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Abstract. Recent work by Mingers and by Buntine and Niblett on the performance of various attribute selection 
measures has addressed the topic of random selection of attributes in the construction of decision trees. This 
article is concerned with the mechanisms underlying the relative performance of conventional and random at- 
tribute selection measures. The three experiments reported here employed synthetic data sets, constructed so as 
to have the precise properties required to test specific hypotheses. The principal underlying idea was that the 
performance decrement typical of random attribute selection is due to two factors. First, there is a greater chance 
that informative attributes will be omitted from the subset selected for the final tree. Second, there is a greater 
risk of overfitting, which is caused by attributes of little or no value in discriminating between classes being 
"'locked in" to the tree structure, near the root. The first experiment showed that the performance decrement 
increased with the number of available pure-noise attributes. The second experiment indicated that there was 
little decrement when all the attributes were of equal importance in discriminating between classes. The third 
experiment showed that a rather greater performance decrement (than in the second experiment) could be ex- 
pected if the attributes were all informative, but to different degrees. 
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L Introduction 

T h e  induc t i on  of  dec i s ion  t rees  for  noisy  d o m a i n s  has  r ece ived  f resh  a t t en t ion  in the  las t  

few years ,  pa r t ly  as a resu l t  of  the  s o m e w h a t  be la t ed  r ecogn i t i on  of  the  stat is t ical  work  

ca r r i ed  ou t  by B r e i m a n ,  F r i e d m a n ,  O l shen ,  and  S tone  (1984)  on  c lass i f i ca t ion  t rees  an d  

par t ly  as a resu l t  o f  work  a p p e a r i n g  in the  m a c h i n e  l e a rn ing  l i te ra ture  by au thors  such  as 

Q u i n l a n  (1986) .  

M o r e  recently,  Minge r s  (1989a)  m a d e  the  surpr i s ing  c la im that  random se lec t ion  of  at tr i-  

butes ,  fol lowed by p run ing ,  can  ach ieve  the  s ame  level  of  c lass i f i ca t ion  accuracy  as the  use  

of  any  o f  a var ie ty  of  o r t h o d o x  m e a s u r e s  fo l lowed by prun ing .  He  ran  expe r imen t s  wi th  

four  data  sets in  w h i c h  he  tes ted  var ious  m e a s u r e s  ( inc lud ing  i n f o r m a t i o n  gain ,  X 2, the  G 

statistic, the  Gin i  index of  diversity, and  gain ratio) against  a pure ly  r a n d o m  select ion method.  

W.Z. Liu is now in the School of Mathematics and Statistics at the University of Birmingham (address as above). 
A.P. White is also an Associate Member of the School of Mathematics and Statistics at the University of Birmingham. 
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In each case, the resulting tree was pruned using Breiman's error complexity method. The 
results appeared to show that there was no significant difference in the classification per- 
formance, whichever method was used. 

Subsequently, Buntine and Niblett (1992) refuted this claim with more carefully con- 
structed experiments and suggested reasons for the disparity between their respective results. 

However, their contribution does not exhaust the topic. The remainder of this article 
seeks to investigate the decrement expected in classification accuracy when random at- 
tribute selection is employed and to examine factors that might be expected to influence 
the magnitude of this decrement. 

The following experiments test specific hypotheses in this area and, because of the fact 
that data sets with particular, precisely defined characteristics were required, synthetic data 
sets were used, rather than the real data sets employed by the previous investigators quoted. 

2. Experimental techniques 

The experiments described later in this article use a number of techniques, some of which 
may not be familiar to researchers in the machine learning field. Brief descriptions of these 
are given below. 

2.L Attribute selection 

A number of measures have been reviewed comprehensively by Mingers (1989a). Breiman 
et al. (1984) also describe various methods in detail. The method used in this article is 
sometimes known as transmitted information (Hr) and sometimes as information gain. This 
method was chosen more for reasons of tradition (because of the origin of the study of 
inductive systems in computer science and the use of communication theory and informa- 
tion theory in that discipline) than because of any intrinsic superiority in the measure. The 
definition is given in Mingers (1989a). (Note that, if logarithms to base 2 are used, then 
the information gain is actually measured in bits.) 

This method is contrasted with purely random attribute selection, as used by Mingers 
(1989a). 

