
The importance of dominance and
genotype-by-environment interactions on grain
yield variation in a large-scale public cooperative
maize experiment

Anna R. Rogers,1 Jeffrey C. Dunne,2 Cinta Romay ,3 Martin Bohn ,4 Edward S. Buckler,3,5 Ignacio A. Ciampitti ,6

Jode Edwards,7,8 David Ertl,9 Sherry Flint-Garcia,10 Michael A. Gore ,11 Christopher Graham,12 Candice N. Hirsch,13

Elizabeth Hood,14 David C. Hooker,15 Joseph Knoll,16 Elizabeth C. Lee,17 Aaron Lorenz,13 Jonathan P. Lynch,18 John McKay,19

Stephen P. Moose ,4 Seth C. Murray,20 Rebecca Nelson,21 Torbert Rocheford,22 James C. Schnable ,23

Patrick S. Schnable ,7,24 Rajandeep Sekhon ,25 Maninder Singh,26 Margaret Smith,11 Nathan Springer ,23

Kurt Thelen ,27 Peter Thomison,28 Addie Thompson ,27 Mitch Tuinstra,22 Jason Wallace,29 Randall J. Wisser ,30

Wenwei Xu,31 A.R. Gilmour,32 Shawn M. Kaeppler ,33 Natalia De Leon ,33 and James B. Holland 1,2,34,*

1Program in Genetics, North Carolina State University, Raleigh, NC 27695, USA
2Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
3Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA
4Department of Crop Sciences, University of Illinois at Urban-Champaign, Urbana, IL 61801, USA
5USDA-ARS Plant, Soil, and Nutrition Research Unit, Cornell University, Ithaca, NY 14853, USA
6Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
7Department of Agronomy, Iowa State University, Ames, IA 50011, USA
8USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA 50011, USA
9Iowa Corn Promotion Board, Johnston, IA 50131, USA
10USDA-ARS Plant Genetics Research Unit, University of Missouri, Columbia, MO 65211, USA
11Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
12Plant Science Department, West River Agricultural Center, South Dakota State University, Rapid City, SD 57769, USA
13Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
14College of Agriculture, Arkansas State University, Jonesboro, AR 72467, USA
15Department of Plant Agriculture, Ridgetown Campus, University of Guelph, Ridgetown, ON N0P 2C0, Canada
16USDA-ARS Crop Genetics and Breeding Research Unit, Tifton, GA 31793, USA
17Department of Plant Agriculture, University of Guelph, Guelph N1G 2W1, Canada
18Department of Plant Science, Penn State University, University Park, PA 16802, USA
19Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA
20Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
21Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
22Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
23Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA
24Plant Sciences Institute, Iowa State University, Ames, IA 50011, USA
25Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
26Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
27Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
28Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, USA
29Department of Crop and Soil Sciences, University of Georgia, Athens GA 30602, USA
30Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
31Texas A& M AgriLife Research, Texas A& M University, Lubbock, TX 79403, USA
32Orange, New South Wales, Australia
33Department of Agronomy, University of Wisconsin, Madison, WI 53706, USA
34USDA-ARS Plant Science Research Unit, North Carolina State University, Raleigh, NC 27695-7620, USA

*Corresponding author: United States Department of Agriculture—Agriculture Research Service, Box 7620 North Carolina State University, Raleigh, NC 27695-7620,

USA. jim.holland@usda.gov

Abstract

High-dimensional and high-throughput genomic, field performance, and environmental data are becoming increasingly available to crop
breeding programs, and their integration can facilitate genomic prediction within and across environments and provide insights into the
genetic architecture of complex traits and the nature of genotype-by-environment interactions. To partition trait variation into additive and
dominance (main effect) genetic and corresponding genetic-by-environment variances, and to identify specific environmental factors that
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influence genotype-by-environment interactions, we curated and analyzed genotypic and phenotypic data on 1918 maize (Zea mays L.)
hybrids and environmental data from 65 testing environments. For grain yield, dominance variance was similar in magnitude to additive
variance, and genetic-by-environment variances were more important than genetic main effect variances. Models involving both additive
and dominance relationships best fit the data and modeling unique genetic covariances among all environments provided the best charac-
terization of the genotype-by-environment interaction patterns. Similarity of relative hybrid performance among environments was mod-
eled as a function of underlying weather variables, permitting identification of weather covariates driving correlations of genetic effects
across environments. The resulting models can be used for genomic prediction of mean hybrid performance across populations of environ-
ments tested or for environment-specific predictions. These results can also guide efforts to incorporate high-throughput environmental
data into genomic prediction models and predict values in new environments characterized with the same environmental characteristics.

Keywords: Genotype-by-environment interaction; multienvironment; environmental covariates; dominance genetic variance

Introduction

Crop adaptation to local environments depends on developmen-

tal responses to weather, photoperiod, nutrient availability, and

both abiotic and biotic pressures that vary among growing

regions (Romay et al. 2013; Bian et al. 2014; Peiffer et al. 2014;

Lasky et al. 2015; Adee et al. 2016). Maize is one of the most impor-

tant crops worldwide as food for humans and animals, as raw

material for industrial processes, and as a model plant for under-

standing evolution, domestication, and heterosis (Romay et al.

2013). Maize is grown in a wide range of environments, and maize

varieties differ for their range of environmental adaptation, pri-

marily conditioned by their flowering time, tolerance to abiotic

stresses, and disease resistance (Mercer et al. 2008; Ruiz Corral

et al. 2008; Romay et al. 2013; Romero Navarro et al. 2017; Mercer

and Perales 2019). Genome-wide association studies (GWAS) in

some plant species have identified loci with large effects on traits

related to environmental adaptation (Turner et al. 2010;

Fournier-Level et al. 2011; Ågren et al. 2013; Cavanagh et al. 2013;

Lipka et al. 2015; Meyer et al. 2016). However, GWAS has low

power to detect loci associated with adaptation when the pheno-

type is controlled by a large number of variants with small effects

(Lipka et al. 2015). This is a common occurrence in both plant and

animal breeding, where many traits of economic importance

tend to be influenced by many small effect loci and inherited

quantitatively (Falconer and Mackay 1996).

Phenotypic variance (r2PÞ of quantitative traits can be decom-

posed into genotypic (r2G), environmental (r2E) components, and

genotype-by-environment (G�E) interactions (r2G�E) (Comstock

and Moll 1963; Falconer and Mackay 1996; Gage et al. 2017). G�E

accounts for the variable response of specific genetic back-

grounds to the environments they experience, and this interac-

tion represents a portion of the phenotypic variance that hinders

broad-scale adaptation but can be exploited for environment-

specific adaptation (Comstock and Moll 1963; Falconer and

Mackay 1996; Anholt and Mackay 2004; Gage et al. 2017). The ge-

notypic variance can further be partitioned into additive (r2A) and

dominance (r2D), and epistatic genetic variance components, al-

though experimental estimation of the higher-order variance

components is often difficult and not always possible, depending

on the mating and experimental designs employed (Comstock

and Robinson 1948; Holland 2001; Hill et al. 2008). Similarly, the

overall G�E variance can be partitioned into additive-by-

environment interaction, dominance-by-environment interac-

tion, and epistatic-by-environment interaction variances.

Understanding this breakdown of phenotypic variance into its

constituent components for each trait may enable a breeder to

make more informed decisions regarding optimal breeding meth-

ods and selection of individuals to use as breeding parents for the

next generation, and, for hybrid crops, selection of the best

combination of current breeding lines to produce hybrids for pro-

duction.

G�E interactions complicate both the early- and late-

generation evaluation phases of cultivar development, and are

often treated as a nuisance factor to be minimized, when the

breeding goal is to develop cultivars with stable performance

across a wide range of environments (Comstock and Moll 1963).

Understanding the relative importance of G� E interactions can

help in the optimization of breeding schemes. Typically, crop

breeders evaluate large numbers of new breeding materials in

one or a small number of environments, followed by more expan-

sive testing of a relatively few selected breeding lines across

many environmental conditions. Understanding the relationship

between breeding values evaluated in the small subset of initial

evaluation environments to breeding values averaged across

larger samples of environments can be critical in designing effi-

cient selection strategies.

