
Jianhua Hu

is Assistant Professor of

Biostatistics at the University of

Texas M. D. Anderson Cancer

Center (UTMDACC). Her

current research is focused on

the development of biomarker

panels from mass spectrometry

data.

Kevin Coombes

is Associate Professor of

Biostatistics and chief of the

Bioinformatics section

(including Hu and Baggerly) at

UTMDACC. He has won

multiple prizes for the analysis

of microarray and proteomics

data and has developed several

methods for processing

spectral data.

Jeffrey Morris

is Assistant Professor of

Biostatistics at UTMDACC. His

work on functional data

analysis (ehixh includes

proteomic specra) has been

recognized with several prizes

from the statistical community.

Keith Baggerly

is Associate Professor of

Biostatistics at UTMDACC. He

has won multiple prizes for the

analysis of microarray and

proteomics data and speaks

frequently on experimental

design.

Keywords: calibration, data
preprocessing, follow-up
studies, proteomic mass
spectrometry, randomised run
order, validation

Keith Baggerly,

Department of Biostatistics and

Applied Mathematics,

University of Texas M. D. Anderson

Cancer Center,

1515 Holcombe Blvd, Unit 447,

Houston, TX 77030-4009,

USA

Tel: +1 713 563 4290

Fax: +1 713 563 4243

E-mail: kabagg@mdanderson.org

The importance of
experimental design in
proteomic mass spectrometry
experiments: Some
cautionary tales
Jianhua Hu, Kevin R. Coombes, Jeffrey S. Morris and Keith A. Baggerly
Date received (in revised form): 13th December 2004

Abstract

Proteomic expression patterns derived from mass spectrometry have been put forward as

potential biomarkers for the early diagnosis of cancer and other diseases. This approach has

generated much excitement and has led to a large number of new experiments and vast

amounts of new data. The data, derived at great expense, can have very little value if careful

attention is not paid to the experimental design and analysis. Using examples from surface-

enhanced laser desorption/ionisation time-of-flight (SELDI-TOF) and matrix-assisted laser

desorption–ionisation/time-of-flight (MALDI-TOF) experiments, we describe several

experimental design issues that can corrupt a dataset. Fortunately, the problems we identify

can be avoided if attention is paid to potential sources of bias before the experiment is run.

With an appropriate experimental design, proteomics technology can be a useful tool for

discovering important information relating protein expression to disease.

BACKGROUND
Proteomics is a promising field that has

begun to bloom in recent years, following

large-scale explorations of genomics. New

techniques employed to understand

protein expression at the cellular level

have been widely applied to biomedical

and clinical problems. One exciting

technique is mass spectrometry. Typically,

mass spectrometry has been used to derive

proteomic expression patterns, which

have been put forth as potential

biomarkers for the early diagnosis of

cancer and other diseases. There are many

other exciting applications of proteomics,

such as identifying proteins that are only

expressed in infected cells to use in

developing new antiviral drugs. New

experimental opportunities in this field

have attracted a lot of attention, and have

led to a large number of experiments and

vast amounts of new data.

The University of Texas M. D.

Anderson Cancer Center (M. D.

Anderson) is one of many institutions to

have developed and implemented all kinds

of proteomics techniques on different

tissue samples. Some initial results from

proteomics studies run at M. D. Anderson

have included the clear separation of

multiple known subtypes of one type of

cancer; identification of a new disease

subtype; differentiating between tissues

from patients with and without disease;

and extremely good separation of known

stages of a disease where no non-invasive

markers exist. Our initial analyses seemed

encouraging but, in these cases, the results

then proved to be wrong. In three of the

studies described above, data were

brought to us after the experiments had

been run. In each study, problems with

the experimental design had produced

biases that distorted the results. We

describe the problems we encountered in

detail in case studies 1 to 3 below.
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Better results have been obtained when

we have had the opportunity to work

with the investigators on the design and

implementation of the experiments,

allowing us to identify potential biases

that could be introduced. We have been

able to validate the results from these

studies, showing them to be reproducible

and more reflective of true biological

conditions. Case study 4, by contrast,

describes a successful experiment.

The problems we describe through

these case studies are important because

they are not unique to M. D. Anderson.

Indeed, we believe that the results of

some high profile studies show similar

flaws.1 We stress that such problems of

bias do not arise from fundamental

mechanisms underlying proteomic mass

spectrometry, but rather from the

complexity and sensitivity of the

implementation of the technology. The

errors we describe can be avoided with

the use of careful experimental design,

simple statistics and thorough validation

of the results. Our descriptions are not

comprehensive, and in particular we will

not dwell on issues of multiple testing or

complex steps dealing with the

exceedingly high-dimensional nature of

the data. Rather, we will focus on simple

tests that can be undertaken to prevent or

correct faulty results.

