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Summary 
 
Glutamine synthetase assimilates ammonium into amino acids, thus it is a key enzyme for 
nitrogen metabolism. The cytosolic isoenzymes of glutamine synthetase assimilate ammonium 
derived from primary nitrogen uptake and from various internal nitrogen recycling pathways. In 
this way, cytosolic glutamine synthetase is crucial for the remobilization of protein-derived 
nitrogen. Cytosolic glutamine synthetase is encoded by a small family of genes that are well 
conserved across plant species. Members of the cytosolic glutamine synthetase gene family are 
regulated in response to plant nitrogen status, as well as to environmental cues, such as nitrogen 
availability and biotic/abiotic stresses. The complex regulation of cytosolic glutamine synthetase 
at the transcriptional to post-translational levels is key to the establishment of a specific 
physiological role for each isoenzyme. The diverse physiological roles of cytosolic glutamine 
synthetase isoenzymes are important in relation to current agricultural and ecological issues. 
 
Abbreviations: ATP, adenosine triphosphate; GDH, glutamate dehydrogenase; GOGAT, glutamate 
synthase; GS, glutamine synthetase; PAL, phenylalanine ammonia lyase; QTL, quantitative trait locus. 
 
Key words: abiotic stress, biotic stress, glutamine synthetase (GS), nitrogen metabolism, quantitative trait 
locus (QTL), regulation, remobilization, seed. 
 

Introduction 

Nitrogen, a key element for plant growth 

and reproduction, is an essential building 

block of nucleic acids and proteins. Plants 

can store nitrogen in large amounts within 

enzymes involved in carbon fixation, such 

as leaf Rubisco (Stitt & Schulze, 1994). 

However, nitrogen is also often a limiting 

nutrient in many natural environments, and 

different plant species have evolved specific 

strategies to acquire nitrogen from their 

environments and assimilate it into organic 

compounds. Glutamine synthetase (GS, E.C. 

6.3.1.2) plays a major role in fixing 

ammonium (NH
+4

) to form the amino acid 

glutamine. The cytosolic isoform of GS is 

particularly important for assimilating 

ammonium from different sources, for both 

primary nitrogen assimilation and recycling. 

Recent studies have led to a better 

understanding of the specific roles of this 

isoform of GS in flowering plants and 

conifers. Here, we focus on the current 

knowledge of cytosolic GS and its central 

role in nitrogen assimilation and recycling. 

Nitrogen is the most abundant element in 

the atmosphere. In some systems, biological 

nitrogen fixation of atmospheric N2 

contributes to much of the primary nitrogen 

source available to plants, mostly through 

symbiosis with diazotrophic bacteria 

(Oldroyd & Downie, 2008). Symbiosis 
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with arbuscular mycorrhizal fungi and ectomycorrhiza has
also been shown to improve the capacity of plants to take up
nutrients, including nitrogen (Buscot et al., 2000; He et al.,
2003). The nitrogen sources directly available to plants include
inorganic nitrogen compounds, such as nitrate and ammonium,
as well as organic compounds, such as amino acids (e.g. glycine,
alanine, glutamic acid, aspartic acid) and small peptides
(Schimel & Bennett, 2004; Bardgett, 2005). In nonfertilized
ecosystems, the majority of mineral nitrogen is produced by
microbial mineralization of organic nitrogen (Paul & Clark,
1996). The nature of nitrogen sources varies between soil
types rich in ammonium, such as boreal forest soil, and others
rich in nitrate, such as agricultural fields (Britto & Kronzucker,
2005). In addition, the soil concentration of inorganic nitrogen
can range from micromolar to molar (Britto & Kronzucker,
2005). Mechanisms for optimizing nitrogen capture in a
variety of environments have evolved in plants. The uptake of
soil nitrate and ammonium by plant roots has been well
characterized at the physiological and molecular level, and
several multigene families of low- and high-affinity nitrate and
ammonium transporters have been described and studied in
detail (Glass et al., 2002; Miller et al., 2007).

The main pathways of inorganic nitrogen assimilation
and remobilization in plants have been established at the
biochemical level. GS is a key enzyme, because it catalyses the
adenosine triphosphate (ATP)-dependent fixation of ammonium
to the δ-carboxyl group of glutamate to form glutamine
(Fig. 1). The enzyme glutamate synthase (GOGAT, E.C.
1.4.7.1) catalyses the conversion of glutamine and 2-oxoglutarate
to two molecules of glutamate, thus providing glutamate for
ammonium assimilation. The net outcome of the GS–GOGAT
cycle is the production of glutamate, which can then be
incorporated into other amino acids through the action of
aminotransferases or transaminases (Forde & Lea, 2007).
Specific amino acids can subsequently become precursors for
all nitrogen-containing organic molecules, such as proteins,
chlorophyll, cytochrome/phytochrome, secondary metabolites
and nucleic acids. The product of GS, glutamine, is itself the
main form of organic nitrogen for transport in the phloem of
rice (Hayashi & Chino, 1990; Yamaya & Oaks, 2004) and in
the xylem of poplar (Sauter & van Cleve, 1992). Arginine and
asparagine are also commonly involved in nitrogen transport,
asparagine in particular being an efficient compound for

nitrogen transport and storage as a result of its high molecular
nitrogen to carbon ratio (for a review, see Lea et al., 2007).