Rather than simply selecting on the basis of mean perfor-

mance across testing environments, it may be more effective to

jointly identify sets of environments in which certain varieties

have optimal performance (Jannink et al. 2010; Van Eeuwijk et al.

2016). Further, the target population of environments may be

considered a mixture of multiple environmental distributions,

and it may be possible to identify geographic regions that corre-

spond with more homogeneous subsets of environments (Cooper

and DeLacy 1994). For example, the International Center for

Maize and Wheat Improvement (CIMMYT) has defined several

mega-environments, based on their similarity of biotic and abi-

otic pressures faced by field crops in the growing season

(Rajaram et al. 1994). More homogeneous groups of environments

can be identified on the basis of similarity of genotype perfor-

mance from multienvironment trial experiments. Such groups

are characterized by having strong, positive genotypic correla-

tions among the environments within the group, and conse-

quently, a large ratio of genotype main effect to genotype-by-

environment variances within the group. Defining subgroups of

target environments allow breeders to shift away from trying to

breed a cultivar with optimal mean performance across all grow-

ing locations of interest and toward identifying different sets of

genotypes with adaptation and optimal performance within sub-

sets of the target growing region (Cooper and DeLacy 1994; Gage

et al. 2017). For most breeding programs, there is a balance be-

tween defining a target population of environments narrowly

enough to have stressors experienced by the crop be somewhat

homogeneous while at the same time wide enough that breeding

investment can be recouped by having a sufficiently large market

(Murray et al. 2019).

Animal and plant breeders have adopted genomic selection

(GS), a statistical method that considers both large and small
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effect loci to determine the breeding value of a selection candi-

date (Heffner et al. 2009; Lorenz et al. 2011; Meuwissen et al. 2013,

2016). In many plant species, GS is already being employed to ac-

celerate breeding cycles and more efficiently utilize field resour-

ces (Heffner et al. 2011a, 2011b; Sorrells 2015; Crossa et al. 2017;

Isik and McKeand 2019). For traits with highly polygenic genetic

architecture, accurate predictions of breeding values can be

made using genomic relationship matrices, which infer the pro-

portion of genomic identity-by-descent among individuals in the

population based on identity-in-state of markers throughout the

whole genome (VanRaden 2008; Endelman and Jannink 2012; Isik

et al. 2017). The use of marker-based realized genomic relation-

ship matrices result in better model fit and predictive accuracy

for selections than use of pedigree information alone to estimate

genetic similarity in most reported cases (Burgue~no et al. 2012;

Heslot et al. 2014; Crossa et al. 2017; Howard et al. 2019; Juliana

et al. 2019). GS models leverage additive genetic effects in estima-

tion of breeding values of individuals, and thus provide a quanti-

fication of the additive genetic variance (r2A) and values of

heritability of a trait. This idea can be generalized to include

other forms of realized genomic relationships, such as domi-

nance genomic relationships, leading to the ability to estimate

nonadditive genetic variance components (Vitezica et al. 2013;

Mu~noz et al. 2014) and predict hybrid combinations (Kadam et al.

2016; Guo et al. 2019; Ramstein et al. 2020). Although the additive

genomic breeding value estimates are the appropriate criterion

for selecting among candidates to produce new breeding popula-

tions, the variances and composite genotypic predictions includ-

ing dominance and higher-order genetic effects can be exploited

in some plant breeding situations, such as clonally propagated

species, highly inbred varieties, and hybrid crops to select candi-

dates for immediate production (Endelman et al. 2018; Ovenden

et al. 2018).

Analogous to using genetic markers as predictors in GS, envi-

ronmental covariates such as weather variables and their inter-

actions with genetic markers can be included in genomic

prediction models to predict average performance of a line across

environments or environment-specific performance of a genetic

background (Heslot et al. 2014; Jarquı́n et al. 2014; Saint Pierre

et al. 2016). Similarly, the concept of a genomic relationship ma-

trix (which measures genomic similarity among individuals) can

be extended to environmental relationship matrices (which mea-

sure similarity among environments based on weather and other

variates). A difficulty with this approach is that whereas the

weighting of individual marker influence on a genomic relation-

ship matrix has an established theoretical basis in polygenic

inheritance (Fisher 1919; Endelman and Jannink 2012), we do not

know how to properly weight environmental variables in the esti-

mation of an environmental relationship matrix. Measuring the

influence of individual environmental variables on genetic cova-

riances between pairs of environments for a phenotypic trait may

lead to improved models for estimating and predicting the corre-

lations of breeding values across environments. Understanding

the environmental factors that contribute to trait outcomes is an

important part of crop modeling research (Chapman 2008;

Bustos-Korts et al. 2019), but researchers are just beginning to de-

velop approaches to incorporate environmental and G�E inter-

action effects into predictive frameworks in a way that is useful

for creating GS models (Cooper et al. 2014; Heslot et al. 2014;

Jarquı́n et al. 2014; Van Eeuwijk et al. 2016; Millet et al. 2019). Being

able to utilize the relationship between environmental variables

and environmental covariance is a step toward performing pre-

diction in new environments.

The Genomes to Fields (G2F) Initiative (Lawrence-Dill 2017;

Alkhalifah et al. 2018, https://www.genomes2fields.org/) is a large

collaborative project with participants across the United States

and Canada that includes a network of field phenotyping sites

linked to environmental data collection encompassing a wide

range of growing environments. This project has evaluated a

wide array of experimental hybrids that are both phenotypically

and genetically diverse. Previous work using G2F data has shown

that selection during modern breeding may limit genetic poten-

tial for plastic response and environment-specific breeding (Gage

et al. 2017). The G2F data network provides a basis for many types

of analyses, including crop growth modeling, testing hybrids

across locations of interest for a breeding program, and under-

standing the varying environmental and disease pressures expe-

rienced across the major growing regions of the United States

using maize as a model system. In this article, we first describe a

systematic approach to curate trait, environmental, and genetic

data from the first three years of this collaborative project, and to

filter the data sets using quality control methods to identify and

resolve or remove incorrect data. Second, we estimate the rela-

tive importance of the different portions of genetic and G�E var-

iances contributing to phenotypic variance in multiple

agronomic traits across a wide span of environments. In particu-

lar, we measure the relative importance of additive, dominance,

additive-by-environment, and dominance-by-environment var-

iances for several agronomically important traits, including grain

yield. Finally, we estimate the pairwise genetic covariances

among environments for grain yield and identify environmental

factors related to the covariance of genotypic performance across

environments.

Materials andmethods
Data cleaning and filtering
Data from the 2014 to 2016 G2Fs Project (Alkhalifah et al. 2018)

were obtained from the public releases on Cyverse Discovery

Environment: https://www.doi.org/10.25739/9wjm-eq41 for data

from 2014, https://www.doi.org/10.25739/kjsn-dz84 for data from

2015, and from https://www.doi.org/10.25739/yjnh-kt21 for data

from 2016 (McFarland et al. 2020). Datasets used included the hy-

brid phenotype data, inbred genotype data, and weather data

taken from the Spectrum Watchdog weather stations located at

each field station described previously (Alkhalifah et al. 2018).

Hybrid genotype data were constructed using GBS data from in-

bred parental lines. Hybrid trait data come from replicated field

trials across a variety of locations in the United States and

Canada, with some changes in locations from year to year, with 12

core locations participating in all 3 years, and unbalanced assign-

ment of hybrids to locations within and across years

(Supplementary Table S1). Over the 3-year period, there were 73

site-by-year combinations, referred to hereafter as environments.