2.2. Binary splitting 

One awkward problem with a completely general approach to the construction of classifica- 
tion trees is that there are many possible types of attribute. First, attributes may belong 
to any of four levels of measurement, as described originally by Stevens (1946) and men- 
tioned briefly by Mingers (1989a). A further problem with ordered variables (i.e., those 
measured on either an ordinal or an interval scale of measurement) is that they may have 
tied scores, i.e., the scores may be grouped into categories. As an example, consider a 
large database of hospital patients. If  each patient's age is recorded in years, then there 
will generally be more than one person at each age level--at least for the more commonly 
occurring ages in such a population. Statisticians sometimes refer to such variables as ordered 
categorical. 
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One way of dealing with a wide variety of variables in a classification problem is to 
reduce them to a common denominator by employing a binary branching technique on 
all the attributes, regardless of type. This approach has been used by a number of researchers, 
including Breiman et al. (1984), Kononenko, Bratko, and Roskar (1984), Quinlan (1988), 
White (1987), and White and Liu (1990). All attributes that are not originally binary are 
converted into "pseudo-binary" attributes by the technique of optimal splitting, as described 
below. Continuous attributes can be dealt with by splitting the initial attribute between every 
possible pair of adjacent values (in a sense of numerical order) to yield a number of de- 
rived binary variables as candidates to replace the initial non-binary attributes. Consider- 
ing a pair of adjacent values of a continuous attribute, xl and x2, the average of these two 
values, x12, is regarded as a splitting point. All other values of this attribute are either less 
than or equal to (_<) x12 or greater than ( > )  x12. In this way, the derived variable is ob- 
viously binary. During the construction of the tree, if the original attribute has m distinct 
values present at the node currently under consideration, this would mean generating 
m - 1 candidate binary variables. The best of these m - 1 variables, as judged by some 
appropriate criterion (which may or may not be the same as that used for attribute selec- 
tion), then becomes the pseudo-binary attribue that is used in place of the original attribute. 
In more detail, suppose that H~ is the criterion employed, each of the m - 1 derived 
variables is cross-tabulated against class for all the cases at the node, and a Hr value is 
calculated for each of them. The variable with the largest Hr is chosen as the pseudo- 
binary attribute to represent the original attribute. 

For categorical attributes, a different variant of the same technique is employed. However, 
this is not relevant here because ordered attributes are used in all the experiments described. 

Perhaps it should also be mentioned that the binary splitting technique allows the possibility 
that a multi-valued attribute may legitimately be branched on more than once (at different 
cutting points) in the same path of the decision tree. 

2.3. Pruning 

Pruning methods are employed to cut back a full-size tree to a smaller one that is likely 
to give better classification performance. These techniques have been mentioned by Breiman 
et al. (1984), Niblett and Bratko (1987), White (1985, 1987), White and Liu (1990), and 
Liu and White (1991). A comprehensive review of pruning methods for decision trees has 
been given by Mingers (1989b), and for this reason, only a brief mention is made of them 
here. 

The pruning approach is more commonly used in this field and, indeed, there is a good 
reason to prefer it to a simple stopping rule applied to the growth phase of tree construc- 
tion. This is because situations can arise in which, at the stage the tree is being grown, 
it can appear that all significant attributes have been exhausted. However, if growth is allowed 
to continue, further attributes can show up as important. The simple explanation for this 
is that the growing tree has uncovered a multiplicative relationship between two (or more) 
attributes and class. 

Pruning methods can be implemented using statistical significance tests. Thus, a 
significance test is used to determine when to stop "undoing" the branching process. Pruning 
by significance testing was used in the simulation experiments described later in this article. 
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2.4. Cross-validation and dynamic path generation 

The fair estimation of predictive accuracy is of central importance in the assessment and 
comparison of classification technique when noise is present. A particularly thorough way 
of doing this is to employ the technique of cross-validation, in which each case is tested 
under a model derived from all the remaining observations. Cross-validation is described 
in detail by Breiman et al. (1984). Of course, in the case of decision trees, the model in- 
volved is the tree derived from all the observations except the one being tested. 

One problem with cross-validation is the fact that it is computationally expensive. However, 
the computing time required can be reduced substantially by combining cross-validation 
with a technique called dynamic path generation (White, 1987). Briefly, this involves 
generating just the path required for classifying the case currently under consideration, 
rather than the entire tree. Thus, in order to cross-validate a data set of N cases, it is only 
necessary to generate N paths. All the cross-validation results reported in the experiments 
described in this article were derived using this approach. 

2.5. Statistical techniques 

The experiments reported in this article employed various experimental designs, each of 
which is associated with a corresponding analysis of variance (ANOVA). Descriptions of 
these various designs may be found in Keppel (1973). ANOVA summary tables are reported 
for all designs with more than one factor, and F tests for single factor designs are reported 
in the text. By their very nature, F tests are multi-sided in terms of the hypotheses that 
they test. However, for the applications quoted here, it should be clear from inspection 
of the corresponding means where the important differences lie. Two-tailed t tests were 
also employed for parts of the analyses. These test whether or not there is a significant 
difference in either direction between two sets of results. This approach is more statistic- 
ally conservative than the use of one-tailed tests and is the method generally employed. 

