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Abstract Digital Elevation Models (DEMs) play a critical

role in hydrologic and hydraulic modeling. Flood inunda-

tion mapping is highly dependent on the accuracy of

DEMs. Various vertical differences exist among open

access DEMs as they use various observation satellites and

algorithms. The problem is particularly acute in small, flat

coastal cities. Thus, it is necessary to assess the differences

of the input of DEMs in flood simulation and to reduce

anomalous errors of DEMs. In this study, we first con-

ducted urban flood simulation in the Huangpu River Basin

in Shanghai by using the LISFLOOD-FP hydrodynamic

model and six open-access DEMs (SRTM, MERIT,

CoastalDEM, GDEM, NASADEM, and AW3D30), and

analyzed the differences in the results of the flood inun-

dation simulations. Then, we processed the DEMs by using

two statistically based methods and compared the results

with those using the original DEMs. The results show that:

(1) the flood inundation mappings using the six original

DEMs are significantly different under the same simulation

conditions—this indicates that only using a single DEM

dataset may lead to bias of flood mapping and is not ade-

quate for high confidence analysis of exposure and flood

management; and (2) the accuracy of a DEM corrected by

the Dixon criterion for predicting inundation extent is

improved, in addition to reducing errors in extreme water

depths—this indicates that the corrected datasets have

some performance improvement in the accuracy of flood

simulation. A freely available, accurate, high-resolution

DEM is needed to support robust flood mapping. Flood-

related researchers, practitioners, and other stakeholders

should pay attention to the uncertainty caused by DEM

quality.

Keywords Digital elevation models � Dixon

criterion � Hydraulic modeling � Shanghai � Urban
flooding

1 Introduction

Flooding has caused tremendous economic losses and

fatalities around the world (Najibi and Devineni 2018), and

coastal cities are areas that are at significant risk from

flooding (Aerts et al. 2014). The world population in

coastal cities has increased 4.5 times in the last 70 years

and coastal urbanization will likely continue in the coming

decades (Barragán and de Andrés 2015). Urban areas are

expanding to receive large influxes of people into cities

(Dang et al. 2020). In recent decades there has been a

massive migration of people towards the coastal regions of

China (Niu and Zhao 2018), which has led to a large

concentration of wealth and population in these areas

(Dovern et al. 2014). This change increases coastal cities’

exposure to risks (Surjan et al. 2016), especially flood risk.

The flood threat to coastal cities is getting worse due to

climate change, which leads to a high degree of uncertainty

in future flood risk (Deng et al. 2016; Lin et al. 2016; Gu
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et al. 2019; Fang et al. 2020). The threat of flooding in its

diverse forms ultimately results in economic losses and

human casualties. Therefore, an accurate assessment of

flood inundation in urban areas in coastal cities is vital to

understanding flood risks and providing precise disaster

forecasting and emergency response (Yang et al. 2020; Yin

et al. 2020).

To better understand flood risk, flood inundation map-

ping is critically important for identifying potential impact

areas and assessing inundation depths to evaluate the

severity of flood hazards. Due to the improvement of

computer performance, as well as the simplification and

development of the algorithms, hydrodynamic models have

been widely used for flood simulations (Lesser et al. 2004;

Yu and Lane 2006). As the primary topographic input data,

Digital Elevation Models (DEMs) have proven to be a vital

element in controlling hydrodynamic model accuracy

(Kenward et al. 2000; Cobby et al. 2001). Open access

DEM products have been widely used in flood simulation

and mapping (Pedrozo-Acuña et al. 2015). However, the

relatively poor resolution and accuracy of open access

DEMs at present significantly limit the ability to estimate

the inundation areas and relevant risks (Sampson et al.

2016). It has been demonstrated that low DEM data quality

can lead to severe flood prediction biases (Hawker, Bates,

et al. 2018). This is mainly affected by the spatial resolu-

tion and vertical error of DEMs. Low spatial resolution

affects the delineation of surface features and the accuracy

of the flood simulation (Vaze et al. 2010; Saksena and

Merwade 2015). Elevation errors in the vertical direction

can also affect the accuracy of the terrain simulation and

hence the flooding simulation (Mukherjee et al. 2013;

Talchabhadel et al. 2021). It has been recognized that

accurate DEMs are critical for high precision flood mod-

eling and management (Cook and Merwade 2009; Coveney

and Fotheringham 2011).

