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A new method for solving systems of two simultaneous nonlinear a’ ¢ andjor transcendental
equations in R? which is based on reduction to simpler one-dime¢  .ual non-linear equations is
presented. This method to approximate a component of the solution d s not require any information
about the other component in each iteration. It generates u sequence of points in R which converges
quadratically to one component of the solution and afterwards it evaluates the other component using
one simple computation. Moreover, it does not require a good initial guess of the solution for both
components and it does not directly need function evaluations. A proof of convergence is given.
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1. INTRODUCTION

Suppose that F=(f;,..., f,)T: D =« R"->R" is a Fréchet differentiable mapping on an
open neighborhood D* <D of a solution X*eD of the system of nonlinear

equations
F(X)=0=(0,0,...,0)". (L1

Starting with an initial guess X° Newton's method for the attainment of an
approximation of X* is given by

XPH=XP_F(X?)"'F(X?), p=0.1,.. (1.2)

If, in addition, the Fréchet derivative at X* is nonsingular and F'(X) is Lipschitz
continuous, then the Newton iterates will converge to X* provided the initial
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guess X° is sufficiently close to X*. In this case the convergence of Newton’s
method at X* is quadratic [9], that is

X7 —X*|<C||X?—X*||%, for some C, p=0,1,... (1.3)

The quadratic convergence of Newton’s method is attractive. However, the method
depends on a good initial approximation [4], and it requires in general n*+n
function evaluations per iteration, besides the solution of an n x n linear system.
There is a class of methods for solving systems of nonlinear equations which
arise from iterative methods used for systems of linear equations, [7-10, 12]. These
methods to solve (1.1) use reduction to simpler one-dimensional nonlinear
equations of the components f, f,,..., f,- The best-known method of this type is
the nonlinear successive overrelaxation, (SOR), method which solves the equation

SXE L XL X L, Xy, XD =0 (1.4)

for X; and then sets
X =XPyw(X;—XP), i=1,...,n, p=0,1,... (1.5)

provided that we(0, 1]. Now, if the solutions of (1.4) are computed exactly then we
obtain the exact nonlinear SOR process. Moreover if m steps of the one-
dimensional Newton’s method are applied to (1.4) to yield an approximate
solution, then we obtain the m-step SOR-Newton process.

Suppose, now, that F:D < R"—R" is continuously differentiable on an open
neighborhood D* = D of a point X*e D for which F(X*)=0. Assume further that
F'(X*) is an M-matrix [9]. Then the iterates of the nonlinear SOR, exact
nonlinear SOR and m-step SOR-Newton will converge to X* provided that
we(0,1]. In this case the convergence of the above processes at X* is linear [9].

In this paper we implement the well-known Implicit Function Theorem [3, 9] to
obtain a method for solving systems of two-dimensional nonlinear equations. This
method although uses reduction to simpler one-dimensional nonlinear equations,
as the previous methods use, yet it generates a sequence of points in R which
converges quadratically to one component of the solution, while the other
component is evaluated by one simple computation. Moreover this method does
not directly need any function evaluation, unless it is required for the computation
of the various partial derivatives.

In Section 2 the derivation and the description of the new method are presented.
In Section 3 a proof of convergence is given. Lastly, in Section 4, numerical

applications are given.

2. DERIVATION OF THE METHOD

Notation 2.1 In what follows, 0;f denotes the partial derivative of f with
respect to the ith variable, § denotes the closure of the set S, diag(a,,...,q,)
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defines the diagonal matrix with elements a,,...,a, and f(X,, ) defines the

mapping derived by holding X, fixed.
In the development of our analysis we shall implement the following theorem.