3. Experiment I 

3.1. Introduction 

As stated in the previous section, Mingers (1989a) asserts that the choice of goodness of 
split measure is unimportant in determining the accuracy of predictive performance of prob- 
abilistic classification trees, even to the extent that a purely random attribute selection 
measure will perform as well as any of the orthodox methods. 

In the general case, this cannot be true and, indeed, Buntine and Niblett (1992) showed 
that it was not, even for the data sets that Mingers himself used. It is instructive to consider 
why. Provided that a full-sized tree is not being used, i.e., that the tree contains only a 
proper subset of the available attributes, then it would seem to be important which attributes 
are selected for membership of this subset. Suppose that some variables contain more in- 
formation about class membership than others. Clearly, variables that are high in class 
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information are more important to include in the subset of variables used for branching 
than variables that are low in class information. For the purposes of demonstration, this 
argument can be taken a stage further. Suppose that only one of the attributes contains 
information about class and that the remaining attributes are pure noise variables. In this 
situation, it is obviously of vital importance that the informative variable is included in 
the branching subset. It is also important (although perhaps not quite as obviously) that 
as few of the pure noise variables as possible are branched on, because their presence will 
degrade the true classification accuracy of the induced tree. 

Thus, if an effective attribute selection method is being used, then the number of available 
pure noise attributes should have little effect on classification performance. On the other 
hand, if a random selection method is employed, then classification performance should 
decline as the number of available pure noise variables is increased. This is for two reasons. 
First, the greater the number of pure noise variables available, the smaller the chance 
of a genuinely informative variable being included in the tree, because of the pressure of 
competition. Second, as mentioned in the previous paragraph, the more noise variables 
included in the final tree, the more classification performance will be degraded. The per- 
formance with the random method should always be poorer than that obtained from using 
an orthodox measure, but the difference would be expected to be greater as more pure 
noise variables are available for inclusion in the tree. 

From the foregoing argument, it is obvious that the choice of orthodox selection measure 
should not be of critical importance. Transmitted information was chosen for this experi- 
ment more for traditional reasons than for any more fundamental motive. 

3.2. Method 

A Monte Carlo simulation experiment was designed in which two different measures of 
attribute selection were tested. One was transmitted information (Hr), and the other was 
a purely random selection criterion. Six different conditions were employed. For each con- 
dition, 100 different data sets were generated. Each data set consisted of 100 cases. Each 
case contained a binary class variable and a number of continuous independent variables 
(attributes). The class variable was generated so as to have 50 cases of each class. 

Two different types of independent variable were employed. One type (termed signal 
variables) incorporated information about class membership. The other type (noise variables) 
was produced so as to contain no information about class. All the noise variables were 
generated as samples from the standard normal distribution (i.e., a normal distribution 
with zero mean and unit standard deviation), using a random number generator. Signal 
variables were derived from noise variables by the simple method of adding twice the class 
variable. (This would result in an expected difference of 2 in the mean scores on a signal 
variable between the two classes). This ensured that the signal variable contained informa- 
tion about class membership. 

Each of the six conditions employed just one signal variable. However, the conditions 
differed in the number of noise variables. The arrangements were as follows: 

I. 1 signal variable plus 1 noise variable; 
2. 1 signal variable plus 5 noise variables; 
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3. 1 signal variable plus 10 noise variables; 
4. 1 signal variable plus 20 noise variables; 
5. 1 signal variable plus 40 noise variables; 
6. 1 signal variable plus 80 noise variables. 

Since the independent variables were continuous, the binary splitting approach (described 
earlier) was used. It was implemented using transmitted information. Thus, during the tree 
construction phase, at each node, each attribute was split at a value that would maximize 
the information that it provided about class membership. Attribute selection was then made 
from among the pseudo-binary attributes thus derived, according to the attribute selection 
measure employed in that part of the experiment (Hr or random). For reasons of speed, 
the method of dynamic path generation (described earlier) was employed. In classifying 
each case, path growth was continued until a pure terminal node was reached, i.e., one 
with cases from only one class. 

This was followed by a pruning phase, which was implemented using the X 2 statistic 
and the associated probability from the Chi-square distribution. The threshold value was 
set at a probability of 0.1. Thus, for any given path, pruning was continued until a signifi- 
cant association between class and the current attribute was uncovered, i.e., one in which 
the associated X 2 probability fell below the threshold value. Pruning of this path was then 
terminated at this point, without undoing the branching at the node at which the probabil- 
ity fell below the threshold value. 