Plenty of research has been done on improving DEMs

for flood modeling. Digital Elevation Model noise correc-

tion and systematic DEM bias correction are two common

control methods. In high-precision flood modeling, the

error of terrain attributes reflected by DEMs will affect the

simulation of channel morphology and bathymetry in flu-

vial floods. Coarse resolution of DEMs is problematic for

determining channel morphology, signal attenuation of

water bodies, or radar reflections, and this issue cannot be

sufficiently addressed.

Errors in measurements appear as noise in the elevation

data, including stripe noise or random speckle noise. Stripe

noise affects extensive range but can be easily identified

and eliminated, such as by using the two-dimensional

Fourier filtering technique to detect unrealistic terrain

undulations and remove stripe noise (Yamazaki et al.

2017). Speckle noise occurs randomly and in uncertain

locations. Some studies have attempted to improve the

DEM, including the possibility of reducing DEM noises

through systematic editing, such as eliminating spurious

pits or sinks (Hutchinson 1989; Soille et al. 2003). Noise

can also be reduced by filtering, for example by applying

an adaptive-scale smoothing filter to remove random

speckle noise (Gallant 2011). Nonetheless, such a revised

DEM does not necessarily perform well in any study area,

as different DEMs have distinct performances in different

regions (Wong et al. 2014; Elkhrachy 2018). Some meth-

ods revised errors based on the original product by deriving

a completely new DEM, but high precision DEMs on a

global scale still have the potential of having significant

errors at local scales (Holmes et al. 2000). Some current

studies attempt to obtain more accurate elevation data

through field investigation, such as the LiDAR with higher

terrain accuracy or ground control point interpolation with

the help of unmanned aerial vehicles (Karamuz et al. 2020;

Kim et al. 2020). However, the high economic cost and

time required for acquiring data make such methods chal-

lenging to apply to a large-scale area in flood simulations

(Aguilar et al. 2010).

Biases or artifacts in the DEMs are systematic errors due

to the procedures used in the DEM generation (Wechsler

2007). Some studies focused on the vertical differences

between different DEMs (Sanders 2007; Bhuyian and

Kalyanapu 2018). However, most studies do not spatially

quantify how the uncertainty reflected in the vertical error

affects the results (Gesch 2018). Some studies evaluated

better performing DEMs by comparing the quality of the

data within one or more study areas (Du et al. 2016; Zhang

et al. 2019), but this does not mean that DEMs can have the

same performance in other areas of interest. There is also a

category of studies based on global error metrics, such as

determining upper and lower bounds on elevation error

(Kyriakidis et al. 1999). Although the error in the DEM is

not reduced, the boundaries of the error are determined.

Some of the studies conducted error analysis through

probabilistic studies, and the relevant tools included using

the Monte Carlo technique (Wechsler and Kroll 2006) and

sequential Gaussian simulation (Fereshtehpour and Kar-

amouz 2018). Such operations do not produce a precise

result but a map that contains the spatial distribution of

possible errors, thus indicating the likelihood of any posi-

tion falling above or below a specified elevation. A mod-

ified deterministic and probabilistic approach to vertical

uncertainty is considered a better option than a simple

deterministic approach that ignores the effects of elevation

errors (Gesch 2018).

In this study, we generated a new DEM by taking

advantage of several sets of DEMs through considering the

interconnections and differences between current open

access DEMs. We considered whether existing datasets can
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be corrected to eliminate errors and, based on this idea,

provide a statistically based method and apply it in the

DEM. This is an entirely new DEM but takes full advan-

tage of every raster information of the original DEMs data.

The significant benefits of this method are the convenience

of the technique and the fact that missing or incorrect

partial DEM data do not limit the results generated for the

particular study area. The results generated by the method

can also be continuously updated as the number of DEM

products increases, and theoretically will be closer to the

accurate elevation values. This study investigated the fea-

sibility of the new statistically based method for elimi-

nating DEM error. This was achieved by: (1) simulating

and comparing the flooding results from the currently

available open access DEMs; (2) analyzing and evaluating

the performance of the newly generated DEM versus the

original DEMs in flood simulation; and (3) discussing the

error factors present in typical DEMs in the study area.

