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Efflux pumps are transport proteins involved in the extrusion
of toxic substrates (including virtually all classes of clinically
relevant antibiotics) from within cells into the external
environment. These proteins are found in both Gram-positive
and -negative bacteria as well as in eukaryotic organisms.1

Pumps may be specific for one substrate or may transport a
range of structurally dissimilar compounds (including anti-
biotics of multiple classes); such pumps can be associated
with multiple drug resistance (MDR). In the prokaryotic
kingdom there are five major families of efflux transporter:2

MF (major facilitator), MATE (multidrug and toxic efflux),
RND (resistance-nodulation-division), SMR (small multi-
drug resistance) and ABC (ATP binding cassette). All these
systems utilize the proton motive force as an energy source,3

apart from the ABC family, which utilizes ATP hydrolysis to
drive the export of substrates. Recent advances in DNA
technology and the advent of the genomic era have led to the
identification of numerous new members of the above
families, and the ubiquitous nature of efflux pumps is remark-
able. Transporters that efflux multiple substrates, including
antibiotics, have not evolved in response to the stresses of the
antibiotic era. All bacterial genomes studied contain several
different efflux pumps; this indicates their ancestral origins. It
has been estimated that ∼5–10% of all bacterial genes are
involved in transport and a large proportion of these encode
efflux pumps.2,4

There is some debate as to the ‘normal’ physiological role
of efflux transporters, as antibiotic susceptible as well as
resistant bacteria carry and express these genes. In many
cases, efflux pump genes are part of an operon, with a regu-
latory gene controlling expression. Increased expression is
associated with resistance to the substrates, e.g. resistance to
bile salts and some antibiotics in Escherichia coli is mediated
by over-expression of acrAB.5 Although genes encoding
efflux pumps can be found on plasmids, the carriage of efflux
pump genes on the chromosome gives the bacterium an
intrinsic mechanism that allows survival in a hostile environ-

ment (e.g. the presence of antibiotics), and so mutant bacteria
that over-express efflux pump genes can be selected without
the acquisition of new genetic material. It is probable that
these pumps arose so that noxious substances could be trans-
ported out of the bacterium, allowing survival. Indeed it is
now widely accepted that the ‘intrinsic resistance’ of Gram-
negative bacteria to certain antibiotics relative to Gram-
positive bacteria is a result of the activity of efflux systems.6

Efflux systems that contribute to antibiotic resistance have
been described from a number of clinically important bac-
teria, including Campylobacter jejuni (CmeABC7,8), E. coli
(AcrAB-TolC, AcrEF-TolC, EmrB, EmrD9), Pseudomonas
aeruginosa (MexAB-OprM, MexCD-OprJ, MexEF-OprN
and MexXY-OprM9), Streptococcus pneumoniae (PmrA10),
Salmonella typhimurium (AcrB11) and Staphylococcus aureus
(NorA12). All of these systems efflux fluoroquinolones and
the RND pumps (CmeB, AcrB and the Mex pumps) also
export multiple antibiotics.

Over-expression of efflux pumps can result from muta-
tions within local repressor genes13–15 or may result from
activation of a regulon regulated by a global transcriptional
regulator such as MarA or SoxS of E. coli.16,17 The broad
substrate range of efflux systems is of concern, as often over-
expression of a pump will result in resistance to antibiotics of
more than one class as well as some dyes, detergents and
disinfectants (including some commonly used biocides).
Cross-resistance is also a problem; exposure to any one agent
that belongs to the substrate profile of a pump would favour
over-expression of that pump and consequent cross-resistance
to all other substrates of the pump. These may include
clinically relevant antibiotics. An example of this is seen
again with the mexAB system of P. aeruginosa; mutants that
over-produce MexAB are less susceptible, if not fully resist-
ant to a range of antibiotics (fluoroquinolones, β-lactams,
chloramphenicol and trimethoprim) but also triclosan, a
commonly used household biocide.18 The potential misuse of
biocides and possible selection of bacteria cross-resistant
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to antibiotics has recently been debated in this journal and
elsewhere.19–22 Over-expression of a multidrug resistance
efflux pump alone often does not confer high-level, clinically
significant resistance to antibiotics. However, such bacteria
are better equipped to survive antibiotic pressure and develop
further mutations in genes encoding the target sites of anti-
biotics.23 It has been shown that fluoroquinolone-resistant
strains of E. coli are selected 1000-fold more readily from mar
mutants than wild-type bacteria,24 and highly fluoroquinolone-
resistant E. coli contain mutations in genes encoding the
target topoisomerase enzymes and have reduced accumula-
tion and increased efflux (porin down-regulation and efflux
pump over-expression).14,15 Additive increases in MICs of anti-
biotics have also been seen after concurrent over-expression
of more than one pump of different classes, also resulting in
highly resistant E. coli.25