A split-plot experimental design (Keppel, 1973, pp. 433-437) was employed, in which 
the data set was the basic unit of replication. For each of the six conditions (described 
earlier), both attribute selection methods were applied to the same data sets. Thus, in the 
language of experimental design, conditions were varied between data sets, whereas the 
attribute selection method was varied within data sets. One hundred different data sets were 
used for each condition, i.e., 100 Monte Carlo trials were carried out for the simulation. 
(Each trial involved assessing the classification performance on 100 cases, by dynamic 
path generation.) For each data set, the number of cases correctly classified under cross- 
validation was recorded for each selection criterion. 

3.3. Results and discussion 

The results of the experiment are summarized in table 1 and are displayed graphically in 
figure 1. It can be seen that, whereas the classification performance using Hr was hardly 
changed as the number of noise variables was increased, performance using the random 
selection measure declined markedly. As a first step in checking the statistical significance 
of these findings, a split-plot analysis of variance (ANOVA) was performed on the results. 
This is summarized in table 2. It can be seen that both main effects and the interaction 
were highly significant. This step was followed by a two-tailed matched-pairs t test be- 
tween the results for the two different measures on the first condition (i.e., one noise 
variable). This showed that, although the results for the different measures were close 
(77.98% for HT, as opposed to 77.00% for the random method), there was nevertheless 
a significant difference between them (t = 2.19; df = 99; p < 0.05). Since the differences 
for the other conditions were far larger, there seemed little point in testing these for statis- 
tical significance. 
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Table 1. Classification performance in experiment I. 

Attribute Selection Method 

Experimental Condition Random Selection Hr 

1 signal and 1 noise 77.00 77.98 
(5.11) (5.13) 

1 signal and 5 noise 68.43 77.59 
(4.14) (5.00) 

1 signal and 10 noise 63.10 77.15 
(5.21) (5.71) 

1 signal and 20 noise 57.03 76.82 
(5.04) (5.96) 

1 signal and 40 noise 53.18 76.05 
(4.51) (6.86) 

1 signal and 80 noise 52.66 75.59 
(4.95) (8.06) 

Note: Results are expressed in terms of mean percentage of correct classifica- 
tions, for each experimental condition and attribute selection method. Correspond- 
ing standard deviations are parenthesized. 
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Figure 1. Cross-validated classification performance of the induced trees, expressed as percentage of correct 
classifications as a function of  the number of noise variables. Points marked by triangles represent performance 
using HT, and points marked by squares represent performance using the random selection procedure. 
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Table 2. ANOVA summary table for Experiment I. 

Source SS df MS F p 

Condition 27170.3 5 5434.1 145.5 < 0.001 
Dataset (condition) 22181.9 594 37.3 

Measure 67170.4 1 67170.4 2718.6 < 0.001 
Condition × Measure 18966.3 5 3793.3 153.5 < 0.001 
Measure × Dataset 14676.3 594 24.7 

Total 150165.2 1199 

Turning to the highly significant interaction between selection measure and number of 
noise variables found in the split-plot ANOVA, it was decided to perform two one-way 
analyses of variance (one for each selection measure) in order to locate the locus of the 
effect. Not surprisingly, the result for the random selection method was highly significant 
(F = 390; df = 5,594; p < 0.001). Performance declined from 77.00% to 52.66% over 
the conditions employed in the experiment. The corresponding results for Hr were quite 
different. Performance showed a very modest decline (from 77.98 % to 75.59%), which 
did not reach statistical significance (F = 2.15; df = 5,594; p > 0.05). 

These results confirm absolutely the expectations stated in the introduction to this experi- 
ment. If  an effective attribute selection method is employed, then the number of available 
pure noise attributes has little effect on performance. Constrastingly, if a random selection 
method is used, then classification performance declines steeply as the number of noise 
variables is increased. From the results, it looks as if performance using the random selec- 
tion method is tending towards an asymptote of 50 %. Even when only a single pure noise 
variable was used, performance was significantly poorer with random attribute selection. 

3.4. Subsidiary analysis on branching order 

In order to determine more exactly the loci of these effects, some subsidiary analyses were 
carried out on the branching order in the classification paths. 1 First of all, the branching 
behavior was examined to determine whether or not the signal variable was branched on 
in the various conditions. The results were very clear. For selection by Hr, the signal 
variable was branched on at the root for every case in every data set, for every experimen- 
tal condition. By contrast, the random attribute selection method produced a quite dif- 
ferent picture. Table 3 shows that, as the number of noise variables increases, the mean 
number of cases in each data set for which the classification path branches on the signal 
variable decreases monotonically from 49.78 to 1.67. This result was found to be highly 
significant on a one-way ANOVA (F = 6480; df = 5,594; p < 0.001). Clearly, this factor 
is of great importance in determining the level of classification performance because, if 
the signal variable were not branched on in a particular classification path, then the ex- 
pected classification performance could only be that which would be expected by chance. 