2 Materials and Methods

The following subsections present a brief introduction of

the study area and the employed datasets and their prop-

erties, followed by the methods.

2.1 The Shanghai Study Area

Shanghai is located on the alluvial plain of the Yangtze

River Delta in China, with a dense population of more than

24 million and produced over USD 550 billion (RMB 3.8

trillion) of gross domestic product (GDP) in 2019, which is

3.8% of China’s national GDP (SMSB 2020). It is a low-

lying area, with an average elevation of 4 m. However, the

estuary system’s average tidal amplitude can reach up to

4.6 m (Wang et al. 2012). Due to the low-lying terrain and

the high tidal amplitude, Shanghai suffers complicated

types and frequent high flood events and is one of the most

vulnerable cities affected by floods in the world (Balica

et al. 2012). More than 1,800 flood-related casualties were

reported from 1949 to 2005 (Wen and Xu 2006). These

devastating flood disasters occurred in association with

various meteorological hazards, such as typhoons, heavy

rains, prolonged precipitation, and riverine flooding.

Typhoon Winnie in 1997 caused the Huangpu River to

reach an extreme water level of 5.99 m (Du et al. 2015),

with an inundation area of 495 km2 in the city center,

causing seven deaths and direct economic losses of USD

80 million (RMB 670 million). Although the Typhoon

Winnie event is extremely rare, Shanghai is still likely to

suffer from severe flooding events in the future due to

global sea level rise and land subsidence.

The Huangpu River is a typical lowland river in

Shanghai, which originates from the Dianshan Lake—one

of the lakes in the Taihu Lake Basin—and flows into the

Yangtze River Estuary. It is the largest river in the Taihu

Lake Basin, carrying 70% of Taihu Lake’s water flow (Yin

et al. 2013). The mainstream of the Huangpu River extends

from Mishidu gauge station in the upper reaches to the

Wusongkou gauge station in the lower reaches, with a total

length of about 75 km, running through the city center of

Shanghai (Fig. 1). The mainstream of the Huangpu River

was selected as the study area to illustrate the impact of

different DEMs on inundation simulation. The study area

constitutes the central part of Shanghai Municipality,

covering over 3,000 km2, where more than 13 million

people live.

2.2 Digital Elevation Models

We considered seven global DEM datasets that are freely

accessible: SRTM, MERIT, CoastalDEM, GDEM,

AW3D30, NASADEM, and TanDEM-X. As there is a lot

of missing information in TanDEM-X for the study area,

the first six datasets were chosen for the study (Fig. 2).

SRTM: The first version of the Shuttle Radar Topog-

raphy Mission (SRTM) products was released in 2003 with

30 m and 90 m horizontal resolutions. The published

datasets have been processed using the interpolation algo-

rithm to fill the data hole of SRTM (Reuter et al. 2007).

The absolute elevation errors of SRTM at the 90% quantile

(LE90) ranged from 5.6 cm to 9.0 m (Rodrigue et al.

2006). Both 30 m and 90 m resolution DEMs were adopted

in this study, with the 90 m data used for error correction.

MERIT: The MERIT was developed by removing

various error components, including absolute deviation,

fringe noise, speckle noise, and tree height deviation from

existing DEMs (SRTM, AW3D, Panoramas DEM). Data

for all regions except Antarctica are provided. The absolute

elevation error at the 90% quantile is 5 m (Yamazaki et al.

2017). We chose MERIT version 1.0.3 with a 90 m reso-

lution for this study.

CoastalDEM: The CoastalDEM dataset is exclusively

developed for coastal areas, which is based on SRTM data.

Using machine learning techniques, the accuracy of coastal

terrain in this dataset has been effectively improved by

cutting *50% root mean square error (RMSE) compared

with SRTM (Kulp and Strauss 2018). Moreover, more

coastal areas are exposed to floods based on this dataset

(Kulp and Strauss 2019). This dataset has 30 m and 90 m

versions, and only 90 m horizontal resolution has free

access for non-commercial use, which was adopted in this

study.