After data quality control, 65 environments remained for further

analysis. Each environment will be referred to by its Location-Year

designation, for example NCH1_2014 refers to North Carolina

Hybrid Trial 1 in 2014, while IAH3_2015 refers to Iowa Hybrid Trial

3 in 2015 (Supplementary Table S1). A detailed explanation of all

Marker, Phenotype, and Environmental data processing can be

found in Supplementary Files S1, S2, S3, S4, S5, and S6.

Statistical analysis
Stage 1 trait analysis

Linear mixed models were applied to trait data in two steps. In

the first stage, each trait–environment combination was

A. R. Rogers et al. | 3
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analyzed separately with a series of models that account for the

experimental design factors specific to that environment with

stand count as a covariate for yield only (Supplementary Table

S2; Supplementary File S6). The grid layout of plots within each

environment was known for experiments in 2014 and 2015. For

these environments, we also tested a variety of residual covari-

ance structures [IID, autoregressive first order (AR1) in row direc-

tion, AR1 in column direction, and AR1 in both directions].

Models were fit using ASReml-R version 3 (Butler et al. 2009) in

R (R Core Team 2020) (Supplementary File S6). The fixed covari-

ates for stand counts were tested first and significant (p� 0.05)

covariates were maintained in subsequent models. The best fit-

ting random model for each trait within a location was then se-

lected using Schwarz’s Bayesian Information Criterion (BIC)

(Schwarz 1978) (Supplementary Table S3) and used to estimate

hybrid Best Linear Unbiased Estimators (BLUEs) of hybrids in that

environment (Supplementary File S7). The selected model varied

by environment, with some environments having only replicates

fit in the experimental structure (Supplementary Table S3). The

selected model for each trait-experiment combination was used

to calculate within-site hybrid mean-basis heritabilities using the

Cullis estimator (Cullis et al. 2006) (Supplemental Methods File

S1; Supplementary Table S3), which was then used as a filtering

criterion to remove problematic trait–experiment combinations.

Trait–experiment combinations with a heritability of less than

10% were set to missing, and experiments with a yield heritability

of less than 10% were completely removed from further analysis

for all traits. Artificially inoculated disease trials from New York

were also removed from analysis.

Stage 2 trait analysis

In stage two, several different genetic and G�E covariance struc-

tures were fit to the BLUEs from Stage 1 analyses using Echidna

mixed models software (Gilmour 2018) (–Files S8, S9, S10, and

S11). Genetic covariance structures for hybrid effects included

identical and independent (IDV), additive (A) realized genomic

relationships, and dominance (D) realized genomic relationships

(Table 1). A and D realized relationship matrices for 1918 hybrids

maintained in the final combined data set were estimated from

the final set of 22,214 SNPs remaining after extensive quality con-

trol of inbred parental genotype data and in silico construction of

hybrid genotypes (Supplementary Methods, File S1). Models that

were unable to converge within 75 iterations were not considered

further.

The simplest models utilized IDV genetic and environmental

variance structures:

yij ¼ lþ Gi þ Ej þ GEij þ eij

where l is the intercept, Gi is the random genetic effect associ-

ated with hybrid genetic background (Gi �
iid Nð0; r2GIÞ) with I as

an identity matrix of dimension 1918 (the number of hybrids with

both trait and genotype data), Ej is the random effect associated

with each environment (location-year combination),

Ej �
iid

Nð0; r2EnvÞ, GEij is the random effect due to hybrid-by-

environment interaction, GEij �
iid

Nð0; r2GEÞ, and er is the error

term with variance fixed to one but scaled by weights represent-

ing the reciprocals of the effective variances of the BLUEs previ-

ously measured in Stage 1 analysis: eij e Nð0; WÞ, where W is a

diagonal matrix with diagonal values of 1=weights obtained as

the diagonal elements of the inverse of the variance matrix of the

BLUEs from the first stage analysis (Smith et al. 2001). Fixing the

residual variance permits estimation of the hybrid � environ-

ment interaction variance separately from the residual. Versions

of this model with environments or hybrids fit as fixed

effects were also employed to obtain the marginal BLUEs of envi-

ronments or hybrids separately (Supplementary Files S12 and

S13).

Genomic relationships can be added to this model by intro-

ducing hybrid effects with covariances proportional to the real-

ized additive genomic relationship matrix (Ai) and the realized

dominance genomic relationship matrix (Di) (Su et al. 2012;

Mu~noz et al. 2014) in addition to the independent hybrid effects

(GIi), plus separate interaction effects for each of these terms

with environments:

yij ¼ lþ Ai þDi þ GIi þ Ej þ AEð Þij þ DEð Þij þ GIEð Þij þ eij:

In this model:

Ai � Nð0; r2AAÞ

Di � Nð0; r2DDÞ

GIi � Nð0; r2GII1918Þ

AEð Þij � Nð0; r2A�EA� I65Þ

DEð Þij � Nð0; r2D�ED� I65Þ

GIEð Þij � Nð0; r2GI�EI1918�65Þ

er � N 0; Wð Þ:

where A and D are the realized additive and dominance genomic

relationship matrices, respectively, with dimension 1918, I1918 is

an identity matrix of dimension equal to the number of hybrids,

I65 is an identity matrix of dimension equal to the number of

environments, I1918�65 is an identity matrix with dimension equal

to the total number of hybrid–environment interaction effects,

and W is the same diagonal matrix with inverses of BLUE varian-

ces described previously. Reduced versions of this model with

subsets of the genetic and G�E effects were also fit to the data.

The previous model assumes a common variance component

for each type of G�E effect, implying a common correlation for

hybrid performance between all pairs of environments associated

with each type of genetic effect. To relax this assumption,

hybrid-within-environment effects can be fit without hybrid

main effects but with a factor analytic (FA) structure applied to

the variance–covariance matrix of hybrid performance across

environments (Smith et al. 2005; Isik et al. 2017):

yij ¼ lþ Ej þ GEij þ eij:

In the base FA model, the hybrid effects are independent:

GEij � N 0; I1918 � RFAÞ:ð

We can add the genomic relationships to this model as fol-

lows:

yij ¼ lþ Ej þ GEij þ GIEij þ eij;

where GEij represents hybrid effects with either additive or domi-

nance genomic relationships, such that the following distribu-

tions were fit in separate models:
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GEij � N 0; A� RFAÞ; orð

GEij � N 0; D� RFAÞ:ð

And GIEij represents genetically independent hybrid-within-

environment effects that were modeled as cross-classified or

nested within environments with three different structures:

GIi þ GIEij;

GIi þ GI Ediag
� �

ij
; or

GI Ediag
� �

ij
;

GIi represents independent hybrid main effects, GIEij represents

independent hybrid by environment interaction effects with a

common variance (compound symmetry), and GI Ediag
� �

ij
repre-

sents independent hybrid-within-environment effects with a di-

agonal environment covariance structure (different variances

within each environment, heterogeneous compound symmetry):

GI Ediag
� �

ij
� N 0; I1918 � RdiagÞ:

�

We fit models with different combinations of additive or domi-

nant genetic effects with FA covariances across environments

plus one of these three-independent genetic within environment

effect structures (Table 1).

The FA covariance structure for hybrid effects across environ-

ments is: RFA � Nð0; Rk
i¼1kik

T
i þWÞ for k factors. In this model

specification kis are vectors of environment factor loadings (with

length 65 in this case), k is the number of factors fit, and W is a di-

agonal matrix of environment-specific genetic variances of di-

mension 65. This provides a parsimonious parameterization of

65�66/2¼ 2145 distinct variances and covariances requiring only

65þ 65k parameters to be estimated for an FAðkÞ model. The ad-

ditional term I Ediag
� �

ij
requires 65 additional parameter estimates

(one independent genetic variance component per environment),

and was fit only in models including A or D relationships to cap-

ture independent within-environment genetic deviations that are

not associated with the A� RFA or D� RFA covariances. Time to

convergence for all models was measured on a system with eight

3.5GHz processors and 64 GB RAM using Echidna Version 0.92

and without specifying initial parameter values; convergence was

not achieved for some of the models using ASReml. A bug in

Echidna resulted in incorrect likelihoods being reported for mod-

els involving realized genomic relationships in combination with

FA structures. Therefore, correct likelihoods for these models

were obtained by fitting models with parameters fixed at conver-

gence in ASReml version 4.2 (Gilmour et al. 2015).