TheoreM 2.1 (Implicit Function Theorem) Suppose that f.D < R*-R is defined
and continuous, together with its partial derivatives 0,f and 0,f, on an open
neighborhood Dy < D of a point X°=(X9, X7 for which f(X®) =0 and 6, f(X°) #0.
Then there exist open neighborhoods J, <R and J, = R of the points X9 and X9
respectively such that for any X,elJ,, the equation f(X)=0 has a unique solution
X,=¢(X,)eJ,. Moreover the mapping ¢:J,—R is continuous, it has a continuous
derivative in J| and

(X )=—0, (X1, (X )0, [(Xy, (X))
Proof See [3, pp. 184-188; 9, pp. 128-129].

Remark 2.1 The X, and X, of the above theorem can change roles. Thus, if at
some point J, f #0 then in a neighborhood of it the equation f(X)=0 can be
expressed by the same equation in the form X, =g(X,) [3].

Suppose, now, that F=(f,, f>)7: D c R*-R? is twice-continuously differentiable
on an open neighborhood D* = D of a solution X*=(X¥, X¥)Te D of the system of
nonlinear equations

F(X)=0=(0,0)". @.1)

Our interest lies in obtaining an approximate solution of (2.1). To do this we
consider the sets S;, i=1,2 to be those connected components of f; !(0) containing
X* on which 8, f;#0 for i=1,2 respectively. Then according to the above theorem
there exist open neighborhoods J¥ <R and J%,c R, i=1,2 of the points X} and
X* respectively such that for any X, e J¥ the equations f(X)=0, i=1,2 define X,
as a single-valued function of X, thus

X2=¢i(X1)E-7§,i, i=1,2. (2.2)

Furthermore the functions ¢;:J¥—R are continuous and have continuous deriva-
tives in J¥ which are given by

X )= =01 X1, Gl X1))/0 (X 1, (X)), i=1,2. (23)

Suppose now that X°=(X9,X97 is an initial approximation of the solution
where X{eJ¥, then using Taylor’s formula we can expand the ¢,(X,), i=1,2
about X9. So, we get

GX ) =X +(X, ~XDPiXY), i=1,2, (2.4)
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or, using (2.2) and (2.3) we can form the following linear system

Xx(ql./;'(X?aX(z)'i)»"‘qui(X?»X(z)'iH‘Xz
= X0+ X0 (X0 X3 /0, X0 XSY), i=1.2 (2.5)

where X9 =¢,(X9), i=1,2 are the corresponding solutions of the equations
(XY, -)=0. Equivalently we can write the above linear system with the following

form
Ao(X-diag(1,00X% =V, (2.6)
where the matrix A4, and the column vector V;, are defined as follows
Ao=la]=[0 (X, X39]. i, j=12,
Vo=[od=[X3"0, (X9, X99], i=1.2
Suppose now that detA,#0 then the solution X of (2.6) gives a new

approximation of the solution X* of (2.1). Thus in general we can obtain the
following iterative scheme

Xr+ ' =diag (1,00 X"+ 4, 'V,, p=0,1,... (2.7)

where
Ap:[aij] =[5jf}(X’1’,X’z"i)]~ ij=12,

V,=[v]=[X3"6, ilX1. X50), i=12,

provided that the matrix A4, is nonsingular.

Note that the above process does not require the expressions ¢; but only the
values X5'* which are given by the solution of the equations f{(X¥%,-)=0. So, by
holding the X, fixed, we solve the equations

HXE D) =0, i=12 (2.8)

for rf in the interval (a,a+ f) with an accuracy d. Of course, we can use any one of
the well-known one-dimensional methods [9, 11, 12, 14] to solve the above
equations. Here we use the traditional one-dimensional bisection (see [2,13] for a
discussion of usefulness), since frequently the steps § are long and also a few
significant digits for the computations of the roots of the equations (2.8) are
required. So, to solve an equation of the form

¥(1) =0, (2.9)

where W:[7,,7.] = R— R is continuous, we recommend the following iterative
scheme, which is a simplified version of the bisection method [15-17]
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o1 =t +sgnW(to) sgn P(r)-h/2"" Y, n=0,1,... (2.10)

with 1,=7, and h=7,~7, and where for any real number a,

—1 ifa<0
sgna= 0 ifx=0 (2.11)
1 ifa>0.