GDEM: ASTER GDEM is a global one-arc-second

elevation dataset based on the products of the new Earth
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observation satellite Terra released by METI and NASA. It

has the advantage of broad data coverage, covering most of

the Earth’s regions between 83�N and 83�S latitude. The

RMSE of ASTER elevations was estimated to be 8.68 m

(Tachikawa, Hato, et al. 2011, Tachikawa, Kaku, et al.

2011). The GDEM version 2 released in October 2011

improves the spatial resolution by using 260,000 additional

stereo pairs, and improves horizontal and vertical accuracy

(Tachikawa, Hato, et al. 2011), and this version was

adopted in this study.

NASADEM: NASADEM reprocesses SRTM data and

merges with ASTER GDEM elevations to improve height

accuracy. The new and improved SRTM heights in

NASADEM come from better vertical control by referring

to the Ice, Cloud, and Land Elevation Satellite (ICESat),

and gaps in SRTM are reduced by using interferometric

unwrapping algorithm (Crippen et al. 2016). NASADEM

covers 80% of Earth’s land regions and includes land

between 60�N and 56�S latitude. The version used in this

study was released in February 2020 with 30 m horizontal

resolution.

AW3D30: ALOS World 3D 30 m data are obtained by

the Panchromatic Remote-sensing Instrument for Stereo

Mapping (PRISM) on the advanced land observation

satellite ALOS (Tadono et al. 2014). The elevation values

are obtained by software calculations of the position of the

same feature imaged on three cameras with different

viewing angles, which effectively improves accuracy.

AW3D30 is a resampled version for non-commercial use

from AW3D5 with a grid size of 30 m with global coverage

from 83�N to 82�S. The RMSE of AW3D versus 5,121

points distributed across 127 image tiles were 4.40 m

(Takaku et al. 2016). The AW3D30 data in this study is

from version 2.3 released in April 2019 with 30 m hori-

zontal resolution.

Four sets of 30 m resolution (AW3D30, NASADEM,

GDEM, STRM 30 m) and three kinds of 90 m resolution

DEM data (SRTM 90 m version, MERIT, CoastalDEM)

were selected for this study. Figure 2 shows the six sets of

open access DEMs and their basic information. Among

them, MERIT, CoastalDEM, and NASADEM are based on

SRTM data modified by the algorithm. The GDEM data

source is from the ASTER satellite, and AW3D30 is from

the ALOS satellite.

The table in Fig. 2 shows the basic properties of the six

datasets in the study area. CoastalDEM has the lowest

average elevation and GDEM has the highest average

height in the study area, and CoastalDEM’s average ele-

vation is more than three times of GDEM. In terms of

elevation distribution, the five sets of DEMs, except

CoastalDEM, have the largest proportion of elevation in

the more than 4 m range. In contrast, in the CoastalDEM

only 2.0% of the study area is higher than 4 m, and nearly

half of the area (43.8%) has less than 2 m elevation.

2.3 Methodology

The following subsections present the three main processes

of the study including Digital Elevation Model processing,

simulating flooding events, and assessing inundation sim-

ulation accuracy.

2.3.1 Digital Elevation Model Processing

We first extracted DEMs of the study area including

coordinate transformation and clips. Then we used two

methods to process the DEMs. Before processing, resam-

pling was done to ensure that the spatial resolution of the

six datasets was consistent. The resampling method was

nearest neighbor, which has been found to lead to the

highest accuracy in DEM resampling (Takagi 1998).

Fig. 1 Location of the study

area—the Huangpu River

Basin—in Shanghai, China
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The first method to process the DEMs is to directly take

the mean of the same row and column elevation values for

the six datasets (Mean). The second one is to remove error

elevations by the Dixon method before direct averaging.

The revision principle is based on the statistical method

of eliminating bad values from the data, reducing errors,

and thus improving the accuracy of the data. We extended

the application to the processing of DEM data and analyzed

the elevation data at the same location (rows, columns) of

different DEM products, eliminating data with large errors

and retaining data with elevations in the normal range

compared to all DEM data at that location.

Mean: The original high-resolution data was first

resampled to a lower resolution to ensure consistency

Fig. 2 Six Digital Elevation Model (DEM) datasets used for the study in Shanghai, China (Inserted table: Basic information of the six DEMs

used in this study)
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across the datasets. Then a new elevation value z was

generated by averaging the elevation data from several

datasets of the original DEMs at the same row (x) and

column (y), assigning that value to the same location, and

so on to generate a new DEM.