Derivation of variance components from genetic correlations

Comparing results from cross-classified models to FA models is

difficult because the former estimate variance components for

overall genetic main effects and G�E interactions, whereas the

FA models involve many within-environment variances and

across-environment covariances. To permit comparisons of the

relative importance of genetic main effect variance (r2G) and

genotype-by-environment variance (r2G�xE) among these models,

we used the following relationship:

rgij ¼
rGijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2GEi

r2GEj

q ;

where rgij is the genetic correlation between performance in envi-

ronment i and in environment j, rGij
is the genetic covariance be-

tween environments i and j, and r2GEi and r2GEj
are the genetic

variances within environments i and j, respectively (Farjat et al.

2017; Isik et al. 2017). The cross-classified model assumes that

the genetic variance within environments is constant and relates

to the main effect genetic and genotype-by-environment varian-

ces as:

Table 1 Stage 2 variance components estimates for grain yield for a variety of model structures

Model BIC Runtime r̂
2
A r̂

2
D r̂

2
GI r̂

2
Env

r̂
2
AxE

r
^

DxE
2 r

^

GIxE
2

Independent Hybrid Effects (IDVG)
E þ GI þ G� E 32602.28 22 s 0.879 3.699 0.950
Eþ GI Eð Þ � FAð1Þ 32087.63 58s 0.842 3.743 0.974
Eþ GI Eð Þ � FAð2Þ 32226.07 3m46s 0.711 3.758 1.079
Eþ GI Eð Þ � FAð3Þ 32539.89 9m59s 0.661 3.794 1.153

Additive (A) genomic relationships þ independent hybrid effects (GI)
Eþ A þ GIþ A� E þ GI� E 29383.98 29m35s 0.808 0.259 3.992 0.901 0.306
Eþ AðEÞ � FA 1ð Þ þ GIðEdiagÞ 30253.01 131m55s 2.949 3.830 1.301 0.368
Eþ A Eð Þ � FA 1ð Þ þ GIþ GI� E 29527.66 461m28s 0.939 0.231 3.822 1.252 0.259
Eþ A Eð Þ � FA 1ð Þ þ GIþ GIðEdiagÞ 29824.96 491m28s 0.928 0.234 3.839 1.016 0.309
Eþ A Eð Þ � FA 2ð Þ þ GIðEdiagÞ 30537.7 266m50s 2.800 0.368 3.873 1.388 0.368
Eþ A Eð Þ � FA 2ð Þ þ GIþ GI � EA 29820.15 885m23s 0.837 0.232 3.877 1.376 0.257
Eþ A Eð Þ � FA 2ð Þ þ GIþ GIðEdiagÞ 30099.98 1049m25s 0.896 0.236 3.876 1.040 0.318

Dominance (D) genomic relationships þ independent hybrid effects (GI)
EþD þ GIþ DxE þ GI� E 29102.88 30m22s 0.533 0.108 3.678 0.930 0. 081
Eþ DðEÞ � FA 1ð Þ þ GIðEdiagÞ 29604.7 75m47s 0.704 3.574 0.835
Eþ D Eð Þ � FA 1ð Þ þ GIþ GI� E 29082.51 397m23s 0.535 0.091 3.532 1.030 0.045
Eþ D Eð Þ � FA 1ð Þ þ GIþ GIðEdiagÞ 29569.45 407m25s 0.540 0.083 3.543 0.830 0.182
Eþ D Eð Þ � FA 2ð Þ þ GIðEdiagÞ 29819.55 236m14s 0.658 3.625 0.827 0.212
Eþ D Eð Þ � FA 2ð Þ þ GIþ GI� EA 29326.3 1171m08s 0.490 0.082 3.592 1.061 0.061
Eþ D Eð Þ � FA 2ð Þ þ GIþ GIðEdiagÞ 29788.00 798m08s 0.512 0.079 3.598 0.823 0.193

Additive (A) genomic relationships þ dominance (D) genomic relationships þ independent hybrid effects (GI)
Eþ AþDþ GIþ A� E þ D� E þ GI� E 28913.61 29m30s 0.513 0.250 0.102 3.810 0.532 0.453 0.148
Eþ AþDþ A� E þ D� E þ GIðEdiagÞ 28914.12 29m25s 0.522 0.413 3.837 0.503 0.267 0.317
Eþ A þ A Ediag

� �
þ D þ DðEdiagÞ þ GI þ GIðEdiagÞ 29802.26 93m19s 0.436 0.243 0.097 3.777 0.580 0.382 0.214

Average residual variance from stage 1 within environment analysis is 1.89 (min ¼ 0.53, max ¼ 5.53).
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r2Gi
¼ r2GE ¼ r2G þ r2GE for all environments i:

The cross-classified model also assumes that the genetic co-

variance between environments is constant, and therefore the

genetic correlation between pairs of environments is constant:

rgij ¼
rGijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2GEir
2
GEj

q ¼
r2G

r2G þ r2GE
for all pairs of environments i and j:

The overall genetic main effect is typically represented by the

first factor in the FA model rather than as a single variance.

Therefore, we can estimate it and the overall GE interaction vari-

ance using the average within-environment variance and the av-

erage pairwise genetic correlation (Isik et al. 2017):

r̂2
G ¼

P
i;j>i r̂gijr̂GEi

r̂GEj

nðn� 1Þ=2
¼ �rGij

r̂2
GE ¼ �r2

GE � r̂2
G:

Relationships between environmental data and G3E

Environmental data, including daily weather measurements and

soil characteristics, were collected during the growing season

from each testing environment. Environmental variables were

standardized and summarized over periods of 5, 10, 15, or 30days

(Supplementary Methods). Environments were clustered on the

basis of their similarity for the 30-day period environmental

covariates using the first 10 factors of a factor analysis of weather

data alone. Factor analysis of weather data was done using the R

package psych (Revelle 2020) and clustering was performed using

the stats package. The number of clusters was chosen by examin-

ing the ratio of variance within and between clusters as the num-

ber of clusters was increased and identifying an inflection point

where the ratio changed less than 0.01 with further splitting of

clusters.

To test the relationship between weather-defined clusters and

G�E variance for grain yield, we fit the following linear mixed

model:

Yield BLUEijk ¼ Clusteri þ Hybridj þ Cluster � Hybrid
� �

ij

þ Env Clusterð Þ
k ið Þ þ Hybrid � Env Clusterð Þ

j�k ið Þ þ eijk;

where yield BLUEs for hybrids at specific environments were

used as a response with Clusteri as a fixed effect, Hybridj is a ran-

dom effect with Hybrid � Nð0; I1918r2GÞ, where I1918 is an identity

matrix of dimension 1918 for the number of hybrids with

yield data. Env Clusterð Þ
k ið Þ is a random term for the effect of

environment k nested within cluster i, Cluster�Hybrid
� �

ij
is the

random interaction between cluster i and hybrid j, and

Hybrid�Env Clusterð Þ
� �

j�kðiÞ is the interaction between hybrid j and

environment k within cluster i. The residual error (eijk) variance

was fixed at one with weights based on the stage 1 modeling.

This model permits a test of the null hypothesis of no difference

in mean trait values across weather-defined clusters, and also

allows the overall G�E variance component to be partitioned

into components due to interactions among and within clusters

defined by weather variables.

To aid understanding of which environmental variates are re-

lated to G�E patterns and environmental mean performance,

forward stepwise regression models using AIC for model selection

were fit to the parameter estimates from the D� FAð1Þ and A�

FAð1Þ models. Specifically, environment factor loadings (k1), site-

specific genetic variances (W), and the environment mean yields

(from the IDVG model) were response variables in separate mod-

els and the environmental variables were fit as predictors. Note

that similarity in factor loadings for the environments from the

FA models correspond to similarity in relative hybrid perfor-

mance between environments because the covariances between

pairs of environments are modeled as the product of factor load-

ings for the environments. We used four different environmental

data sets for this analysis, corresponding to 5, 10, 15, and 30-day

windows over which the environmental variables were averaged,

and limited the number of predictors to a maximum of 15 in each

case.