In plant cells, nitrogen assimilation is compartmentalized
between the cytosol and chloroplast, in relation to the different
sources of ammonium. Primary sources of ammonium include
direct ammonium uptake from the soil and the reduction of
nitrate and atmospheric N2, whereas secondary sources consist
of amino acid catabolism following protein degradation,
photorespiratory nitrogen cycling and the production of
ammonium by phenylalanine ammonia lyase (PAL; E.C.
4.3.1.5) and asparaginase (E.C. 3.5.1.1). Nitrate is first reduced
into nitrite via nitrate reductase (E.C. 1.6.1.1), which is cytosolic,
after which the chloroplast-located nitrite reductase (E.C.
1.7.7.1) catalyses the reduction of nitrite into ammonium.
Photorespiratory nitrogen cycling produces large amounts of
ammonium in the mitochondria (Keys et al., 1978). During
leaf senescence, although some amino acids generated through
protein breakdown may be converted to alternative amino
acids and/or exported via the phloem to developing organs
(Hortensteiner & Feller, 2002), other amino acids are degraded
further, leading to the production of free ammonium. For
example, in tobacco and ryegrass leaves, protein degradation
during senescence coincides with increased levels of ammonium
(Schjoerring et al., 1993; Masclaux et al., 2000; Mattsson &
Schjoerring, 2003).

Glutamate dehydrogenase (GDH; E.C. 1.4.1.2) and
asparaginase have been described as sources of ammonium
deriving from the catabolism of amino acids. GDH specifically
catalyses the reversible amination/deamination between 2-
oxoglutarate and glutamate; its physiological role in nitrogen
metabolism has been the subject of controversy (Lea & Miflin,
2003; Forde & Lea, 2007). Although some evidence suggests
a role for GDH in ammonium assimilation, most studies
indicate that GDH functions primarily in the deamination
direction, thereby producing ammonium in the mitochondria
(Lea & Miflin, 2003). It is most likely that GDH functions
as a shunt to divert some of the carbon skeleton from nitrogen
metabolism to carbon metabolism and the tricarboxylic acid cycle
(Miflin & Habash, 2002; Lea & Miflin, 2003). Asparaginase
catalyses the hydrolysis of asparagine to form ammonium and
aspartate, thereby constituting the major route for asparagine
catabolism.

Focusing primarily on cytosolic GS, we discuss below the
current knowledge of the enzyme structure, gene family and
evolution. We then examine information regarding cytosolic
GS regulation in the context of specific roles with regard to
primary nitrogen assimilation and recycling.

Different GS isoforms have evolved

Three types of GS have been described in living organisms,
based on molecular mass, quaternary structure and gene
sequences. GSI and GSII are both present in eukaryotes and
prokaryotes, with GSI being more abundant in prokaryotes

Fig. 1 The glutamine synthetase–glutamate synthase (GS–GOGAT) 
cycle.
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and GSII in eukaryotes. In addition, a third type (GSIII) has
been described in Bacteroides, Butyvibrio and some cyanobacteria
(Hill et al., 1989; García-Dominguez et al., 1997). Kumada
et al. (1993) estimated that GSI and GSII arose from gene
duplication c. 3500 Mya, based on the phylogenetic tree
calibrated by Dickerson’s estimate that animal and plant
kingdoms diverged 1200 Mya. This study suggests that GS
genes are one of the oldest existing and functioning genes. In
higher plants, the GSII type is the most abundant, although
some recent studies have shown the presence of GSI-encoding
genes in Medicago truncatula, Arabidopsis thaliana and sugarcane
(Saccharum spp.) (Mathis et al., 2000; Nogueira et al., 2005).
Thus far, the function of these GSI-type genes remains
unknown in plants; GSII genes have been better characterized.
The atomic structure of maize cytosolic GS has recently been
elucidated at 2.63-, 3.50- and 3.80-Å resolutions, indicating
that plant GS polypeptides (Type II) form decamers (Unno
et al., 2006), which differ from the dodecameric structure of
bacterial GS (Type I) (Almassy et al., 1986; Krajewski et al.,
2005). Cytosolic GS decamers, composed of two face-to-face
pentameric rings of subunits, contain 10 active sites, with
each site being formed between every two adjacent subunits
in a pentamer (Unno et al., 2006).

In higher plants, two isoforms of GS (Type II) were first
resolved by ion exchange chromatography. The cytosolic (GS1)
isoform was the first to be eluted, followed by the plastidic
(GS2) form (McNally & Hirel, 1983), although the opposite
elution pattern has been described in some species (Woodall
et al., 1996; Orea et al., 2002). They also differ by molecular
mass, with the plastidic isoform being larger (c. 44–45 kDa)
than the cytosolic isoform (c. 38–40 kDa) (Forde & Cullimore,
1989). The relative abundance of GS isoforms varies within
different organs of the same plant and within different plant
species, depending on either their photosynthetic type or
environmental growth conditions (McNally & Hirel, 1983).
In the mature green leaves of C4 plants, the relative amount
of cytosolic to chloroplastic GS is much higher than in C3
plants, and this relates to C4 metabolism (Becker et al., 1993).
Cytosolic and chloroplastic isoenzymes are regulated differently
within specific cell types and organs, and in response to different
developmental, metabolic and environmental cues. This
specialization ensures a rapid reassimilation of ammonium
derived from multiple sources (Miflin & Habash, 2002). Overall,
these two major GS isoforms play primarily nonoverlapping
roles in plant nitrogen assimilation, with chloroplastic GS
holding a major role in ammonium assimilation within
photorespiratory nitrogen cycling (Wallsgrove et al., 1987;
Leegood et al., 1995). The roles and regulation of chloroplastic
GS have been discussed elsewhere (Cren & Hirel, 1999;
Zozaya-Hinchliffe et al., 2005; Betti et al., 2006).