The importance of experimental design

to proteomic mass spectrometry is being

more widely recognised; several carefully

designed studies are underway by various

research groups2 and some good reviews

on the validation of findings have been

published.3 Our focus, however, is of a

more visceral nature; we intend to alert

experimenters to the need for caution in

every step in an experiment, from sample

collection to laboratory analysis to data

analysis, by illustrating some ways that

procedures can go wrong.

CASE STUDIES
Case study 1: Multiple subtypes
Researchers at M. D. Anderson

conducted an experiment on serum

samples from several patients having one

of five types of cancer. A total of 247

patients were involved in the study: 40,

60, 65, 62 and 20 patients who had been

diagnosed with cancer of the subtypes 1–

5, respectively. Surface-enhanced laser

desorption/ionisation time-of-flight mass

spectrometry (SELDI-TOF-MS) was

applied for protein profiling of the serum

samples, producing spectra from four

different fractions and three chip surfaces

for each patient. Different chip surfaces

make different classes of proteins available

for analysis and fractionation subsets the

groups still further. Such subsetting is

often employed so that the signals from

high-abundance proteins or peptides do

not ‘swamp’ others nearby. The

researchers sought to identify the protein

peaks that uniquely defined a given

subtype of cancer.

The mass spectrometry data for this

study was brought to our group for

analysis. We preprocessed the raw spectra

using standard routines of simultaneous

peak detection and baseline correction

(SPDBC). We used an algorithm

developed inhouse and implemented in

The Math Works, Inc., Natick MA

(MATLAB) to perform the SPDBC on

each spectrum. Similar code is available as

supplementary information to one of the

papers by Coombes et al.4 Our most

recent codes, a package called Cromwell,

is available from the same site.5 The

SPDBC algorithm produced a list of M/Z

values corresponding to peaks and also a

baseline-corrected spectrum. We then

normalised each modified spectrum to the

total ion current for the region of M/Z ¼
2,000 Th and above. Intensities at M/Z

values below this showed frequent

saturation. Based on the corrected spectra,

we identified approximately 100 peaks

per fraction/surface pairing shared by all

the protein expression profiles from the

patients.

We performed a hierarchical clustering

analysis of all the samples to evaluate the

ability of the peaks to discriminate

between the five cancer subtypes. We

used an agglomerative clustering

algorithm with average linkage and a

Experimental design is
important
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distance metric based on the Pearson

correlation coefficient. Surprisingly, we

observed that simple clustering produced

six groups instead of five (see the top

panel of Figure 1). We investigated the

clinical information and it turned out that

the resulting six clusters matched the run

dates of the samples, rather than the

biologically different groups (see the

bottom panel of Figure 1). We found that

the serum samples from patients

diagnosed with one cancer subtype had

been run at least a month before all of the

rest, and that the run date affected all of

the sample spectra to some degree. We

were able to verify this by examining the

spectra from a material that is commonly

used for quality control (QC), which the

researchers had run concurrently. The

spectra from the QC material showed the

same clustering pattern as the biological

samples. We attempted to apply simple

additive shifts to align the QC samples to

fix the problem, but failed.

Comments

Proteomic profiles are not yet very

reproducible over time, and the intensities

are semiquantitative at best. To focus on

the biological contrasts between groups of

tissue samples, we recommend that

investigators include some members from

each contrasting sample in each

laboratory-run group. If the run groups

are large, simply randomising the run

order will achieve this. Running all

samples ‘as they come in’ is not yet a good

way to operate experiments in proteomic

mass spectrometry.

Case study 2: Collection
protocols
Another group of researchers conducted

an experiment at M. D. Anderson on

tissue samples from 50 patients with

cancer, which were believed to include

two subtypes of the disease. The

researchers applied three different

fractionation protocols (identified as

myo25, myo70 and bsa70) to produce

three different spectra per sample.

Splitting a sample into three fractions can

better highlight different subsets of the

proteins.

The disease subtype information was

‘stripped out’ and the resultant blinded

Run date effects can be
larger than biological
effects

Figure 1: Detection of
subtypes of cancer
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dataset was brought to our group for

analysis. The aim of the analysis was to

perform unsupervised clustering of the

data to see if the two subtypes could be

identified correctly and blindly. We

preprocessed the spectral data in a manner

similar to that described in the first case

study, including the methods of SPDBC

and normalisation to the total ion current.

We analysed the spectra within each of

the three fractions separately. After

aligning the peaks across the spectra

within each fraction and filtering out the

noise, we identified 172, 130 and 130

peaks, respectively, in the fractions from

the myo25, myo70 and bsa70 protocols.