Evaluation of prediction ability for hybrid marginal values

We compared the prediction ability of different models for hybrid

marginal yield values (averaged value across environments).

Observed BLUE values for hybrid marginal effects were estimated

from a linear model with hybrid BLUEs estimated from a linear

model with fixed hybrid effects, random environment and

hybrid-environment interaction effects. Genomic prediction

models tested correspond to models:

Eþ A þ GIþ A� E þ GI� E

Eþ D þ GIþ D� E þ GI� E

Eþ Aþ Dþ GIþ A� E þ D� E þ GI� E

Eþ A Eð Þ � FA 1ð Þ þ GIþ GI� E

Eþ D Eð Þ � FA 1ð Þ þ GIþ GI� E

in Table 1, except that environment main effects were fit as fixed

to speed computation. Weighted analysis with residual variance

fixed at 1 was used for these models. In addition, two-step mod-

els that fit either A, D, or both relationship matrices to the BLUEs

were tested. Ten-fold cross validation was used to fit each predic-

tion model with yield data from 10% of hybrids masked in the

training set, and the correlation between genomic predictions

and observed BLUEs for the held-out 10% test set estimated for

each fold. The mean and standard deviation of prediction ability

over the 10 folds was computed for each model. The same fold

structure was used for all models.

Data availability
Genomic, phenotypic, and environmental data from the 2014-

2016 G2Fs Project (Alkhalifah et al. 2018) are available via public

release on Cyverse Discovery Environment (2014 (https://www.

doi.org/10.25739/9wjm-eq41), 2015 (https://www.doi.org/

10.25739/kjsn-dz84), 2016 (https://www.doi.org/10.25739/yjnh-

kt21). Supplementary files and tables are uploaded to the GSA

Figshare portal. Supplementary File S1 contains detailed supple-

mental methods. Supplementary File S2 contains R code for com-

bining and filtering trait data. Supplementary File S3 contains R

code for processing weather data. Supplementary File S4 contains

correlations between data obtained from the in-field Spectrum

Watchdog weather stations and data scraped from the Iowa

Environmental Mesonet database. Supplementary File S5 con-

tains weather variables (in original units) averaged over 5-day

periods for each environment. Supplementary File S6 contains R
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code for Stage 1 trait analysis. Supplementary File S7 contains

hybrid best linear unbiased estimators (BLUEs) for all traits

within each environment. Supplementary File S8 is a sample

Echidna code for models utilizing IDVG variance structures;

Supplementary File S9 is a sample Echidna code for models utiliz-

ing the AMatrix; File S10 is a sample Echidna code for models uti-

lizing the D Matrix; and Supplementary File S11 is a sample

Echidna code for models utilizing both the A and D matrices.

Supplementary File S12 has environment BLUEs (averaged across

all hybrids) for all traits; Supplementary File S13 has hybrid

BLUEs (averaged across all environments) for all traits.

Supplementary File S14 contains hybrid cluster assignments and

A and D diagonal values. Supplementary File S15 contains vari-

ance components estimates for each trait and model fit criteria.

Supplementary File S16 has factor loadings of each environment

variable from the FA(10) model applied to 30-day period weather

data. Supplementary File S17 contains as list of hybrid names in

order of rows and columns of the realized genomic relationship

matrices. Supplementary File S18 contains the realized additive

relationship matrix (A) in TASSEL output format; Supplementary

File S19 contains the realized additive relationship matrix (D) in

TASSEL output format.

Supplementary material is available at fighsare DOI: https://

doi.org/10.25387/g3.12636095.

Results and discussion
Genomic relationships
The diagonal values of the realized additive genomic relationship

matrix (A) are centered at 0.93 (Min ¼ 0:47; Max ¼ 1:81)

(Figure 1A). These values represent estimates of 1þ F, where F is

the genomic-estimated inbreeding coefficient. Therefore, the en-

tire set of hybrids has an average inbreeding coefficient near

zero, with some hybrids having negative inbreeding coefficients,

which is possible when inbreeding coefficients are defined in

terms of allelic correlations (Powell et al. 2010). The inbreeding

coefficients less than zero represent hybrids from more distant

than average pairs of parents, resulting in greater heterozygosity

throughout the genome than expected under random mating. In

contrast, several hybrids with large inbreeding coefficients were

derived from crosses between lines derived from a common

breeding program (University of Guelph, Canada; CG).

The off-diagonal elements of A are centered at �0.0005

(Min ¼ � 0:53; Max ¼ 1:21) and have both a right skew and a

small second mode (Figure 1B). The larger peak centered at 0 is

expected in a population of unrelated individuals, while the

smaller peak at 0.45 is indicative of the family structure arising

from the mating design of the G2F hybrids. The panel of hybrids

included groups of largely unrelated lines crossed to common in-

bred testers, resulting in many pairs of F1 hybrids with additive

relationships near 0.5 (Supplementary Figure S1).

The diagonal values of the realized dominance genomic relation-

ship matrix ðDÞ are centered at 0.99 (Min ¼ 0:47; Max ¼ 1:35)

(Figure 1C). This is very close to the value of 1 expected for a Hardy-

Weinberg population, and less than the value expected for crosses

mainly performed between unrelated heterotic groups, as is com-

monly done in commercial maize breeding. The group of hybrids

tested includes crosses within as well as among known heterotic

groups, resulting in varying levels of heterozygosity among the

hybrids. The values greater than one in the distribution of diagonal

values indicate that the individuals have higher dominance covari-

ance with themselves than expected by random chance, due to

the mating of more unrelated parents than expected by chance.

The off-diagonal values of D are centered at 0.007

(Min ¼ � 0:17; Max ¼ 1:09) and are right skewed (Figure 1D). This

right skew comes from pairs of hybrids where individuals from a

single family were crossed to a common tester.

The A and D matrices are correlated (Supplementary Figure

S2). The correlations between off-diagonal values of the two ma-

trices is r¼ 0.83 and between diagonal values is r¼ 0.54. These

correlations demonstrate that the A and D matrices are not or-

thogonal, which implies that we cannot perfectly separate the

additive from dominance effects in this data set.

To identify genetic groupings among the hybrids alone,

hybrids were clustered based on their genotype data using

Ward’s method. At 10 clusters, the within-between variance ratio

is 0.88, indicating substantial heterogeneity remains within clus-

ters (Figure 2; Supplementary Table S4; Supplementary File S14).

A larger number of clusters may be useful in creating more ho-

mogeneous clusters for description of population structure, but

even at 50 clusters, the within-between ratio is equal to 0.78 indi-

cating that to create more homogeneous clusters, a very large

number of clusters would need to be used. The first and second

principal components of the combined parental inbred and hy-

brid progeny genotype data account for 5.75% and 3.46% of vari-

ance observed in the marker data, respectively (Figure 2),

indicating the complexity of genetic relationships among these

genotypes. The first 40 PCs account for 43.6% of genetic variance

across all parents and progeny.

Similarity of hybrids tested across environments
The assignment of hybrids to testing environments was highly un-

balanced, primarily because more hybrids were evaluated overall

than could be evaluated within any one environment due to re-

source limitations. Among the 65 environments, environment pairs

ranged from sharing a single hybrid in common to sharing 352

hybrids (Supplementary Figure S3). We also computed the mean

additive genomic relatedness of individuals between pairs of envi-

ronments as a measure of similarity of genetic materials tested

among environments. Mean additive relationships within and be-

tween environments ranged from 0 to 0.3. Genomic relationships of

materials tested across sites was higher within 2014 because the

entries that year represented a smaller, more closely related set of

hybrids compared to the complete set of hybrids.