In angiosperms, the chloroplastic isoenzyme is encoded by
one gene, whereas two to five genes may encode the cytosolic
form. In conifers, the functional expression of GS2 has so
far not been demonstrated, suggesting that cytosolic GS is

involved in nitrogen assimilation related to photosynthetic
metabolism (Cánovas et al., 2007). Studies of GS gene families
were first carried out in legume species, particularly Phaseolus
vulgaris (Lara et al., 1983), Pisum sativum (Tingey et al., 1987)
and Medicago truncatula (Stanford et al., 1993). More recently,
GS gene families have been described in nonlegume plant
species, such as Zea mays (Li et al., 1993), Arabidopsis thaliana
(Ishiyama et al., 2004c), rice (Oryza sativa; Ishiyama et al.,
2004a), wheat (Triticum aestivum; Bernard et al., 2008), potato
(Solanum tuberosum; Teixeira et al., 2005) and sugarcane
(Saccharum spp.; Nogueira et al., 2005). GS gene and protein
sequences are well conserved both within and across species.
For example, in wheat, members of the cytosolic GS gene
family are c. 80% identical at the protein level (Bernard et al.,
2008). Some key domains of the GS protein have been
characterized, such as ATP-binding and glutamate-binding
sites. Site-directed mutagenesis studies have demonstrated the
functionality of some highly conserved residues in cytosolic
GS polypeptide. For example, the aspartic acid at position 56
on the glutamine α-polypeptide from P. vulgaris is essential
for transferase activity, whereas the glutamic acid residue
(position 297) is possibly involved in stabilizing the transition
state for a reaction subsequent to ammonium binding (Clemente
& Marquez, 1999a,b). Clemente & Marquez (2000) also
demonstrated that the cysteine residue at position 92 is
important for thermal stability. Further, recent point-mutation
studies in rice and maize have identified particular residues
that are critical in determining the kinetic characteristics of
cytosolic GS isoenzymes and heat tolerance (Ishiyama et al.,
2004a,b; Unno et al., 2006). The occurrence of isoenzymes
with distinct biochemical characteristics, together with the
heteromeric nature of the GS enzyme, could lead to many
GS isoenzymes if these were expressed in the same cells and at
the same time. However, the functional significance of these
isoenzymes has not been studied in vivo.

Phylogenetic studies of GS nucleotide or amino acid
sequences have shown that chloroplastic and cytosolic GSs
form two sister groups (Doyle, 1991; Pesole et al., 1991) and
have evolved through gene duplication (Biesiadka & Legocki,
1997). Kumada et al. (1993) proposed that the common
ancestor of the two genes diverged an estimated 300 Mya,
based on a phylogenetic tree calibrated by Dickerson’s estimate
that animal and plant kingdoms diverged 1200 Mya. This
analysis suggests that the duplication occurred earlier than the
monocot/dicot divergence. Chloroplastic GS is also present
in Ginkgo biloba (Garcia-Gutierrez et al., 1998), but absent in
pine species. In Pinus sylvestris, two cytosolic GS genes have
been identified, suggesting that the duplication of an ancestral
cytosolic GS occurred long before the divergence of
gymnosperms/angiosperms (Sáez et al., 2000). Doyle (1991)
proposed that members of the cytosolic GS gene family in
plants have evolved by duplication of an ancestral cytosolic
GS gene and the evolution of separate gene copies to fulfil
different metabolic cell requirements. Phylogenetic analysis
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has shown that cytosolic GS sequences from plant species that
can establish symbiotic relationships with either Rhizobia or
Frankia cluster in three groups (Biesiadka & Legocki, 1997;
Kim et al., 2004). These groups do not seem to correspond to
functionally different subfamilies, as each contains one cytosolic
GS isoform involved in assimilating ammonium from N2
fixation. Cytosolic GS proteins from the Poaceae family also
form three separate clades; however, these correspond to three
functionally distinct subfamilies of cytosolic GS (Bernard,
2005; Hirel et al., 2007a; Bernard et al., 2008). Given the
roles of some of the cytosolic GS isoforms in nitrogen
assimilation and recycling, we believe that the evolution of
these genes merits further attention.

In the three major cereal crops, studies have uncovered
quantitative trait loci (QTLs) for cytosolic GS proteins and/or
GS activity, demonstrating the existence of variation for GS in
maize (Hirel et al., 2001), rice (Obara et al., 2001, 2004) and
wheat cultivars (Habash et al., 2007). In these studies, some
of the QTLs were localized to the mapped structural GS
genes, establishing allelic variation, whereas others did not
co-localize with the mapped GS genes, demonstrating that
other genetic elements are influencing the activity or protein
abundance of GS isoenzymes. These studies support and
beautifully illustrate the complexity of the regulation of GS
isoenzymes, discussed below.