It has been demonstrated that expression of the Mex
systems of P. aeruginosa and the acrAB efflux system of
E. coli is greatest when the bacteria are stressed, e.g. growth
in a nutrient-poor medium, growth to stationary phase or
osmotic shock; these inhospitable conditions may be relevant
to the situation within an infection.26,27 Unregulated over-
expression of efflux pumps is potentially disadvantageous to
the bacterium as not only will toxic substrates be exported
but also nutrients and metabolic intermediates may be lost.
Work with P. aeruginosa has suggested that mutants over-
expressing Mex pumps are less able to withstand environ-
mental stress and are less virulent than their wild-type
counterparts.28 As a result the expression of pumps is tightly
controlled. However, mutants and clinical isolates that over-
express efflux pumps are stable and commonly isolated; it
may be that such mutants accumulate compensatory muta-
tions allowing them to grow as well as wild-type bacteria.

Recently, the use of efflux pump inhibitors has been
investigated in order to improve and potentiate the activity of
exported antibiotics. Such a strategy has been used to develop
inhibitors that reduce the impact of efflux pumps on fluoro-
quinolone activity. As many efflux pumps possess significant
structural homology, it is hoped that one inhibitor compound
will be active against a range of pumps from different bac-
terial species. Most research has focused upon P. aeruginosa
Mex efflux pumps and inhibitors of these. One such inhibitor
lowered the MIC values of fluoroquinolones for both sensitive
and resistant strains.2 In addition the frequency of selection of
fluoroquinolone-resistant strains was also lower in the pres-
ence of the inhibitor, suggesting that efflux may be important
in the selection of fluoroquinolone resistance. Similar obser-
vations have been made for S. pneumoniae and S. aureus.29,30

A requirement for an intact efflux system to allow the
development of topoisomerase mutations and consequent
fluoroquinolone resistance in E. coli has also been de-
scribed.31 The link between active efflux and mutations in

genes encoding the target site proteins suggests that the use of
such inhibitors, in association with substrate antibiotics, may
be useful by increasing both the activity and the range of
species for which a drug may be effective. The design of new
drugs and modification of existing molecules should also now
be carried out with efflux pumps in mind. Structural alter-
ations that reduce the ability of an antibiotic to be effluxed
without compromising its activity may lead to the develop-
ment of more potent compounds, certainly the ‘effluxability’
of drugs must now be considered, as agents are developed
with regard to their overall efficacy and the likelihood of
development of resistance.

To conclude, there is increasing evidence that the role of
efflux pumps in antibiotic resistance in bacteria is significant.
Although high-level resistance may not occur as a result of
MDR efflux pumps alone, the association of over-expression
of these genes amongst highly resistant clinical isolates
cannot be ignored. The intrinsic antibiotic resistance of
certain species may also be largely due to efflux pumps.
Selection of efflux mutants by biocides encountered in the
environment is a potential concern; more work is needed to
quantify the risk, if any, from such a process. Synergic
increases in resistance seen with over-expression of efflux
system(s) as well as target site mutations can lead to highly
resistant bacteria that are hard to treat. The effect of efflux
pumps needs to be considered in the design of future anti-
biotics and the role of inhibitors assessed in order to maximize
the efficacy of current and future antibiotics.

For those interested, there are a number of excellent review
articles focusing on efflux pumps.2,3,9,11,32,33
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