method when the Jacobian of F at the root of the system (1.1) is 
singular or when it is difficult to evaluate the components of F accurately. 

Also although our method uses reduction to simpler one-dimensional equations, 
yet it converges quadratically to one component of the solution, say the X I  one, 
while the other component of the solution is evaluated by the simple computation 
X, =(4,(X,) + 4,(X2))/2. So it does not require a good estimate of both solution 
components as the Newton's method does. 

Moreover, the method does not need function evaluation directly, and also 
using the iterative scheme (2.10) it requires only their algebraic signs to be correct 
in finding the c#J~(X,). 
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