Within-environments (stage 1) trait analysis
Environment mean yield varied significantly among environ-

ments, ranging from 5.2 to 13.0Mg ha�1 (Figure 3A). Patterns of

locations with similar yield performance across the three years

can be observed: locations in Western Nebraska (NEH2 and

NEH3) that experienced low water availability consistently had

lower yields, while Iowa and Ontario locations were ranked in the

upper half of environments in all years. Residual error variances

for yield varied dramatically across environments, reflecting sub-

stantial differences in precision of BLUEs for yields among envi-

ronments (Figure 3B).

Additive, dominance, and G3E variance
modeling across environments (stage 2)
Stage-two analyses were performed using the hybrid yield BLUEs

estimated within environments to estimate genetic main effect

and G�E interaction variances. Models of varying complexity for

both genetic relationships among the hybrids and for genetic cor-

relations among environments were fit. Hybrid effects were mod-

eled as independent (IDVG), or with covariances proportional to

the additive (A) or dominance (D) realized relationships. On the
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environment side, we fit cross-classified models that assume a

constant genetic variance within environments and a constant

genetic correlation among all pairs of environments, and FA(1)

and FA(2) models that allow each environment to have a unique

within-environment genetic variance and each pair of environ-

ments to have a unique genetic correlation using either one or

two factors, respectively. We combined as many types of genetic

models with as many types of environmental covariance models

as possible, but models with more than one FA factor for environ-

ments in combination with either A or D relationships for hybrids

did not converge, nor did models with one FA factor for environ-

ments in combination with both A and D hybrid relationships.

Models were compared using BIC and computational time.

Models with a good fit but very long runtime may be impractical

for use in a breeding program.

Computation times were shortest for models with IDVG hybrid

relationships (Table 1). The best model (smallest BIC) in this cate-

gory was the FA(1) model, corresponding to genetic covariances

between environments modeled as cross-products of loadings on

a single latent variable. Selection of the FA(1) model as best sug-

gests that genetic correlations vary significantly among environ-

ment pairs. The pairwise genetic correlations across

environments estimated by this model ranged from r¼ 0.036 to

r¼ 0.955 with a mean of r¼ 0.497 and the within-environment ge-

netic variance ranged from 0.076 to 7.356 with a mean of 1.815

(Supplementary Table S5). BIC for the FA(2) model increased

compared to the FA(1) model, indicating that the improvement in

likelihood by addition of 65 additional parameters going from

FA(1) to FA(2) was less than the penalty for adding those factors.

This trend continued with the FA(3) model, which had higher BIC

Figure 1 Distribution of elements of the realized additive (A) and dominance (D) relationship matrices. (A) Histogram of the diagonal elements of A. (B)
Histogram of the off-diagonal elements of A. (C) Histogram of the diagonal elements of D. (D) Histogram of the off-diagonal elements of D.
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(poorer fit) than the FA(2) model. Therefore, we did not attempt

to fit models with more than three factors.

All models including A or D relationships among the hybrids

had lower (better) BIC than the best IDVG but also had increased

computational times by one or more orders of magnitude

(Table 1). These types of models also can be used to predict

untested hybrids that can be included in the genomic relation-

ship matrices if their genomic data are available. Within the A

and D model classes, fitting independent hybrid effects nested

within environments (with heterogeneous variances among envi-

ronments), for example, Eþ AðEÞ � FA 1ð Þ þ GIðEdiagÞ, but not in-

cluding independent hybrid main effects, always resulted in a

substantial inflation in the additive or dominance genetic main

effect variance component. This occurs because the combination

of omitting hybrid main effects and fixing the residual variance

(at the variances of the BLUEs previously computed in stage 1

analysis) results in some of the independent genetic effects being

absorbed into estimated additive effects. The variance compo-

nents estimates from this class of model were not reliable.

Models incorporating D relationships had better fit than the

corresponding models incorporating A relationships only

(Table 1), even though the dominance variance components esti-

mates are always smaller than the corresponding additive vari-

ance components estimates. For example, in the simplest cross-

classified model in each case, the additive main effect variance

component was 0.808 and the dominance variance component

estimate was 0.533. The scale of the two relationship matrices

was similar, although the smaller average diagonal value of the A

Figure 3 Results of stage 1 trait analysis. A. Boxplot distribution of hybrid BLUEs for grain yield, environment mean is marked by a black line. B.
Histogram of the within-environment error variance for grain yield estimated from the selected model from within each environment in stage 1
analysis.

Figure 2 Plot of first two principal components of marker data on hybrids and their inbred parents analyzed as a common dataset. Parents are colored
dark purple, hybrids are colored according to the cluster they belong to, based on a separate principal components analysis of the marker data of the
hybrids alone. The number of genotypes in each cluster is indicated in the legend.
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matrix would tend to be associated with larger estimated vari-

ance components if the two components caused equal amounts

of variation. Our results suggest that although the additive vari-

ance component estimate was larger than the dominance vari-

ance component estimate (as is typical across a very wide range

of genetic architectures) (Hill et al. 2008; Huang and Mackay

2016), it may be more important to account for dominance geno-

mic relationships in this set of highly heterozygous hybrids for

genomic prediction for yield.

Fitting the additive and dominance relationships cross-

classified with environments together produced the best model

BIC (Table 1). The variance components for additive, dominant,

and independent genetic effects were 0.513, 0.250, and 0.102, re-

spectively. This is congruent with the larger variance compo-

nents for additive than dominance effects when they were fit

separately, although the magnitudes of the additive and domi-

nance variance components are greater when they are fit sepa-

rately because they account for some of the same variation due

to the correlation between the two relationship matrices. The

corresponding G� E variance components from this model were

0.532, 0.453, and 0.148 (Figure 4A). Remarkably, for yield all the

genetic-by-environment variance components were greater than

their corresponding genetic main effect variance components,

reflecting the wide diversity of environments that the hybrids

were tested in.

The optimal structure for modeling G�E interactions varied

among different classes of genetic relationships. The FA(1) model

that allows genetic variances to vary among environments and

genetic correlations to vary among pairs of environments was

best within the IDVG and D classes of genetic relationship mod-

els. The combination of fitting dominance genetic relationships

and FA(1) G�E effects revealed that genetic effects on yield were

positively correlated among almost all environments except for

two exceptions that had no obvious geographic or climate pat-

terning (Figure 5). Higher-yielding and higher-heritability envi-

ronments tended to have higher genetic correlations with each

other (Figure 5). The cross-classified model, which assumes a

constant genetic variance within environments and a constant

pairwise genetic correlation between environments was best in

combination with the A relationship matrix.

The same set of models was fit for each trait available in the

G2F dataset (Supplementary File S15). For all traits, environmen-

tal main effect variance was the single largest contributor to phe-

notypic variation (Figure 4B). The ratio of r2G to r2G�E varied among

traits, with yield and lodging having the greatest proportions of

G�E and flowering time traits (DTA and DTS) having the lowest

amount of G�E variance (Figure 4, B). Decomposing G and G�E

variances revealed that the influence of A; D; GI, and their re-

spective G�E components also varied among traits (Figure 4, A).

Phenotypic variance for yield was partitioned into 11.2% genetic

(A;D; GI) variance and 14.7% G�E (A� E; D� E; I� E) variance.

G and G�E variances represent similar proportions of pheno-

typic variance for grain moisture and test weight. Additive ge-

netic variance was most important for plant height, ear height,

DTA, and DTS, with little additional contribution from G�E vari-

ance. The relative importance of genotypic main effect versus

G�E variances are congruent with previous estimates in maize:

flowering time and height variation are mostly affected by addi-

tive genetic variance with little G�E variance (Buckler et al. 2009;

Romay et al. 2013; Peiffer et al. 2014), whereas maize yield tends to

be influenced by heterosis, and consequently, dominance effects,

with substantial contribution from G�E effects (Comstock and

Robinson 1948; Hallauer et al. 2010; Baldauf et al. 2018).