Dixon criterion: Compared with the direct average, this

method adds the process of eliminating the error value by

the Dixon method, which is suitable for checking the

consistency of a set of measured values when the amount

of data is limited (Dixon 1950). This method screens out

error values by using the extreme difference as a metric to

estimate the difference between adjacent data and to

identify excessive differences as anomalous data. Dixon’s

test can directly detect outlier values by using the range

ratio without calculating the arithmetic mean and standard

deviation (SD) of the sample, and therefore is suitable for

small-sample data. It performs well with small sample sizes

and does not require assumptions about the normality of

the data. This method is not ideal when the maximum and

minimum values are both suspicious, or two suspicious

values exist on the same side of the maximum (minimum)

value.

In this study, the Dixon criterion thresholds refer to the

national standards of the People’s Republic of China

(SAMR 2008), as shown in Table 1. Since the number of

samples (DEMs) is less than 10, the table lists only n values

up to 10.

2.3.2 Flooding Simulation

We chose the hydrodynamic model LISFLOOD-FP to

simulate flood inundation, which is widely used in flood

simulation and mapping (Fewtrell et al. 2008; Zhao et al.

2020). LISFLOOD-FP is a simplified two-dimensional

hydrodynamic raster-based inundation model (Bates and

De Roo 2000). It can simulate floodplain inundation in a

computationally efficient manner over complex topogra-

phy, which can also be used for hydrodynamic simulation

of the one-dimensional channel and two-dimensional flood

area with two corresponding solutions. For one-dimen-

sional channel water simulation, the simplified St. Venant

equations are used in the model.

The hydrological simulation of a two-dimensional flood

area needs to use the continuity equation and momentum

equation based on the terrain data of the DEM. Considering

the water balance of adjacent grids:

dV

dt
¼ Qup þ Qdown þ Qleft þ Qright ð1Þ

Qij ¼
AijRijS

1=2
ij

n
ð2Þ

where V is the total flow per grid, Qup, Qdown, Qleft, and

Qright respectively relate to the flow rates of upstream,

downstream, left, and right units adjacent to the grid,

t represents time, and Qij represents the flow between grid

i and grid j; Aij and Rij represent the cross-sectional area

and hydraulic radius at the junction of adjacent grids i and

j respectively; Sij represents the water slope between i and

j, and n is the manning coefficient.

To assess the uncertainty in inundation simulation result

caused by DEM errors, we carried out the sensitivity

analysis by changing the input DEM while keeping other

input conditions the same. We did not take the uncertain-

ties such as sea level rise, ground subsidence, and

embankment into consideration. In the water level height

design, we referred to the water level height designed in

relevant research (Yin et al. 2013). In the inundation sim-

ulation, we evaluated the differences between two sets of

water level data of 50-year (50a) and 100-year (100a)

return periods and compared the two scenarios’ average

values.

2.3.3 Assessment of Inundation Simulation Accuracy

We used historical disaster conditions and relevant litera-

ture (Yuan 1999) to determine areas prone to flooding

along the Huangpu River and assessed the accuracy of the

inundation simulation by using the binary classification.

The binary classification method is applicable in areas with

small slope variations, with good performance in flood

simulation (Stephens et al. 2014; Samela et al. 2017), and

is therefore appropriate in this study. The two-dimensional

matrix includes four scenarios, with accuracy based on a

comparison with the observed and actual results, including

dry and wet indicators, as shown in Table 2.

Once the observed area and simulation area are deter-

mined, the accuracy of the submergence simulation should

be evaluated by calculating the F1 Score. The F1 Score is a

measure of both precision and recall, representing the mean

Table 1 Dixon criterion threshold, national standards of the People’s

Republic of China

n Statistics 1 - a

Low-Level Noise High-Level Noise 0.99 0.95

5

c
0 ¼

xð2Þ�xð1Þ
xðnÞ�xð1Þ

c ¼
xðnÞ�xðn�1Þ

xðnÞ�xð1Þ

0.821 0.710

6 0.740 0.628

7 0.680 0.569

8

c
0 ¼

xð2Þ�xð1Þ
xðn�1Þ�xð1Þ

c ¼
xðnÞ�xðn�1Þ

xðnÞ�xð2Þ

0.717 0.608

9 0.672 0.564

10 0.635 0.530
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of the reconciliation of accuracy and recall rates. A higher

F1 value indicates better accuracy:

1

F1
¼
1

2

1

Precision
þ

1

Recall

� �

ð3Þ

Precision =
TP

TP + FP

� �

ð4Þ

Recall =
TP

FN + TP

� �

ð5Þ

Figure 3 shows a simple diagram that illustrates how to

determine the quality of flooding simulation results by

binary classification (Jafarzadegan and Merwade 2017).