We then performed hierarchical

clustering analyses in each of the three

fractions. The results seemed very

exciting, with two distinct clusters clearly

identified in each fraction. We also

observed that the myo25 and myo70

fractions produced the same two clusters,

and that clustering from the bsa70 fraction

was identical to the others, except for the

classification of a single sample. These

results were communicated and the data

were unblended; however, further

exploration showed that the split that we

had found did not match the subtypes

assumed by the investigators. Rather, the

split matched very closely with the day on

which the sample collection protocol had

been changed midway through the

experiment. Figure 2 illustrates the

clustering pattern within the fraction

bsa70.

Comments

Many features of an experiment affect

protein expression profiles, and we have

not yet been able to identify all of them.

We recommend that investigators define a

single protocol and follow it throughout

the experiment. This will reduce the

number of factors that are of concern

during the data analysis. If a protocol must

be altered, the investigator should make

sure that samples representing both sides

of the contrast of interest are present for

each run batch that the laboratory

processes, and should accordingly be

prepared to analyse the data in batches.

Case study 3: Calibration and
sample handling
A third group of researchers at M. D.

Anderson collected urine samples from

individuals for proteomic analysis in the

study of cancer. The study focused on five

categories of human subjects: disease-free

individuals, patients presenting with low-

Changes in collection
protocols can have large
effects

Figure 2: Discovery of
clusters in data from
bsa70 fraction of tumour
samples
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grade tumours, patients presenting with

high-grade tumours and separate

categories of patients who had histories of

low-grade or high-grade tumours. A

promising goal of the study was to

identify important peaks in protein

profiling that could differentiate between

the disease-free patients and those with

tumours of either low or high grades.

The spectral data that were brought to

our researchers for analysis had been

preprocessed carefully, including the use

of baseline subtraction and normalisation

methods. Our initial examination selected

several peaks that could separate controls

from cancers successfully, such as the

three peaks shown in the first three rows

of Figure 3. We noted that the triplet of

peaks is in the same M/Z range as the

triplet identified as defensin proteins in

urine by Vlahou et al.6 Upon closer

examination, we discovered that the

spectra from the disease-free individuals

also produced the same three peaks, with

only a shift in the location of the peaks

when compared with those derived from

the spectra of patients with cancer. We

further confirmed the results to be due to

an offset of the calibration of the spectra.

Once the calibration had been corrected,

the difference in protein expression was

not present.

Fortunately, we could still find some

peaks that correlated with cancer based on

the corrected spectra. To validate the

results, we used an independent group of

samples, a ‘test set’, which had been

collected at a different clinic. The peaks

that had been selected from the initial

study at M. D. Anderson were used as the

‘training set’, to predict if the data from a

subject represented in the test set

indicated the presence of cancer. It turned

out that the prediction algorithm did not

work on the new test set. Careful

comparison of the spectra from both sets

showed that the spectral patterns were

surprisingly different — even for subjects

from the same category, such as the

disease-free individuals. Figure 4 shows an

example of a specific region of the spectra

produced from the urine samples from

Misalignment or lack of
calibration can give rise
to misleading structures
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Figure 3: Comparisons
of spectra in/near the
vicinity of M/Z 3400 in a
cancer study
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four disease-free individuals in the

training set and five in the test set,

indicating that the spectra were strikingly

different. Interestingly, the same three

peaks identified earlier were present at

high levels in the samples of the test set

taken from disease-free individuals. We

then learned that the urine samples in the

test set from the disease-free individuals

had degraded: the samples had not been

processed immediately, and had been left

sitting at room temperature for several

hours prior to processing.

Comments

The discovery of important protein

biomarkers is very difficult because many

factors in the experimental process can

easily introduce bias. We recommend that

researchers perform calibrations prior to

every occasion on which they produce a

total of proteomic spectra. It is very

important to conduct calibrations before a

whole batch of samples are run. When

conducting a multicentre study,

investigators must ensure that the

experimental protocol of every centre is

identical, in order to produce sensible

results. We also emphasise the importance

of pictures; the shift problem is evident

when shown diagramatically.

Case study 4: Doing things
right
A fourth group of researchers at M. D.

Anderson conducted a study of breast

cancer within the Nellie B. Connally

Breast Center between 2001 and 2003.7

The main aim was to examine proteomic

changes in the plasma of patients with

breast cancer in response to chemotherapy

with paclitaxel or with a combination of

s-fluorouracil, doxorubicin and

cyclophosphamide (FAC). Protein

biomarkers in plasma profiles that are

associated with breast cancer, and which

differentiate between women with and

without the disease, were identified. The

study data were derived from 69 patients

with newly diagnosed stage I–III breast

carcinoma and 15 healthy volunteers.