Of course, (2.10) converges to a root t* in (y,,7y,) if for some r,, n=1,2,... holds
that

sgn () -sgn ()= — 1. (2.12)

Also, the minimum number of iterations p, that are required in obtaining an
approximate root ¢ such that |¢'—*| <e, for some £€(0, 1) is given by

=[log, (h-& )], (2.13)

where the notation [v] refers to the least integer that is not less than the real

number v.
Lastly, from the (2.7) we can easily see that the computation of the first

component of X?*! does not require any information about X3. Then, obviously
we can obtain from (2.7) the following process

XP =X+ WV, p=0,1,....m,
(2.14)

Xm +1 (Xm 1 Xan 2)//2,
where

W,=[0: fo(X. X5 2)/det A, — 2, f,(XD. X5 1)/det 4,

Moreover, since X%=¢ (X*)=¢,(X*) we can also take either X7! or X7 to
approximate the X%,

Instead of the previous process, we can obtain an alternative process if we take
into consideration that the components X, and X, can change roles. Thus, if §;,
i=1,2 are those connected components of f; }(0), containing X* on which ¢, f;#0
for i=1,2 respectively, then there exist open neighborhoods J¥ ,c R, i=1,2 and
J¥<R of the points X* and X% respectively, such that for any X%¥eJ% the
equations f(X)=0, i=1,2 have correspondingly the unique solutions X, =
g(X,)eJt,, i=1,2. Moreover the functions g;:J%¥—R are continuous and have
continuous derivatives in J¥ which are given by

2ilX )= — 0, g X 1), X2)/0, figd( X ), X)), i=1,2, (2.15)
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Consequently, we can derive the following alternative process
X7 t=diag(0,1)X*+B, 'U,, (2.16)
where
B,=[b;1=00;f(X}" . X5)], i,j=12
U,=[u]=[X7"0, f( X} XD], i=12,

provided that the matrix B, is nonsingular. The X% in (2.16) denotes the solution

of the equation f{-, X3)=0.
Obviously, the computation of X5*! in (2.16) does not require any information
about X¥. So we conclude with the following process

X3 =X34Z,U, p=0,1,...k
(2.17)

X5 = (X5 + X522,
where

Z,=[~0, /X7 * X5)/det B,, 8, fy( X}, X5)/det B, ].

Moreover, since X¥=g,(X%)=g,(X%) we can also take either X{' or X%? to

approximate the X7.
Lastly, we give a geometric interpretation of the new method and a correspond-

ing illustration of the main differences between Newton’s method and new method.
To do this, we write Newton’s method as

(XFT1 =X 0, (XD +(X5" = XB) O, f( X7+ X" =0, i=12  (218)

Now, the equations
X3=(X; = X{) 0, f X)) +(X - X5) 0, S XD) + filX7), i=1,2 (2.19)

represent planes in the (X,,X,, X3)-space which are tangent to the surfaces
X3=fiX), i=1,2 at the points (X, X,, f(X?)), i=1,2 respectively. Then the point
X7*! which is determined from (1.2) is the point of intersection of these two
planes with the (X, X,)-plane [9].

Instead of the above planes we consider the following ones.

X3=(X; = XD 0, fl X2, X5) +(X, — X5) O f(X], X5, =12, (220)

which are tangent to the surfaces X;= f(X), i=1,2 at the points (X, X%"0),
i=1,2 respectively. Then, the point X?*! which is obtained using (2.7) is the point
of intersection of these two planes with the (X, X,)-plane. Or equivalently, X7*!
is the intersection of the following lines in (X, X ,)-space



SIMULTANEOUS NONLINEAR EQUATIONS 177
(X1 —XD) &, i(X T XY +(X,— X3 &, (X0, X539 =0, i=1,2  (221)

The geometric interpretation of the process (2.16) is analogous to the previous one.