ATTRIBUTE SELECTION IN DECISION TREE INDUCTION 33 

Table 3. Summary statistics for the number of cases within each dataset that branch 
on the signal variable under random attribute selection. 

Experimental Condition Mean St. dev. Range 

1 signal and i noise 49.78 3.06 42-55 
1 signal and 5 noise 17.23 3.62 9-25 
1 signal and 10 noise 9.71 2.06 5-15 
1 signal and 20 noise 5.20 1.69 2-9 
1 signal and 40 noise 2.31 0.90 1-4 
1 signal and 80 noise t.67 0.79 0-3 

In order to determine whether there was another effect operating due to overfitting, 
a further analysis was performed on the subset of  cases derived by extracting just those 
cases whose classification paths under random attribute selection branched on the signal 
variable. The classification performance on this subset of the data for both criteria is shown 
in table 4. It can be clearly seen that, for random attribute selection, there is a marked 
performance decrement as the number of noise variables, was increased. In fact, for the 
condition with one noise variable, classification performance was only slightly less than 
that for the orthodox measure. With 80 noise variables, classification performance was 
not much better than chance. 

A split-plot ANOVA (similar to that used for the main part of the experiment) was ap- 
plied to the performance data arising from this subset. Because one of the data sets for 
the condition with 80 noise variables did not branch on the signal variable for any of the 
cases, subset performance could be assessed for only 99 data sets in this condition. As 
a result, the design was slightly unbalanced. For this reason, the regression approach for 

Table 4. Classification performance for signal branching subset in Experiment I. 

Attribute Selection Method 

Experimental Condition Random Selection H r 

1 signal and 1 noise 

1 signal and 5 nmse 

1 signal and 10 noise 

1 signal and 20 noise 

1 signal and 40 noise 

1 signal and 80 noxse 

77.33 77.87 
(6.69) (6.84) 
68.98 78.00 

(12.3) (10 .9 )  
64.22 76.10 

(16.7) (15.3) 
51.31 79.86 

(23.3) (18.8) 
53.58 79.83 

(36.6) (29.4) 
57.24 76.94 

(42.9) (36.9) 

Note: Results are expressed in terms of mean percentage of correct classifications 
for each experimental condition and attribute selection method. Corresponding 
standard deviations are parenthesized. See text for further explanation. 
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the attribution of variance components was used. This method attributes to each term only 
that portion of the variance that is unique to that particular source and is the approach 
generally favored by statisticians for dealing with unbalanced designs. The summary table 
is shown in table 5. All the effects were found to be highly significant. However, of par- 
ticular interest is the fact that the interaction term was significant, providing statistical support 
for the idea that increasing the number of noise variables had little effect on classification 
performance under H~. but produced a performance decrement on classification by ran- 
dom attribute selection even for those cases for which the classification path branched on 
the signal variable. To be absolutely clear about the source of this effect, one-way ANOVAs 
were performed on each measure separately. For random attribute selection, the perfor- 
mance decrement was highly significant (F = 14.2; df = 5,593; p < 0.001). By contrast, 
classification of the same cases by H~ showed no significant dependence on the number 
of noise variables (F = 0.46; df = 5,593; p > 0.5). 

Thus, there are clearly two quite separate effects in operation for classification by ran- 
dom attribute selection, each of which contributes to the increasing under-performance 
as the number of noise variables is increased. First, the probability of the signal variable 
being branched on decreases. Second, even when the signal variable is branched on, in- 
creasing the number of noise variables available tends to increase the number of noise var- 
iables branched on above the signal variable in the classification path. This degrades classi- 
fication performance through over fitting. 

4. Experiment II 

4.1. Introduction 

The results from Experiment I suggested that the under-performance of random attribute 
selection was due to the tree construction algorithm branching on noise variables and pro- 
ducing a suboptimal tree. It was further suggested that the under-performance was due 
to two distinct factors--first, a reduced likelihood of informative attributes being included 
in the final tree, and second, a degree of overfitting caused by noise variables being locked 
into the tree, near the root. 

Table 5. ANOVA summary table for subsidiary analysis of performance on signal branching subset of the data. 

See text for further explanation. 

Source SS df MS F p 

Condition 27141.3 5 4348.3 6.12 < 0.001 
Dataset (condition) 421505 593 710.8 

Measure 76563.7 1 76563.7 159 < 0.001 
Condition × Measure 29038.2 5 5807.6 12.1 < 0.001 
Measure × Dataset 285586 593 481.6 

Total 834377 1197 
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Now, if these explanations are correct, then it follows that, if all the variables in the 
attribute set are equally important in discriminating between classes, then it should not 
matter which attributes are selected for branching. Neither should the order of branching 
matter. 