Cytosolic GS isoenzymes are regulated at 
transcriptional to post-translational levels 
and hold specific roles

Plant GSs may be regulated at several levels: (1) transcription of
different gene family members; (2) processing and stabilization
of the transcripts; (3) translation; (4) subcellular localization,

processing or modification of the GS polypeptide; (5) assembly
of an active enzyme; (6) post-translational modification of the
enzyme; and/or (7) enzyme degradation (Forde & Cullimore,
1989; Temple et al., 1993; Cren & Hirel, 1999). Transcriptional
controls are considered to be particularly important in
determining GS polypeptide abundance and cellular localization
patterns (Cren & Hirel, 1999). The complex regulation of
cytosolic GS is key to the establishment of a specific
physiological role for each isoenzyme (Fig. 2). The physiological
roles for cytosolic GS are also closely related to the sources of
ammonium discussed previously.

Cytosolic GS assimilates ammonium from 
primary sources in roots, nodules and leaves

Ammonium uptake from soil

The localization of cytosolic GS transcripts and polypeptides in
roots has led to suggestions that it is involved in the assimilation
of ammonium from primary nitrogen uptake (Sukanya
et al., 1994; Ishiyama et al., 2004a,c). Furthermore, in situ
hybridization and promoter–green fluorescent protein fusion
studies on the localization of rice and A. thaliana GS gene
expression have shown that the location of OsGln1;2 transcripts
is consistent with the site of ammonium uptake, as indicated
by the localization of ammonium transporters (Sonoda et al.,
2003; Ishiyama et al., 2004a; Tabuchi et al., 2007). Studies
in rice have suggested that OsNADH-GOGAT1 provides
glutamate for ammonium assimilation by cytosolic GS in the
cell layers at the root surface (Ishiyama et al., 2003; Tabuchi
et al., 2007). Ferredoxin-GOGAT may be involved when
excess ammonium is present and reaches the central cylinder
and root cortex (Tabuchi et al., 2007).

Fig. 2 The central role of cytosolic glutamine 
synthetase (GS) in plant growth and seed 
production. The central circle highlights the 
function of GS fixing inorganic nitrogen (N) 
into amino acids that can be transported to 
developing tissues and organs. Sources of 
ammonium are highlighted around the 
central circles. GOGAT, glutamate synthase.
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The role of root cytosolic GS in total plant primary nitrogen
assimilation is not well understood, especially for species
primarily assimilating nitrogen in the shoot. Furthermore, a
high level of GS activity in the root was negatively correlated
with above-ground biomass in Lotus japonicus (Limami et al.,
1999). Pea plants overexpressing a soybean GS1 under the
control of a root-specific promoter showed no consistent effect
on total biomass (Fei et al., 2003). Of the two lines showing
high root GS activity, one had decreased biomass and the
other showed no significant difference. Lian et al. (2005)
found a QTL for root weight that was localized in the vicinity
of the structural root cytosolic GS gene when rice plants were
grown under low nitrogen. Further studies are necessary to
firmly establish the contribution of root cytosolic GS in total
nitrogen assimilation, especially considering the different
nitrogen sources and levels of nitrogen availability. Cruz et al.
(2006) showed that a high level of GS activity in the dark, in
either roots or leaves, was necessary for plants to tolerate high
levels of ammonium in their growth medium.

Furthermore, Finnemann & Schjoerring (1999) demonstrated
that ammonium could be translocated from the root to the
leaf through the xylem, contributing up to 11% of the total
amount of nitrogen translocated in the stem xylem sap in
oilseed rape (Brassica napus). Ammonium translocation in the
xylem may provide ammonium for primary assimilation in
the shoot, where it can be assimilated by GS.

Ammonium originating from N2 reduction

The enzyme nitrogenase catalyses the reduction of N2 to
ammonium. This oxygen-sensitive enzyme is not present in
plants, but associations between nitrogen-fixing microorganisms
and plants can be established. The production of ammonium
that occurs either within the plant’s tissues or in specialized
organs called nodules can significantly contribute to plant
nitrogen nutrition. Cytosolic GS assimilates ammonium from
the three major types of nitrogen-fixing symbiotic association
involving plants and either Rhizobium, actinomycetes, such as
Frankia, or cyanobacteria (Rai et al., 2000). In some species,
a specific cytosolic GS isoenzyme is induced in nitrogen-fixing
root nodules (Lara et al., 1983; Forde et al., 1989), whereas,
in others, cytosolic GS already present is involved (Carvalho
et al., 2000a). In alfalfa, the level of transcripts for a nodule-
specific GS gene was dependent on the nodule nitrogen-fixing
capacity (Vance et al., 1994). In some species, cytosolic GS is
present in infected plant cells within the nodule, where it
assimilates ammonium that is locally released from the
nitrogenase-mediated reduction of atmospheric N2 (Oaks,
1992, Carvalho et al., 2000b). By contrast, in Frankia-infected
Dastica glomerata plants, GS is highly abundant in uninfected
nodule cortical tissues at a distance from the N2 reduction
site (Berry et al., 2004). In the nodules, cytosolic GS is post-
translationally regulated by phosphorylation in response to
nitrogen fixation (Lima et al., 2006). Cytosolic GS also

assimilates ammonium produced by endophytic diazotrophs
colonizing the internal parts of some plants, such as sugarcane,
without establishing symbiotic relationships (Nogueira
et al., 2005).