3. A PROOF OF CONVERGENCE

In this section we shall give a proof of convergence of the new method. We shall
examine the convergence of the iterates of the process (2.14) which, obviously, is
similar to the convergence of the iterates of (2.17).

The results of the following theorem will be needed in the sequel.

THEOREM 3.1  Suppose that fiE «c R—>R is twice-continuously differentiable on an
open neighborhood E* < E of a point X*eE for which f(X*)=0 and f'(X*)#0.
Then the iterates X¥?, p=0,1,... of Newton's method

Xrri=XP— f(XP)/f'(XP) (3.1)

will converge to X* provided the initial guess is sufficiently close to X*. Moreover
the order of convergence will be two.

Proof See [11, 14].
Now, we proceed with the following convergence result.
THEOREM 3.2 Suppose that F=(f,, f,)7:D =« RZ—>R? is twice-continuously differen-
tiable on an open neighborhood D* =D of a point X*=(X¥,X¥TeD for which
F(X*)=©®=(0,0)7. Let S,, i=1,2 be those connected components of f; *(0) contain-
ing X* on which ¢,f,#0 for i=1,2 respectively and that &, f(X*)#0, i=1,2. Then

the iterates of (2.14) will converge to X* provided the initial guess X9 is sufficiently
close to X¥. Moreover the iterates X%, p=0,1,... have order of convergence two.

Proof Obviously from (2.14) we can obtain
XP =X+ 0, f1((XE, X5 1) 0, /X5, X5 ) (X5 — X5 P)/det 4,, p=0,1,..., (3.2)
or, after some algebraic manipulations
XPt=XE (X5 = X3 [ -0, [u(XE, X5 /0, f(XE, X5 )]
~[— 0 A XE, X526, o XE, X5 D]} p=0,1,... (3.3)
Using (2.2) and {2.3) from the above relationship we get

X7 = X [9,(XD - XDVIHHXD — 95 XD] p=0L...  (34)
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Consider now the mapping
O:JFc R-R, by X ))=¢(X;)—dy(X,) (3.5)

Then obviously, for the above mapping the conditions of Theorem 3.1 are fulfilled.
Consequently the iterates X%, p=0,1.... of (2.14) converge to X¥T and the order of

convergence 1s two.
Suppose now, that for some p we have X7 =X¥ then from (2.14) we get

X5 ' =[d(XF) + ¢ X1)]/2 (3.6)

or
X5tl=X%, (3.7)
Thus the theorem is proven. O

4 NUMERICAL APPLICATIONS

To test the method of this paper, we applied the method (2.14) to the following
systems

_ fl(Xl’Xz) _ Xf—4Xz _
F(X)—I:fz(X1=X2):,_[X§—2X1+4X2J—® (4.1)
_ fl(XhXZ) _ X%—3X1X% _
e '[fz(X " Xz)] ‘[3x§x2 _ X;]—@) (4.2)

fl(Xl,XZ)J_[uoS-Xlxu- (10~ %1 —10%: ~1%)/X, —0.002

-0 (43
X, X) 10""”2/2(1-1»10X‘z)—lo‘x"1+logX2:| (43)

F(X):l:

The system (4.1) is a well-known test case [5, 6]. It has two roots (0,0)” and
(1.69541521...,0.71860819...)7 and its Jacobian at them is not singular. The
Jacobian of the system (4.2) is singular at the root (0,0)". Also system (4.2) has a
particular difficulty since the values of the function F even for points which are
not very close to the root (0,0)7, tend to be close to zero. The system (4.3) appears
in some chemical applications [1, p. 57] because it calculates the pH of a weak
acid from its concentration. The system (4.3) has a particular difficulty since the
values of the function F for points which are not very close to the root
(3.891743658...,0.9872169279...)T cannot be computed with high accuracy. The
Jacobian of the system (4.3) at its solution is not singular.