Hence, it was hypothesized that, in a probabilistic classification task, if all the attributes 
contain equal levels of information concerning class membership, then there should be no 
difference in cross-validated classification performance between H~ and a random method 
of attribute selection. Experiment II was designed to test this hypothesis. 

4.2. Method 

Just as in Experiment I, Experiment II involved a Monte Carlo simulation using the same 
measures of attribute selection--Hr and the random method. Only one experimental con- 
dition was employed, using 100 different data sets of 100 cases each, generated in a similar 
manner to that described for Experiment I. 

The only difference was that 11 attributes were used, which were all generated to con- 
tain equal levels of information about class membership. Each attribute was derived by 
simply adding the binary class variable (0 or 1) to a random sample drawn from the stan- 
dard normal distribution. 

Binary splitting and cross-validation by dynamic path generation were employed in the 
same way as described for Experiment I. As before, the percentage of correct classifica- 
tions, for each selection method, was recorded for each data set. 

4.3. Results and discussion 

The mean levels of accuracy for the two measures were 76.61% (random) and 77.84% 
(H:r). The corresponding standard deviations were 4.08 and 5.27, respectively. A two- 
tailed matched-pairs t test was performed on the results, which indicated a significant dif- 
ference in favor of selection using H r (t = 2.15; df  = 99; p < 0.05). 

This result was not quite as anticipated, because it was expected that the advantage of 
using an orthodox measure of attribute selection over a random method would disappear 
when all the available attributes contained the same level of information about class member- 
ship. Although the performance difference found between the measures was small (i.e., 
of the order of one percentage point), it was nevertheless statistically significant. 

A possible explanation for this finding, is that, even though the attributes were arranged 
to be of equal importance at the root of the classification tree, this does not guarantee 
that they will be of equal importance at every intermediate node in the classification path. 
Random variation will tend to produce some degree of inequality in importance between 
the attributes at the intermediate nodes in the classification paths, for some of the cases. 
This means that, if an orthodox method of attribute selection is being used, then the 
algorithm will operate on these small differences in importance to produce marginally 
superior classification performance, compared with that given by random attribute selection. 
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The argument just stated carries the implication that, if two attributes are available for 
selection at a node then, if they are not of equal importance in discriminating between 
classes, choosing the less important attribute could be suboptimal (i.e., lead to poorer cross- 
validated classification performance). 

If this explanation is correct, then it should certainly be possible to observe the same 
effect if the attributes are not of equal importance to begin with, i.e., if they all contain 
different amounts of information concerning class membership. 

5. Experiment III 

5.L Introduction 

The previous experiment showed that using an orthodox measure of attribute selection will 
yield only a small improvement in classification performance over that obtainable by using 
a random selection method in the same situation, when the attributes are equally infor- 
mative. An argument presented in the discussion for that experiment suggested that this 
small difference in performance may have been due to inequities between attributes in the 
information concerning class membership appearing at the intermediate nodes in the tree, 
as a result of the binary splitting and branching processes. If this argument is correct, then 
it should also be possible to demonstrate the predictive superiority of an orthodox measure 
for attribute selection (over that expected with a random method) if the attributes each 
possess information about class membership to begin with, but to different degrees. It could 
also be argued that such a situation is more representative of the sort of situation likely 
to be found in real classification problems in noisy domains. Of course, it is to be expected 
that the difference in cross-validated classification performance between an orthodox and 
a random measure of attribute selection would be greater in this situation than in the one 
simulated in the previous experiment. Experiment III was designed to test this hypothesis. 

5.2. Method 

The experimental design was very similar to that employed in the previous experiment. 
Just as before, a single experimental condition was employed, using 100 different data sets 
of 100 cases each. 

Ten attributes were used. They were generated so that they each contained different 
amounts of information about class membership. Each attribute was derived by adding k 
times the binary class variable to a standard normal random variable. Ten different values 
ofk  were used--one for each attribute. The values ofk  ranged from 0.2 to 2 in equal steps. 

Binary splitting and cross-validation by dynamic path generation were used, just as in 
the two previous experiments. As before, the percentages of correct classification for both 
the Hr  and random selection methods were recorded for each data set. 
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5.3. Results and discussion 

The mean levels of accuracy for the two measures were 82.36% (random) and 86.62% 
(Hr). The corresponding standard deviations were 4.04 and 4.63, respectively. A two-tailed 
matched-pairs t test was performed on the results, indicating a highly significant difference, 
showing H r as providing superior performance (t = 7.62; df = 99; p < 0.001). 