Factor analysis of environmental data
Factor analysis was performed on the centered and scaled 30-day

window weather data using 10 factors that accounted for 85.6%

of variation observed in the data (Supplementary File S16). The

first factor appears to be largely influenced by late season photo-

period and high temperature; environments with warmer late

season temperatures and greater late season sunlight availability

have higher positive scores on this factor. Environments from the

southeast tended to have larger positive scores for the first factor,

as they have longer average day length and higher temperature

in the later parts of the growing season than their northern coun-

terparts. The most northern environments tended to have nega-

tive scores as daylength and temperature both drop dramatically

during the later season in such environments (Supplementary

Figure S4A). Early season daylength loads negatively on this fac-

tor, therefore environments (such as NY and MN) with long early

season day length but short late season photoperiod would re-

ceive a more negative score on factor one. The second factor has

high positive loadings for early season temperature, and negative

loadings for mid-late growing season photoperiod length, while

the third factor has high loadings for mid-season temperatures

and negative loadings for the presence of clay in the soil. Factor

four has high positive loadings for all wind covariates, and nega-

tive loadings for the presence of high humidity and sandy soils.

Environment clustering
Environmental clustering was performed using Ward’s minimum

variance criterion (Ward 1963) for agglomerative clustering on

environmental scores from factor analysis, with seven environ-

mental clusters selected [within-between (WB) variance ratio is

0.68; Figure 6; Supplementary Figure S5]. Geographic patterning

is apparent between clusters (Figure 6), and although year-to-

year variation in environmental data is present, the variance

among experimental environments appears to be largely influ-

enced by geographic area: environments representing multiple

years at a common location tended to cluster together. The null

hypothesis of equal representation of sites among clusters is

rejected at P< 10�12 using a chi-square test, whereas the null hy-

pothesis of equal representation of years among clusters was not

rejected (P¼ 0.17). There are some exceptions to the geographic

clustering, however; for example in 2016, the two experiments in

Wisconsin are placed in different clusters because they were

planted more than two weeks apart (WIH1_2016 planted on May

9, WIH2_2016 planted on May 24), and exposed to different

weather conditions relative to the developmental stages of the

hybrids. A Midwest cluster in Iowa and Illinois not observed in

previous years appears in 2016, likely due to these locations being

planted much earlier than the nearby Midwestern locations of

Wisconsin and Minnesota.

All three years of experiments at TXH1 in College Station,

Texas group in a common cluster characterized by high tempera-

tures throughout the season compared to the average G2F envi-

ronment, high GDD, and short photoperiod at the beginning of

the growing season (Figure 6). The other Texas location (TXH2 in

Halfway, TX) is in the plains nearer to the panhandle of

Oklahoma and has much drier conditions than those experience

closer to the Gulf of Mexico. In terms of overall geography, the

clusters broadly account for a Southeastern environment group

(cluster 1: Southeast, purple), a somewhat disparate temperate

environment group in the Northeast and part of the Midwest

(cluster 2: Temperate Northeast and Midwest, blue), a wet

Midwestern environment group that appears only during 2016
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(cluster 3: Cornbelt Early Planting 2016, teal), a far northern group

(cluster 4: Northern, light green), a southern Cornbelt group (clus-

ter 5: Southern Cornbelt, orange), a dry plains group (cluster 6:

High Plains, light orange), and a Central Texas environment (clus-

ter 7: Central Texas, yellow). These clusters capture broad mega-

environment groupings but substantial variation remains within

the clusters (within-between ratio ¼ 0.68). The clustering dendro-

gram (Supplementary Figure S4B) shows locations that are geo-

graphically close tending to merge together quickly.

When the weather-defined clusters are introduced as a factor

in the linear mixed model for yield, the fixed effect for cluster

was nearly significant (p¼ 0.065), suggesting that environment

clusters are associated with some of the environment main

effects on yield. In this model, the G�E variance is partitioned

into a component between clusters (Cluster�Hybrid interaction)

and a component within clusters (Hybrid�Env Clusterð Þ interac-

tion). About 12% of the G�E variance for yield is explained by the

variance between clusters based on environmental data, with the

Figure 4 Variance components estimates from stage 2 (across environments) analysis of all traits. (A) Proportion of total variance due to additive (A),
dominance (D), and uncorrelated (independent) genetic effects, and their respective interactions with environment. (B) Proportions of total variance
due to environment main effects, total genotype effects, genotype-by-environment interaction, and residual variance.
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remaining G�E variance occurring among environments

within clusters (Supplementary Table S6). Thus, although the

weather-based environment clusters do not explain most of the

G�E variance, they do appear to account for significant portions

of the environment main effects and G�E variances, suggesting

some relationship between weather and the observed yield G�E

patterns. Environment clustering based on similarity of growing

conditions could be used to define mega-environments (ME) to

more efficiently allocate resources in multienvironment trials

(Rajaram et al. 1994; Krishnamurthy et al. 2017; Gerrish et al. 2019;

González-Barrios et al. 2019). Similarities of conditions experi-

enced in environments provide a basis for sharing of information

that can lead to increased accuracy in predictive studies and may

help plant breeders understand sources of G�E in multienviron-

ment trials (Burgue~no et al. 2012; Heslot et al. 2014; González-

Barrios et al. 2019; Millet et al. 2019; Monteverde et al. 2019).

Environmental covariates related to yield factor
A summary of broad patterns of interactions between hybrids

and environments can be obtained by comparing the mean envi-

ronment loadings for the seven weather-defined environment

clusters and mean genotype scores for the 10 hybrid clusters de-

fined by marker data on the yield factor estimated by the D�

FA 1ð Þ model (Supplementary Figure S6). The highest yielding

group of hybrids is the “ex-PVP” cluster comprising mostly

crosses between commercial inbreds with expired plant variety

protection (ex-PVP) and crosses between mixed background lines

and the tester inbreds LH185, LH195, and PB80 (Supplementary

Figure S6; Table S4). This group of hybrids also has the highest

mean score on the yield factor, indicating that its mean relative

yield advantage is increased in the environments with higher

positive loadings, which are the most northern and have the cool-

est early-season and average temperatures and highest yields

(Supplementary Figure S6). The superiority of these hybrids

decays in the environments with smaller factor loadings (which

are farther south geographically). Several groups of hybrids

(mostly involving hybrids with at least one noncommercial par-

ent) had negative mean scores on the factor (Supplementary

Figure S6); we would expect rank changes between these hybrids

and the other hybrid groups when moving from typical environ-

ments to those with negative loadings, but few such environ-

ments were included in this experiment. Nevertheless, rank

changes occur in these data, because the factor only explains

part of the observed variation: site-specific genetic and indepen-

dent genetic effects also contribute to the observed yields. The

results also suggest the potential of exotic germplasm to enhance

hybrid yields in temperate environments: the hybrid cluster with

contribution from the tropical inbred line Ki3 from Thailand had

Figure 5 Genetic correlations for yield among environments based on the D�FA(1) model. Mean grain yield (Mg ha�1) and entry mean-basis heritability
for grain yield are also displayed for each environment.
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both positive mean scores on the factor and higher than average

mean yield across all environments (Supplementary Figure S6).

We can also examine the relationships between the statistical

components quantifying G�E and the environmental inputs ex-

perienced throughout plant development using forward stepwise

regression models to model each component of the A� FA 1ð Þ and

D� FA 1ð Þ models. For the 5-day window set, the environment

mean yields, A� FAð1Þ parameters, and D� FAð1Þ model param-

eters were modeled using a maximum of 15 factors

(Supplementary Table S7). Five-day windows consistently lead to

the highest explanation of variance in each parameter type, indi-

cating that higher resolution was helpful in explaining both vari-

ance in environmental means (R2 ¼ 0.84) and in G�E parameters

(R2 ¼ 0:68, R2 ¼ 0:75) for both the A and the D models, respec-

tively (Supplementary Table S7). Most models using environmen-

tal Ws as response fit only an intercept and in cases where

weather covariates were included, they were not consistent

across sliding window sets (Supplementary Table S7). The ran-

dom covariates fit for the Ws between windowed datasets had no

patterning and explained little variance, likely these covariates

are selected largely by chance. These results indicate that site-

specific variances were not significantly correlated with any pat-

terns of environmental covariates.