In Tables 1, 2 and 3 we present the number of iterations N which are required
in obtaining an approximate solution of the systems (4.1), (4.2) and (4.3)
correspondingly, for requiring accuracy 10~ ® and 107'7, respectively by using the
iterative schemes (2.14) and (2.10), for several starting points X9. Further, we
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Table 1 Results for system (4.1)

Scheme {2.14) Newton's method
X?  e=10"% g=10""" X9 Xy e=10"% e=10""1
N FE AS N FE AS N FE N FE
-1 5 20 50 7 28 70 —1 -1 5 30 6 36
1 6 24 60 g 32 80 I =1 6 36 7 42
2 5 20 50 6 24 60 2 -1 DD D D
3 5 20 50 7 28 70 3 -1 9 54 10 60
4 6 24 60 8 32 80 4 -1 8 48 9 54
5 7 28 70 10 40 100 5 -1 8 48 9 54
6 6 24 60 9 36 9 6 —1 9 54 10 60
7 7 28 70 10 40 100 7 —1 8 48 9 54
8 9 26 9 It 44 110 8 -1 9 54 10 60

Table 2 Results for system (4.2)

Scheme (2.14) Newton’s method
X% s=10"% e=10"17 X! X% e=10"% e=10""7
N FE AS N FE AS N FE N FE
-5 7 28 140 8 32 160 -5 —1 47 282 98 588
-4 5 20 100 6 24 120 -4 -1 47 232 98 388
-3 4 16 80 5 20 100 -3 -1 46 276 97 582
-2 2 8 40 312 60 —2 —1 45 270 96 576
-1 2 8 40 3 12 60 -1 —1 43 258 94 564
1 2 8 40 3 12 60 1 —1 43 258 94 564
2 2 8 40 3 12 60 2 -1 45 270 96 576
3 4 16 80 5 20 100 3 -1 46 276 97 582
4 5 20 100 6 24 120 4 —1 47 282 98 588
S 7 28 140 8 32 160 5 -1 47 282 98 588

present also in these tables the corresponding results obtained by the Newton’s
method for the same points X while retaining the second component X9 fixed.
So, in the following tables “£” indicates the requiring accuracy, “N” indicates the
number of iterations, “FE” indicates the number of function evaluations, “A4S”
indicates the total number of algebraic signs that are required for applying the
iterative scheme (2.10), and “D™ indicates divergence.

From these results we observe that, although the second component X9 of the
starting points is near to the second component X% of the solution for the cases
(4.1), (4.2) and (4.3), yet iterative formula (2.14) using only the X9 is seen to be
superior to the Newton’s method for the cases (4.2) and (4.3). The results for the
method based on (2.17) for all the cases (4.1)~(4.3) are analogous to the previous

one.
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Table 3 Results for system (4.3)

Scheme (2.14) Newton’s method
X e=10"8 e=10"" X9 X e=10"8 e=10"17
N FE AS N FE AS N FE N FE

1 10 40 200 15 60 300 1 0.1 41 246 77 462
2 8 32 160 13 52 260 2 0.1 39 234 75 450
3 6 24 120 11 44 220 3 0.1 37 222 73 438
4 5 20 100 10 40 200 4 0.1 34 204 71 426
5 7 28 140 12 48 240 5 0.1 35 210 72 432
6 8 32 160 13 52 260 6 0.1 35 210 72 432
7 8 32 160 13 52 260 7 0.1 37 222 73 438

5. CONCLUDING REMARKS

The method we have analysed in this paper compares favourably with the
Newton’s method when the Jacobian of F at the root of the system (1.1) is
singular or when it is difficult to evaluate the components of F accurately.

Also although our method uses reduction to simpler one-dimensional equations,
yet it converges quadratically to one component of the solution, say the X; one,
while the other component of the solution is evaluated by the simple computation
X,=(¢(X,)+¢,(X,))/2. So it does not require a good estimate of both solution
components as the Newton’s method does.

Moreover, the method does not need function evaluation directly, and also
using the iterative scheme (2.10) it requires only their algebraic signs to be correct

in finding the ¢,(X,).
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