This result was as expected. Thus, it seems reasonable to say that, unless it can be 
guaranteed that all the attributes are of exactly equal importance at a node (as regards 
the information they convey about class membership), then it is a better strategy to employ 
an orthodox measure of attribute selection, rather than a random one. 

5.4. Subsidiary analysis on branching order 

In order to check that the more important attributes were indeed branched on closer to 
the root of the tree when H T was used for attribute selection than when random attribute 
selection was employed, a subsidiary analysis was performed on data derived from the 
branching order.Z As explained earlier, the technique of dynamic path generation was 
employed in these experiments, in combination with cross-validation. Thus, for the 
classification of each case, only the path actually needed for classifying the case concerned 
was generated. For each case in each data set for each of the two attribute selection methods, 
the attributes branched on in the classification path were recorded, together with their 
respective positions in the classification path. 

The attributes were labeled with integers from 1 to 10, denoting their level of impor- 
tance. Thus, the attribute derived by using a value of k of 0.2 was given an importance 
level of 1, while the attribute produced with k = 2 had an importance level of 10. Positions 
in the classification path were also represented by integers, denoting the number of steps 
below the root of the node concerned. Thus, the root itself was given a position number of 
0, a node one step below the root had a position number of 1, and so on. So, for each case, 
the branching information was recorded as two sequences of number pairs, one sequence 
for each method of attribute selection. Each number pair consisted of an importance level 
and a position number. Each sequence of number pairs traced the final classification path 
down from the root to the terminal node, after pruning. 

Simple examination of the resulting information showed a marked difference in mean 
path length between the two attribute selection methods, with path length for the random 
selection method being longer on average. Path length ranged from 1 to 7 steps, with a 
mean of 2.640, for selection by HT. On the other hand, the random selection method gave 
a range from 0 to 14, with a mean of 3.867. (A path length of zero simply means one 
that has been pruned back to the root.) The difference between the two sets of path lengths 
was tested with a two-tailed matched-pairs t test. The result was highly significant (t = 
67.2; df = 9999; p < 0.001). 

In order to test for differences in the branching order, the technique used was based 
on examining differences in importance level as a function of position, between the two 
selection methods. Only position numbers from 1 to 6 were used, because of the shorter 
path length given by selection with Hr. This resulted in a two-way factorial experimental 
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design (Keppel, 1973, pp. 195-196). Thus, one factor was the attribute selection method 
and the other was the position number. The independent variable was the importance number. 
Replication was provided by the multiple cases and data sets, giving 10,000 classification 
paths for each condition. However, it should be made clear that the design was necessarily 
unbalanced, because not all classification paths were of the same length. 

The mean importance levels for the various conditions are shown in table 6. This infor- 
mation is also displayed graphically in figure 2. It can be seen quite clearly that, for attri- 
bute selection by H~., mean importance level declines steeply as a function of increasing 
position number. Thus, under this condition, there is a strong tendency for the more infor- 
mative attributes to be branched on closer to the root. For random attribute selection, on 
the other hand, the picture is quite different. Here, position number has little influence 
on mean importance level, with the latter staying close to the expected impoaance level of 5.5. 

The difference in behavior between the two selection measures was tested with a two- 
way factorial ANOVA (Keppel, 1973, pp. 195-196). The unbalanced nature of the design 
was handled by using the regression approach for the attribution of the variance components, 
as used earlier for the subsidiary analysis in Experiment I. The summary table is given 
in table 7. Here, the effect of  interest is the interaction term, which was found to be highly 
significant, showing that there was a definite tendency for the graphs to be different for 
the different selection measures. 

A minor point of  interest is that, for random attribute selection, mean importance level 
is slightly greater than the value of 5.5, which would be expected under a simple theory. 
Furthermore, the results seem to show a slight increase with position number. This would 
appear to be due to the fact that the method of pruning employed tends to ensure that the 
final branch in the pruned classification path is based on an attribute of high importance, 
even when random attribute selection has been used to construct the path originally. 

Table 6. Results for branching order analysis in Experiment lII. 

Attribute Selection Method 

Position Random Selection H r 

1 5.552 9.424 
(2.954) (0.794) 

2 5.652 7.650 
(2.961) (1.872) 

3 5.747 5.964 
(2.915) (2.589) 

4 5.785 4.455 
(2.870) (2.520) 

5 5.828 3.336 
(2.818) (2.605) 

6 5.775 2.231 
(2.809) (1.966) 

Note: Results are expressed in terms of mean importance level for the 
first six positions in the classification path for orthodox and random at- 
tribute selection. Corresponding standard deviations are parenthesized. 
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Figure 2. Mean importance level for the first six positions in the classifiction path for orthodox and random 
attribute selection in Experiment IlL Points marked by triangles represent performance using HT, and points 
marked by squares represent performance using the random selection procedure. 