3 Results

This section compares the inundation simulation results

using six sets of original DEMs and two sets of processed

DEMs. Considering that the proposed method resamples

the DEMs to reduce the spatial resolution, we also compare

two sets of DEMs with the same data source but different

spatial resolutions and analyze these results.

3.1 Effect of Horizontal Resolution

We used the same data but with two resolutions, that is, the

30 m and 90 m SRTM datasets, to compare flood inunda-

tion under the same scenario setting. The results are shown

in Fig. 4. Comparing the results of the two datasets, we

found that the SD, MAX, and inundation area of the flood

simulation results increase as the return period increases.

The most significant change is in inundation extent. The

change in inundation area is 20.7% between the two return

periods for the 30 m resolution DEM and 18.6% for the 90

m resolution DEM. The smallest change is in SD, where

the change is 2.9% for the 30 m resolution DEM and 2.6%

for the 90 m resolution DEM. This result illustrates that the

flooding simulation error increases as the inundation level

increases with the increase of the return period. But the

Table 2 Contingency table of the confusion matrix with true positive

(TP), false negative (FN), false positive (FP), and true negative (TN)

values

Simulated

Wet Dry

Observed Wet True Positive (TP) False Negative (FN)

Dry False Positive (FP) True Negative (TN)

Fig. 3 An example for understanding the binary classification terms

including the rate of true positive (TP) and false positive (FP), and the

F1 score used to validate flood inundation simulation accuracy

Fig. 4 Comparison of the results of flood inundation simulation using

two SRTM datasets under two inundation scenarios (50a and 100a

return periods) on the Huangpu River in Shanghai, where 4a and 4c

represent results using the original 30 m SRTM dataset, and 4b and 4d

represent results using the original 90 m SRTM dataset. SD represents

the standard deviation (in meters), Max represents the simulated

maximum water depth (in meters), and Area refers to the inundation

area (km2)

123

896 Xu et al. DEM Selection in Flood Simulation and a Method to Reduce DEM Errors



choice of different spatial resolutions may lead to differ-

ences in the results, where coarser resolutions lead to a

degradation of SD and maximum water depth while

increasing the inundation area, but the overall change is not

significant.

3.2 Cross-comparison of Eight Sets of Digital

Elevation Models

The results of the simulation using the eight sets of DEMs

under two flooding scenarios are shown in Fig. 5. The

results using the six sets of original data show an increase

in the maximum inundation depth, SD, and inundation area

with the increase of the return period, which indicates that

the error of the simulation increases with the increase of the

return period. The results of the simulation using DEMs

processed by the Mean method and the Dixon method also

follow this rule. Comparing the results of the same DEM

under different flooding scenarios, and the effect of dif-

ferent DEMs used under the same flooding scenario, shows

that the effect of different DEMs on the results of the

flooding simulation is significantly greater than that of the

scenario selection, which also shows the importance of

selecting a suitable DEM for flooding simulation.

The maximum inundation depth using CoastalDEM is

the largest of the eight datasets for both the 50a and 100a

flooding scenarios, whereas GDEM shows the smallest

inundation depth. The maximum inundation depths for the

remaining six datasets ranked in the middle and are less

different from each other. The results obtained using the

two sets of processed DEM significantly reduce the depth

of extreme water levels compared to the original DEMs,

with the results using the DEM generated from the direct

averaging process being more pronounced. The Dixon

criterion also significantly reduces the maximum depth of

inundation compared to the original data.