The overall best fitting model for the environment mean

yields utilized the 5-day window set and included the maximum

allowed 15 predictors (R2 ¼ 0:84). The model uses four

temperature-associated covariates, four terms accounting for

rainfall, three terms accounting for humidity, photoperiod near

the reproductive stage, early season wind, and the amount of

sand in the soil to explain variance in the environmental means

(Supplementary Table S8). Two of the four temperature covari-

ates were positively associated with and two negatively associ-

ated with environment mean yield. The two temperature

covariates negatively associated with mean yield were during the

vegetative to reproductive transition and peak flowering time,

suggesting that heat stress at these critical periods of develop-

ment can lead to decreased yield (Lobell et al. 2013; Millet et al.

2019). Increased photoperiod around flowering time was associ-

ated with increased environment mean yield, this may be due to

the combined effects of more photosynthetically active radiation

available in those environments and the generally better soil and

growing conditions at the more northern locations. All of the

hybrids tested in this study have at least one temperate-adapted

parent, such that photoperiod sensitivity (which could have

caused yield reductions under long day lengths) was not a prob-

lem for these hybrids. Rainfall accumulation generally had a pos-

itive influence on environment mean yield if rains occurred

during early development and a negative association with yield

for late season rains during grain fill.

Similarly, the best fitting model for the k1 values of the domi-

nance FA model used the five-day window set and the maximum

15 covariates (R2 ¼ 0:68). This model contained four rain associ-

ated terms, three GDD terms, and one temperature term, three

terms associated with solar irradiance, three humidity terms,

and one wind term (Supplementary Table S7). Individual weather

variables had a mix of positive and negative effects that changed

depending on growing season period, indicating the complexity

of the G�E structure in this data set (Supplementary Figure S7).

Increases in weather covariates positively associated with the

yield factor k1 are associated with larger positive covariances

Figure 6 Geographic patterns of weather variable-based clustering. Each site within a year is colored according to its weather pattern cluster. (A)
Locations in 2014. (B) Locations in 2015. (C) Locations in 2016.
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(more similar relative hybrid performance) among environments

with positive loadings and reduced covariances involving envi-

ronments with negative loadings (there is only one such environ-

ment, GAH2_2016). GDD was positively associated with k1 in two

time periods during the vegetative to reproductive transition and

flowering time, indicating that positive covariances between

some environments is partly due to shared higher than average

values of GDD during these two periods. The negative value asso-

ciated with GDD right after flowering time indicates a difference

between environments that remain hot after flowering time and

those that begin to cool after flowering time. Similarly, solar radi-

ation was either positively or negatively associated with the k1

value, depending on the period of the growing season. As was the

case for the environment mean yields, high temperature around

peak flowering time was associated with a decreased value of k1,

contributing to decreased covariance between heat-stressed envi-

ronments and their non-stressed counterparts. Rain accumula-

tion around flowering time was associated with a decrease in the

value of k1 while increased rain in days 6–10 after planting was

associated with an increased k1 value.

Although maize hybrids can manifest plastic responses to en-

vironmental stimuli throughout their development, responses at

short time scales may not contribute greatly to observed differen-

ces in phenotype, whereas persistent or recurrent periods of

stressful environmental conditions are likely to have a more

drastic effect on development and yield (Heffner et al. 2009; Gage

et al. 2017). For example, short periods under drought stress may

not have severe effects on phenotypic outcomes, but prolonged

periods lead to decreased fitness across multiple phenotypes

(Lasky et al. 2015; Adee et al. 2016; Gage et al. 2017; Gerrish et al.

2019). Periods of environmental stress during critical growth peri-

ods likely also have a larger effect on phenotypic outcome, as in-

dicated by examples in flowering time where heat stress and

drought conditions lengthen the anthesis-silking interval (ASI)

(Song et al. 2017) and that drought during flowering time can

cause significant decreases in yield (Salvi et al. 2007). Optimal

window size is challenging to determine; crop modeling and

physiology can inform genotype-dependent definition of time

periods where plant development is particularly sensitive to

environmental factors. With sufficient information about the

physiological development of each hybrid in the test, such

hybrid-specific modeling of environmental effects can

substantially improve environment-specific predictions (Millet

et al. 2019).

Implications for genomic prediction
We performed 10-fold cross-validation to compare the ability

of different models to predict hybrid marginal yield values

(across all environments). Models including dominance geno-

mic relationships substantially improved prediction ability (by

7–10 percentage points) compared to additive relationships and

fitting both relationship matrices together had only little effect

(Supplementary Table S9). This result supports the greater im-

portance of dominance than additive genetic variance in this

set of hybrids. Modeling the covariance of yield performance

across environments using the FA1 model, however, resulted

in a slightly lower prediction ability for the marginal values

than the simpler cross-classified models (Supplementary Table

S9). This suggests that more complex G� E models are not

generally useful for predicting genotype marginal values. We

suggest that the FA model formulations for multi-environment

trials are still informative for understanding environment rela-

tionships, and further may provide improved prediction

capability for environment-specific performance, in particular

for prediction of performance in new environments that are

not represented in a training set. The success of this approach

would rely on (1) a FA model with a small number of factors

capturing a very large proportion of the genetic covariance

across environments, and (2) sufficiently large samples of envi-

ronments paired with robust environmental indices that can

accurately predict factor loadings for new environments. Using

weather and soil data to predict environment factor loadings

and genomic relationship matrices to predict genotypic scores,

new untested combinations of environments and genotypes

could be predicted.

Conclusions

The G2Fs project coordinates an extensive testing network

with data useful for quantifying and exploring G�E interac-

tions, but also provides challenges to how large data sets in-

cluding data sets contributed by many different collaborators

are processed. As extensive genomic and environmental data

become increasingly available to breeding programs, one of the

many challenges that researchers will face is how to effec-

tively utilize data to improve breeding efficiency. While meth-

odology for processing genomic data for use in both plant and

animal breeding has rapidly developed over the last two deca-

des, implementation of such methods for environmental data

that would standardize input into GS type models has lagged

behind and tends to remain the realm of crop growth model-

ing (Millet et al. 2019). Estimation of crop growth modeling

parameters for the many thousands of unique lines in a typi-

cal maize breeding program at any one time will be difficult

because of the extensive field-testing resources required.

Utilizing field conditions directly as parameters in modeling

the environment and G�E will allow representation of envi-

ronments in a way that would allow for simpler implementa-

tion and for prediction in untested environments. Recent years

have seen implementation of environmental covariates into

some GS models, but these have usually focused on a few

covariates such as temperature defined over a specific develop-

mental window (Jarquı́n et al. 2014). As climate change threat-

ens to significantly change many environments currently used

for agricultural production, development of methods that use

the available data resources for predicting performance in fu-

ture environments will be important.

Our results demonstrate that G�E variance for yield was as

large or larger than corresponding genotypic main effect variance

when maize hybrids are tested across a wide geographic range in

the United States and Canada. For other traits, such as flowering

time, G�E variance accounts for only a small portion of pheno-

typic variance, indicating that it may be safely ignored when con-

ducting selection for these traits. Understanding the relative

importance of genotypic main effects compared to G�E interac-

tions for a given trait can allow breeders to make effective deci-

sions over when to implement more complex models to account

for G�E, and when a simpler model may perform well for mak-

ing selections. Our results suggest that, for genomic prediction of

environment-specific hybrid yield performance predictions, dom-

inance, and G� E interactions should be incorporated into predic-

tion models, and that the measured environmental covariates

may help to improve such predictions.
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Juliana P, Montesinos-López OA, Crossa J, Mondal S, González Pérez
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