Table 7. ANOVA summary table for analysis of branching order in experiment III. 

Source SS df MS F p 

Position 35681 5 7442 1174.82 < 0.001 
Condition 52482 1 51 8.03 0.005 
Position × Condition 45439 5 9088 1434.54 < 0.001 
Error 404320 63824 6 
Total 537922 63835 

The results of this subsidiary analysis are entirely as expected. Thus, there is a very 
strong tendency for the more important attributes to be branched on earlier when an or- 

thodox measure of attribute selection is employed, but not when attributes are selected 
randomly. 

6. Conclusions 

From an intuitive point of view, the conclusions drawn from each of the three experiments 
are hardly surprising. It is only to be expected that an orthodox measure of attribute selec- 
tion should outperform a random one in most situations. It is instructive to consider why 
this should be so. 
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The reason appears to lie in the nature of the tree-building process itself, including the 
pruning phase. Clearly, it matters a great deal which attributes are selected for branching 
on, near the root. Furthermore, the closer to the root the branching is taking place, the 
more it matters. This is because of the problems of overfitting and the practice of pruning 
used to counteract it. Pruning removes excessive branching (i.e., branching on noise, which 
causes overfitting). However, the important point is this: Thepruning technique used here 
tends to remove the lower nodes on the classification path. To put things another way, pruning 
starts at the terminal node and proceeds towards the root, until a significant class-attribute 
association is encountered. At this point, pruning of the current branch is terminated. This 
means that if  there has been any branching on noise above this point, then it cannot be 
undone by pruning. Consequently, any "noisy branching" near the root is locked in and 
cannot be removed by the pruning process. This, in turn, can produce suboptimal perfor- 
mance because of overfitting. 

This line of argument suggests that, with most data sets, random attribute selection would 
tend to produce decision trees with poorer classification performance than those constructed 
using orthodox attribute selection measures. This is entirely in accordance with the find- 
ings of Buntine and Niblett (1992) on a range of empirical data sets. 

The remaining puzzle is how Mingers (1989a) managed to come to different conclusions 
in his work, particularly since 3 of the 4 data sets that he employed were also used by 
Buntine and Niblett in their investigations. 

Of course, Mingers' results for the unpruned trees do not present a problem because, 
in such a situation, all the available noise will be included in the tree and, for predictive 
purposes, it does not matter where in a tree the noisy branching occurs. Mingers' results 
for the pruned trees are more difficult to explain. 

Now, Buntine and Niblett discuss this matter at length. Perhaps the most important point 
that they make is that Mingers used the test set in the pruning phase to select the best pruned 
tree. They explain why this is methodologically unsound, and it is unnecessary to repeat 
their explanation here. 

There is also something strange about the statistical analysis that Mingers applied to his 
data. For 3 out of the 4 data sets that he used, the error rate on the pruned tree for random 
attribute selection was, in fact, higher than for any of the orthodox measures. For example, 
with the breast cancer data, the conventional measures yielded error rates of between 21.5 % 
and 25.4 %, whereas the random measure produced an error rate of 27.5 %. The failure 
of these results to achieve statistical significance might well have been due to the use of 
an inappropriate model for the ANOVA. Unfortunately, Mingers did not present ANOVA 
summary tables for his analyses, nor does he quote degrees of freedom when he reports 
F ratios. It is thus somewhat difficult to be sure exactly what he did do. However, Buntine 
and Niblett state that Mingers performed his analysis of variance "on the matrix of error 
averages". Mingers' paper does not actually say this, but the critical F values quoted are 
certainly consistent with this approach having been taken. Such an approach is really not 
the best way to analyze the data. A more sensitive analysis should have been performed 
by employing a split-plot model, using the error rates for each data set (not the averages) 
as the basic scores, just as was done for Experiment I reported in this article. This reflects 
the fact that measures were varied within test sets, rather than between them (i.e., each 
test set was tested using each of the measures, instead of an independent test set being 
used each time). 
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In conclusion, it should be clear that it is of great importance that the method used for 
attribute selection should branch preferentially on those attributes that convey information 
about class membership. An extension of the same argument requires that, at every stage 
of the branching process, an optimal attribute selection measure should select the most 
informative attribute on which to branch. Any other approach would, in the general case, 
yield suboptimal results. 

Notes 

1. The idea of performing an additional analysis on branching order was suggested by an anonymous referee. 
2. The idea of performing an additional analysis on branching order was suggested by an anonymous referee. 
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