The inundated area results in the study area are shown in

Fig. 6. The simulated inundation area varies significantly

between the different DEMs. The smallest inundation area

results from using GDEM—the average inundation area is

less than 2 km2. In comparison, the most massive inun-

dation area results from using CoastalDEM, with an aver-

age inundation area of more than 1600 km2. The

CoastalDEM simulation results show that the inundation

area is significantly higher than from the other datasets,

with inundation areas exceeding 50% of the study area for

both the 50a and 100a scenarios, while other datasets are

less than 15%. The difference in the predicted area between

the maximum inundation area and the minimum inundation

area is more than 1200 times. In addition, inundation ran-

ges from using different DEMs have various sensitivities to

water level height settings, with the Mean being the most

sensitive. The predicted inundation range under the 100a

water level scenario is 1.7 times that of the 50a water level

scenario, and CoastalDEM is less sensitive, with a pre-

dicted range of 1.1 times under the 100a water level sce-

nario compared with the 50a.

Comparing the two sets of processed DEMs, the inun-

dation range of the simulated results, after directly aver-

aging elevation, is smaller than that of the processed results

of the Dixon method. This is due to the excessive height of

GDEM affecting the final results, while the difference

between the results of the Dixon method and the Mean

shows the superior performance of the Dixon method in

outlier identification and error elimination.

3.3 Assessment of Inundation Simulation Accuracy

Based on the binary approach presented in Sect. 2.3.3, F1

values for using different DEMs under the two return

periods are shown in Table 3, where a higher F1 value

indicates better overall accuracy.

Comparing the F1 values of simulation using the six sets

of raw DEM data, AW3D30, MERIT, NASADEM, and

SRTM perform better with water level deepening. GDEM

remains unchanged and CoastalDEM performance

decreases due to further expansion of the inundation extent,

resulting in an overprediction. MERIT performs best

among the original DEM datasets in determining the

inundation area. Although using CoastalDEM the simula-

tion identified most waterlogging-prone regions, the accu-

racy of the result ranks fairly low due to the high

inundation range and large error. GDEM identifies most

areas as dry, however, and its accuracy is the lowest due to

considerable ignorance in inundation area identification.

Comparing the two modification methods, there is a

considerable gap between the simulation accuracy of the

DEM processed by the two methods. Except for GDEM,

the F1 values of the direct averaging elevation method are

even lower than all the original data, indicating that the

process ignores the error of elevation blindly and averaging

not only cannot improve the value of the anomalous areas,

but also result in error of some accurate elevation values. In

contrast, the data corrected by the Dixon criterion obtained

the highest F1 values among all groups of data, which

reflected the positive effect of DEM correction.

4 Discussion

Comparing the results between 30 m and 90 m SRTM

datasets, we found that coarser resolution leads to an

increase in inundation extent, which is consistent with

previous research (Saksena and Merwade 2015; Lim and

Brandt 2019). Coarser resolution reduces the maximum

depth of inundation, which may be due to more
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Fig. 5 Results of flood inundation simulation using six sets of raw

DEM data and two sets of processed DEM data under two inundation

scenarios (50a and 100a return periods) on the Huangpu River in

Shanghai. SD represents the standard deviation (in meters), Max

represents the simulated maximum water depth (in meters), and Area

refers to the inundation area (km2)
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considerable anomalous heights being smoothed into

coarse height values by the surrounding lower altitudes. It

may also neglect the extreme inundation areas if relatively

local low-lying regions exist. The use of different DEMs

for the same scenario simulation has a significant effect on

the inundation simulation, where the GDEM with the

smallest inundation area differs by a factor of over 500

times from the CoastalDEM with the largest inundation

area. This indicates that the choice of DEM input has a

significant impact on urban flood simulation and demon-

strates the critical importance of selecting a suitable DEM

for flood modeling.

The quality of DEMs in flood modeling has also been

widely considered (Schumann and Bates 2018). Previous

studies pointed out that those openly accessible and widely

used DEMs, SRTM for instance, were acquired in the

2000s and have numerous errors (Hawker, Bates, et al.

2018, Hawker, Rougier, et al. 2018). Although constantly

updated DEMs, such as MERIT, NASADEM, and Coast-

alDEM, have performance improvements, it does not mean

that they are entirely accurate. For example, in our study,

the CoastalDEM misidentifies large areas of high-rise

buildings in downtown Shanghai as being below sea

level—as shown in Fig. 7, the area with a high density of

high-rise buildings corresponds to the area with the lowest

elevation in CoastalDEM, which illustrates the anomaly of

CoastalDEM. It may overestimate the inundation areas and

exposure.