Ammonium from nitrate reduction

Some plant species show a preference for root nitrate
assimilation, whereas, for many others, this occurs primarily
in the leaf (Andrews, 1986; Wallace, 1986; Woodall & Forde,
1996). Together with the possibility of ammonium translocation
to the shoot, this difference suggests that, depending on the
plant species, primary nitrogen assimilation can occur in the
roots and/or shoots. Nitrate reduction is compartmentalized
between the cytosol, where nitrate reductase is active, and the
plastid, where nitrite reductase produces ammonium. In barley
roots, where cytosolic GS is the major form, GS activity was
higher in nitrate-fed plants, without any corresponding
increase in polypeptide abundance (measured by western
blot and immunolabelling) (Peat & Tobin, 1996). This
higher activity suggested that cytosolic GS is involved in the
assimilation of ammonium originating from nitrate reduction
in the roots (Peat & Tobin, 1996; Tobin & Yamaya, 2001),
and that post-translational regulation of cytosolic GS occurs
in response to nitrate treatment. GS could be detected by
immunolocalization in the plastids of young barley root;
however, plastidic GS is a minor form in barley root and could
not be detected (by western blot) in whole-root protein
extracts (Peat & Tobin, 1996). Woodall & Forde (1996) have
suggested that the presence of plastidic GS in the roots could
be the result of an adaptation of legume species to nitrate-rich
temperate soils.

In young and mature photosynthesizing leaves, both
chloroplastic and cytosolic GS proteins and activities have been
measured (McNally et al., 1983; McNally & Hirel, 1983;
Yamaya & Oaks, 1988; Sakakibara et al., 1992; Becker et al.,
2000; Habash et al., 2001; Tobin & Yamaya, 2001), thus
confirming that they are both assimilating ammonium. The
proportion of chloroplastic to cytosolic isoforms differs,
depending on the species studied (McNally et al., 1983).
Although the levels of cytosolic GS and GS2 were equal in
maize bundle-sheath cells, the level of cytosolic GS protein
was 1.8-fold higher than that of GS2 protein in mesophyll
cells (Becker et al., 1993). In these cells, the GS1-3 isoenzyme is
expressed constitutively, suggesting that it assimilates ammonium
originating from nitrate reduction (Martin et al., 2006).

For annual C3 grasses, such as wheat, rice or barley, cytosolic
GS is less abundant in the leaf. Nevertheless, it is an important
component, considering its vascular cell localization and
specific physiological functions, as discussed below. A study of
barley mutants deficient in GS2 showed a normal phenotype and
no nitrogen deficiency when grown under nonphotorespiratory
conditions (Wallsgrove et al., 1987; Leegood et al., 1995),
suggesting that cytosolic GS is involved in primary nitrogen
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assimilation. The cellular localization of cytosolic GS in vascular
bundles, particularly in the phloem and xylem parenchyma
cells of the leaves and stem, in C3 species (Kamachi et al.,
1992; Carvalho et al., 2000b) suggests that ammonium is also
assimilated in these cells. Ammonium may originate from
local sources or be transported from mesophyll cells, where
nitrate is reduced, to the vascular cells, where most of the
cytosolic GS is localized.

Cytosolic GS assimilates ammonium from 
nitrogen remobilization

Nitrogen remobilization from protein breakdown is the main
source of nitrogen for grain filling in annual species, supplying
c. 80% of the total nitrogen in rice grains (Mae & Ohira,
1981; Tabuchi et al., 2007). A number of studies have
suggested a role for cytosolic GS in the remobilization of the
inorganic form of nitrogen from senescing leaves for grain
filling in annual species. First, the localization of cytosolic GS
in the vascular tissues and the developmental regulation of
cytosolic GS suggest that it is important for nitrogen
remobilization. Subsequently, rice and maize mutant studies,
as well as QTL analyses, have shown that cytosolic GS is
necessary for grain filling (Hirel et al., 2001; Obara et al.,
2001, 2004; Habash et al., 2007; for a recent review, see Hirel
et al., 2007b).

Cytosolic GS cellular localization indicates a role in the 
transport of nitrogen

In both C3 and C4 species, cytosolic GS is located in vascular
bundles (Sakurai et al., 1996; Kichey et al., 2005; Martin
et al., 2006). Furthermore, recent studies have shown that
cytosolic GS is located in intermediary cells, where nitrogen
is exchanged between different cell types, such as the primary
pit fields connecting the mestome sheath cells and the
neighbouring parenchyma and vascular cells in wheat leaves
(Kichey et al., 2005), and the core linking the mesophyll and
vascular bundle cells in sugarcane leaves (Nogueira et al.,
2005). Cytosolic GS protein accumulates in the mesophyll
cells of tomato (Lycopersicon esculentum) plants in response to
stress, such as pathogen attack (Pérez-García et al., 1998b),
or senescence (Brugière et al., 1999, 2000; Kichey et al.,
2005), suggesting a role for this isoform in the reassimilation
of the nitrogen released during the disassembly of the photo-
synthetic apparatus.

Cytosolic GS assimilates ammonium in 
a developmentally controlled manner

Leaf GS isoenzymes are regulated in a developmentally
controlled manner during vegetative and reproductive plant
growth stages (Tobin et al., 1985; Kamachi et al., 1991; Sakurai
et al., 1996; Pérez-Rodríguez & Valpuesta, 1996; Finnemann

& Schjoerring, 2000; Habash et al., 2001; Bernard et al., 2008),
and particularly through senescence (Buchanan-Wollaston
et al., 2003). Studies in many species have noted a decline in
abundance of mRNA, protein and activity of GS2 in
senescing leaves, coinciding with an increase in abundance of
cytosolic GS (Finnemann & Schjoerring, 2000; Masclaux
et al., 2000; Habash et al., 2001; Bernard et al., 2008). In
wheat, two cytosolic GS genes are regulated differently during
leaf senescence: GS1 transcript abundance increases from
anthesis, whereas GSr transcript levels remain steady until a
late stage of development (Bernard et al., 2008). In maize,
GS2 is less abundant in the leaves, whereas cytosolic GS is
present throughout leaf development and under varying
nitrogen levels. Several GS isoenzymes are necessary to maintain
a high level of cytosolic GS activity in the leaves, with gln3
being up-regulated in senescing maize leaves (Hirel et al.,
2005). Finnemann & Schjoerring (2000) suggested that
phosphorylation and binding to 14-3-3 proteins was also a
possible means by which to regulate cytosolic GS during
senescence, mainly by increasing enzyme stability.

Leaf senescence involves the highly coordinated recycling
of nitrogen (Hortensteiner & Feller, 2002), with cytosolic
GS assimilating ammonium from the catabolism of amino
acids. Interestingly, GDH activity increases during senescence
(Masclaux et al., 2000), where it mostly functions in the
deamination direction, thus producing ammonium in the mito-
chondria. This activity also provides carbon in the form of 2-
oxoglutarate to the tricarboxylic acid cycle, and is especially
important for carbon-starved plants (Miyashita & Good, 2008).

In perennial plants, seasonal nitrogen cycling is an important
process of remobilization and transport of nitrogen compounds
from senescing tissues towards overwintering storage tissues in
the autumn, and reassimilation from the storage tissues during
the spring flush (Cooke & Weih, 2005). A study carried out
in poplar suggests that one cytosolic GS gene is up-regulated
early on during autumn senescence, and that its transcript
level subsequently declines (Andersson et al., 2004). Thus far,
the role of GS in the spring remobilization of nitrogen has not
been investigated.

Cytosolic GS remobilizes nitrogen for grain filling

Significant correlations were obtained between grain number/
size and a locus for cytosolic GS protein content in rice
(OsGln1;1; Yamaya et al., 2002; Obara et al., 2004). In maize,
coincidences of QTLs were found for GS activity, cytosolic
GS locus (gln1) and grain yield (Hirel et al., 2001, 2007b;
Gallais & Hirel, 2004). In wheat, GS activity (chloroplastic
and cytosolic isoforms) was shown to be positively correlated
with grain and stem nitrogen content (Habash et al., 2007).
These studies highlight the importance of cytosolic GS genes
in determining several aspects of nitrogen use traits in cereal
crops, with potential implications for breeding and agriculture
(for a review, see Andrews et al., 2004; Hirel et al., 2007b).
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The most compelling evidence for the role of cytosolic GS
in nitrogen remobilization for grain filling has come from
recent studies of mutants deficient in leaf cytosolic GS in rice
and maize (Tabuchi et al., 2005; Martin et al., 2006). In rice,
the homozygous lines of three OsGS1;1-knockout mutants
showed a decline in cytosolic GS enzyme activity (Tabuchi
et al., 2005). The phenotypes of these mutants, retardation in
growth rate, reduced spikelet weight and number, and reduced
fertility, strongly suggest a role for OsGS1;1 in grain filling in
rice. In maize, two mutants were identified with the maize
Mutator (Mu) system, showing an insertion in either Gln1-3
or Gln1-4, and a third double mutant was constructed with
Mu inserted in both genes (Martin et al., 2006). The two
single mutants displayed specific phenotypes, with the gln1-4
mutant exhibiting a reduced kernel size and the gln1-3 mutant
a reduced kernel number. As opposed to the phenotype seen
in rice, the loss of cytosolic GS activity in the leaves had no
effect on the shoot dry weight of the three maize mutants,
including the double mutant.

In addition, cytosolic GS assimilates ammonium in sink
tissues, as suggested by the strong expression of the cytosolic GS
gene in developing maize seeds (Rastogi et al., 1998), and the
fact that it is the major GS isoform in maize immature tassels,
cobs and husks (Muhitch, 2003). In these tissues, asparaginase
is a possible source of ammonium because it catabolizes
asparagine (for a review, see Lea et al., 2007).

Nitrogen remobilization during germination

During germination, the growth of plantlets is dependent on
the release of nutrients from the seed storage compounds.
Cytosolic GS has been detected in different parts of the
embryos of both starch-accumulating seeds, with a protein
content of 10–15% of total grain dry weight (Shewry &
Halford, 2002), and legumes, which tend to accumulate a
larger amount of storage proteins (Duranti & Gius, 1997).
Genetic studies in maize (Limami et al., 2002) showed the
co-localization of a QTL for a high rate of germination with
the Gln1-3 structural gene. This study also suggested that
high levels of GS activity in the germinating seed could lead
to faster germination. Several cytosolic GS genes are involved
in germination and show specific cellular expression (Cantón
et al., 1999, Ávila et al., 2001; Glevarec et al., 2004; Rodriguez
et al., 2006). Gómez-Maldonado et al. (2004a) proposed that
hormonal control, particularly by gibberellic acid, is part of
the regulation of cytosolic GS in the early stages of pine
development.