The SRTM continues to use the old boundary, neglect-

ing on-going coastal land reclamation in the past two

decades. It makes coastal flood simulation more difficult as

the current DEM does not show the real land boundary.

Thus, particular caution is needed in flood modeling,

especially in areas with significant topographic changes,

coastal areas, and low-lying flat areas.

This article presents a statistically based approach

designed to provide flood modelers with a fresh approach

to combining current open access datasets to complement

each other to achieve possible performance improvements.

Although multiple DEM correction methods are available,

they have been limited to correcting one DEM. Our

approach makes correction to the same region possible

based on various sets of currently available DEMs. It can

combine the advantages of different datasets, screen out the

outliers with errors, and can be used in plug and play

mode—it only needs to modify the region of interest before

simulation, and is less time and cost consuming.

Although highly accurate terrain data improve the pre-

cision in terrain simulation, the data are not suitable for

direct use in flood simulation due to the limited computa-

tional performance. Halving the resolution of the simula-

tion input data resulted in a 10-fold increase in

computational costs (Savage et al. 2016). Thus, even if

higher resolution DEMs can be used, they may only be

modelled in a coarser resolution to run the simulation. This

means that flood modeling still requires the use of coarse-

scale DEMs at present, which sacrifices the advantages of

highly accurate topographic data and exposes a disadvan-

tage to the time and economic cost due to highly accurate

topographic data in flood modeling. Thus, relatively pre-

cise terrain data that maintain current computing perfor-

mance is a more cost-effective research direction. The idea

proposed in this article deals with removing some error

points present in the DEMs at the current resolution and

getting some performance improvement. We hope that the

idea can help flood modelers promote the quality

improvement of terrain data in flood simulations. It

requires more effort to understand the DEM effects in flood

simulation as well as in other Earth system simulations.

5 Conclusion

In this study, we focused on comparing the inundation

simulation results of six open access DEMs and proposed a

new method to eliminate DEM errors in the study area of

Shanghai. The study resulted in three main findings:

Fig. 6 Simulated inundation area of the Shanghai study area under

two return periods (50a and 100a)

Table 3 F1 scores for using different Digital Elevation Models

(DEMs) under two return periods (50a and 100a) in Shanghai

Dataset 50a 100a

AW3D30 0.35 0.44

MERIT 0.52 0.60

NASADEM 0.47 0.49

CoastalDEM 0.45 0.40

GDEM 0.02 0.02

SRTM 0.29 0.42

Mean 0.23 0.34

Dixon Criterion 0.55 0.64
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1. From the sensitivity analysis, by setting the same

simulation conditions but only changing DEMs for

flooding simulation, the results show significant

differences, such as the difference between the inun-

dation results of CoastalDEM and GDEM. This

implies that more care needs to be taken in DEM

selection in flood simulation. It is necessary to select a

more appropriate DEM in the preparation phase of

future flooding simulations.

2. Our study also found that even when selecting the

same DEM, different spatial resolutions for flooding

simulations also lead to differences in results. As the

spatial resolution of the DEM decreases, the predicted

flood inundation area and the maximum inundation

depth increases for all DEMs. This implies that the

selection of a coarser DEM may lead to more errors in

the inundation results. Nevertheless, the effect of

spatial resolution on the difference of inundation

results is much smaller compared to the choice of

DEM in flooding simulation.

3. Although the inundation depth results are difficult to

compare due to the scarcity of historical disaster

records, the predictive performance of the elevation

data for inundation areas after Dixon criterion and

error elimination processing is improved compared to

all six sets of original data. The potential of the method

is demonstrated, and a new way of thinking is

proposed for flooding simulations that suffer from

current DEM limitations. This method can have the

effect of reducing topographic errors by cross-

checking all DEM data that can be obtained against

each other in a horizontal comparison. At the same

time, the idea has operability and can be used by

researchers to autonomously determine the study area

as well as the error eliminating method without waiting

for upgraded products to achieve the error reduction.

In future research, we will continue to maintain the

advantages of this idea of convenience and flexibility,

and further investigate the methods of error identifi-

cation such as machine learning to achieve more

accurate results.
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