Ammonium assimilation during lignin synthesis

The enzyme PAL catalyses the first step of the phenylpropanoid
pathway in deaminating phenylalanine, with the subsequent
release of ammonium. To maintain an efficient nitrogen
economy, this ammonium must be reassimilated back into

amino acids. This is performed by cytosolic GS, which has
been shown to co-localize and co-express with PAL in vascular
xylem cells (Suárez et al., 2002; Cantón et al., 2005). Studies
in rice have also demonstrated the co-localization of cytosolic
GS and PAL in the vascular cells of immature leaves (Sakurai
et al., 2001). Conifers invest large amounts of carbon in
the phenylpropanoid pathway for the synthesis of lignin
(Cánovas et al., 2007). The cis-acting elements found in the
promoter region of the pine GS1b gene showed a similarity to
those of the promoter of the bean PAL2 gene (Gómez-
Maldonado et al., 2004b). Further analyses demonstrated an
interaction between MYB transcription factors and the cis-acting
elements, suggesting that this was a possible way of co-regulating
lignin synthesis and nitrogen reassimilation in pine.

The role of cytosolic GS in nitrogen assimilation 
and recycling is important for plant growth and 
seed production

The significance of cytosolic GS in plant growth and
development has been emphasized in studies using forward
and reverse genetic approaches. A variety of plant species have
been modified to overexpress cytosolic GS, following different
strategies in terms of promoter and transgene selection.
Although the outcomes of these studies have been variable,
they imply that cytosolic GS is important for efficient nitrogen
assimilation, plant growth and biomass accumulation. Tobacco
and poplar plants expressing a transgenic GS1 under the
control of a constitutive promoter showed a decrease in
ammonium content in the leaves, indicating a higher rate of
nitrogen assimilation (Oliveira et al., 2002; Man et al., 2005).
An increase in total leaf soluble protein content was noted in
GS1-overexpressing poplar plants (Gallardo et al., 1999; Fu
et al., 2003; Jing et al., 2004), tobacco (Temple et al., 1993;
Oliveira et al., 2002) and L. japonicus (Ortega et al., 2004).
The effects of GS1 overexpression were also noticed in transgenic
tobacco plants, particularly as these were able to maintain
high photosynthetic rates even under limiting nitrogen
conditions (Fuentes et al., 2001). The effects of increased
cytosolic GS on plant growth were particularly dramatic in
poplar plants overexpressing a pine GS1 gene. In these
plants, vegetative growth was increased, leading to an increase
in height in both glasshouse and field experiments (Gallardo
et al., 1999; Jing et al., 2004). A similar result was obtained
with L. corniculatus plants overexpressing a soybean GS1
gene, which senesced earlier than control plants (Vincent
et al., 1997).

The impact of GS overexpression on plant biomass is
variable, depending on the species studied and the growth
conditions. Tobacco and L. japonicus plants overexpressing a
GS1 gene under the control of a constitutive promoter showed
an increase in total plant fresh and dry weight (Oliveira et al.,
2002; Ortega et al., 2004). An increase in dry weight was
observed in the roots and grains of wheat plants overexpressing
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cytosolic GS, specifically in the leaves, ultimately leading to an
increased grain nitrogen yield (Habash et al., 2001). These
studies thereby demonstrate that the manipulation of GS
produces a range of phenotypes affecting growth, development
and nitrogen assimilation. To focus and target the modulation
more precisely necessitates cell-specific and developmentally
specific promoters for transformation. This remains an open
field for research.

Cytosolic GS response to varying environmental 
conditions and plant nitrogen status

Cytosolic GS responds to nitrogen availability in the external
medium, plant nitrogen status (ratio of glutamine to glutamate),
light/dark and the presence of abiotic and biotic stressors.
Thus far, it has been difficult to establish a global model of
GS response to variation in nitrogen availability in both
roots and leaves. Although some cytosolic GS gene members
are up-regulated by the addition of ammonium, some are
down-regulated or do not respond (Sakakibara et al., 1996;
Finnemann & Schjoerring, 1999, Ishiyama et al., 2004b;
Hirel et al., 2005). These discrepancies could be explained
by differences between experimental procedures and/or by
species variation in terms of response to nitrogen deficiency
and variation in nitrogen sources. Differences in gene number
among species could also lead to more complex response
patterns in some species. Although most studies have
focused on the response to severe nitrogen deficiency, few
have examined the effect of steady-state nitrogen deficiency
on nitrogen metabolism, which is more relevant to field-
grown plants.

Variations in soil nitrogen availability, including the type of
nitrogen source and amount, affect plant nitrogen status and
the direct availability of ammonium for assimilation at both
cellular and organ levels. In nitrogen-repleted oilseed rape, the
accumulation of cytosolic GS gene transcripts declined in
the roots, leading to enhanced translocation of ammonium to the
shoots (Finnemann & Schjoerring, 1999). Ammonium itself
regulates cytosolic GS genes at the transcriptional level (Hirel
et al., 1987; Kozaki et al., 1992; Sukanya et al., 1994). In
soybean, the cooperation of three distinct promoter regions is
necessary for ammonium-stimulated expression of the gene
(Tercé-Laforgue et al., 1999). The interaction among these
three regions may be facilitated by an HMG A-like protein
that binds to the proximal and distal promoter regions of the
soybean GS15 gene (Reisdorf-Cren et al., 2002). Plant nitrogen
status also alters the transcriptional regulation of cytosolic
GS genes by ammonium in the roots (Sonoda et al., 2003;
Ishiyama et al., 2004c).

Transcript stability is another means of cytosolic GS
regulation in response to nitrogen nutrition (Ortega et al.,
2006). However, it is not clear whether plant nitrogen status
or nitrate molecules interact with the cis-acting element at the
3′ end of the GS1 transcripts. An increased level of cytosolic

GS polypeptide has been measured in the leaves of A. thaliana
Wassileskija accession plants grown under nitrogen-deficient
conditions, probably to assimilate ammonium from the
catabolism of protein (Lemaître et al., 2008). The capacity of
plants to tolerate low nitrogen availability may also be linked
to their tolerance to other stresses. For example, Thellungiella
halophila, a relative of A. thaliana, has been shown to be
tolerant to salt stress and nitrogen limitation, because of its
higher nitrate uptake and assimilation (Kant et al., 2008).

In response to drought or salt stress, the abundance of the
GS2 polypeptide and its activity decline, whereas cytosolic GS
tends to increase or maintain the same level in the leaves
(Bauer et al., 1997; Lutts et al., 1999; Santos et al., 2004;
Martinelli et al., 2007; D. Z. Habash et al., unpublished).
Transgenic poplar plants expressing a pine cytosolic GS gene
show enhanced water stress resistance compared with controls
(El-Khatib et al., 2004). These results suggest that GS over-
expression leads to an increased photorespiratory activity, thus
providing a protective sink for electrons from photosynthetic
reaction centres (although the photoprotective role of photo-
respiration remains controversial). The response of GS to
drought or salt stress in the roots is less clear, with studies in rice
seedlings and potatoes showing a decline in GS total activity
in response to salt stress (Lutts et al., 1999; Teixeira & Pereira,
2007), and studies in rice and sunflower showing an increased
cytosolic GS polypeptide abundance and activity (Santos
et al., 2004; Yan et al., 2005). The response of cytosolic GS to
osmotic stress is related to the reassimilation of nitrogen from
increased amino acid catabolism, and is necessary for the
production of proline (Brugière et al., 1999).

Some evidence exists for the induction of either cytosolic
GS genes or novel forms of cytosolic GS proteins in infected
leaf cells in plants under pathogen attack (Pérez-García et al.,
1995, 1998a,b; Oléa et al., 2004; Pageau et al., 2006; Tavernier
et al., 2007). Pageau et al. (2006) showed that GS1 was up-
regulated in tobacco leaves in response to viral and bacterial
attacks, especially when an incompatible reaction was triggered.
However, this induction did not depend on a hypersensitive
response induction, suggesting that GS1 shows the same
pattern of expression as an early plant defence gene. Similarly,
Tavernier et al. (2007) showed that Gln-α from P. vulgaris was
up-regulated in response to pathogenic and nonpathogenic
strains of fungus, again implying that it responds in the same
manner as an early-response defence gene. In the latter study,
Tavernier et al. (2007) also showed that the expression of
Gln-α followed that of PAL3, perhaps indicating that cytosolic
GS was there to reassimilate ammonium from PAL activity.
This up-regulation of Gln-α was also accompanied by an
increase in cytosolic GS polypeptide abundance, but an overall
decline in activity, mainly resulting from the decline in
chloroplastic GS. The response of cytosolic GS to abiotic and
biotic stresses occurred mainly at the transcript abundance levels.
However, it is unclear whether an increase in transcription
occurs, or whether mRNA transcripts are more stable.
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GS is key to adjusting nitrogen assimilation and 
recycling in response to varied environmental 
conditions

The coordination and optimal functioning of the metabolic
pathways for nitrogen and carbon assimilation in plants are
critical in determining plant growth and, ultimately, biomass
accumulation (Krapp et al., 2005). GS is a necessary enzyme
for nitrogen metabolism, as it catalyses the assimilation of all
inorganic nitrogen incorporated into organic compounds,
such as proteins and nucleic acids. This reaction is coupled to
the formation of glutamate by GOGAT as part of the GS/
GOGAT cycle. Although Ferredoxin-GOGAT plays a critical
part in the reassimilation of ammonium released by glycine
decarboxylase during photorespiration, NADH-GOGAT
assimilates ammonium from both primary and secondary
sources during nitrogen remobilization (Lea & Miflin, 2003).

The fundamental role of GS within nitrogen metabolism
may explain its ancient origins and justify its presence in both
eukaryotes and prokaryotes. In plants, different GS genes have
evolved that assimilate ammonium from various sources in
different cells and tissues. Cytosolic GS is of particular interest,
because it is encoded by many genes and holds many functions
within the plant. Genetic modification of a cytosolic GS gene
via mutation or transgenesis has led to alterations in whole
plant metabolism and phenotypes, particularly plant and seed
biomass. However, these effects are not always consistent
between studies, probably because of the complex regulation
of GS. Continuous research demonstrates that cytosolic GS
genes, transcripts and proteins are also responsive to both the
plant status and environmental cues. Overall, this suggests that
GS may constitute a regulatory point at which environmental
signals are integrated and translated into a plant response in
terms of growth and seed production.

Although our understanding of cytosolic GS has greatly
increased since its discovery, many questions remain: in
particular, certain aspects of its regulation are still not fully
understood. However, a further understanding of the molecular
basis for plant nitrogen uptake/assimilation and its regulation
is critical for understanding plant response to fluctuating
environmental conditions.
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