Plasma samples were obtained on day 0

(before chemotherapy) and day 3 (post-

treatment) for all patients, 29 of whom

had received preoperative chemotherapy

and 40 of whom had received

postoperative chemotherapy. Plasma

samples from the healthy volunteers

(control subjects) were obtained at two

time points no sooner than three days

apart within a one-week period, for

comparison. SELDI-TOF-MS profiling

was used to examine protein activity.

Randomization at
several levels can
balance effects so that
they do not bias the
results

Figure 4: Comparisons
of spectra of disease-free
subjects from two
independent sets (top
four, bottom five) in a
cancer study
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The laboratory procedures included

thoroughly cleaning the ProteinChips

(Ciphergen Biosystems, Freemont, CA)

beforehand, to eliminate noise in the

spectra due to extraneous chemical

materials attached to the chips. Samples

were then randomly loaded to the spots

on each chip; cases and controls were

intermingled and duplicates of all samples

were processed and run. In addition, a

QC sample was prepared by pooling

plasma from three randomly selected

participants. Aliquots of the QC sample

were spotted on each chip to determine

the reproducibility of measurements and

to serve as a control protein profile. The

mass accuracy was calibrated on the day of

measurement for all the spectra, additive

white noise was removed, the baseline

was subtracted and normalisation was

carefully conducted.

We examined the stability of the

protein profiles over time using the

standard QC sample, as well as the spectra

generated from the healthy women at two

points in time. Analysis of the

experimental data detected a single

chemotherapy-inducible peak and five

other peaks that distinguished cancer

patients from healthy subjects. These

results suggested that the peaks were

candidates for disease-related biomarkers.

Furthermore, a follow-up study was

conducted: another set of samples from

disease-free women and cancer patients

were collected and analysed 3 months

after the original study. It turned out that

the same set of peaks could be found,

indicating that the study was consistent

and reproducible. Attempts were made to

identify the proteins further; some

identities are now known.

Comments

Case study 4 represents a ‘successful’

example of proteomics experiments: the

experimental designs and implementations

were consistent; identical protocols were

strictly followed for the contrasting

samples; samples were collected and run

on the spot/chip in a random order;

quality control materials were applied to

achieve good calibration; control samples

were prepared in duplicate to test the

stability of the protein profile and validate

the results; and the spectral data were

preprocessed identically. Furthermore,

follow-up studies were conducted later,

and other technologies were used to

identify the proteins. The data processing

software Cromwell8 and other tools are

available at http://bioinformatics.

mdanderson.org/software.html.

DISCUSSION
We have provided four examples

illustrating the importance of careful

experimental design for proteomics

studies. Much of this involves intelligent

application of three principles:

randomisation, replication and blocking.

These principles are elegantly summarised

in classical statistics texts.9 In order to

apply these principles to the problems that

researchers in the clinical and basic

sciences wish to address, however, it is

very useful to consult a statistician before

collecting the data in order to determine a

good experimental design. The

collaborating or consulting statistician can

design a trial ensuring that the data

collected will be able to answer the

question of interest and, equally

importantly, can provide implementation

guidelines that will prevent the results

from being distorted by external biases.

Figure 5 summarises the important points

that we learned from the case studies.

Advice for the statistician
We recommend that the statistician

obtain the clinical data prior to analysing

the proteomic data. Clinical data include

information on sample preparation and

the run order. When provided with data

from an experiment that has been

designed and conducted without statistical

consultation, the statistician may be able

to identify obvious problems by

skimming the clinical data. First, the

statistician will want to check the

mechanical contrasts, such as the effects

caused by running samples on different

days. Most of the problems we detected

Validation can be
achieved using different
technologies,
replication in different
labs, or replication with
new samples at
different times
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from the case studies and elsewhere were

found through the use of simple pictures,

such as the finding of sinusoidal noise

with MALDI data10 and the use of heat

maps of the spectra sorted by run order.1

Both examples were among the most

illuminating findings in our experience

with proteomics studies.

Secondly, the statistician should plan to

validate the results from the beginning of

the experiment. Ideally, this would

include identifying the peptides involved

and confirming the assay results using a

technology that is different from that used

in the original experiment (ie using an

enzyme-linked immunosorbent assay on

results obtained from protein chips and

mass spectrometry). Failing that, we

recommend that the statistician attempts

to reproduce the results using samples

produced by a different facility or using a

new set of samples produced by the same

facility after a gap in time of a few

months.

The issues we have addressed are not

unique to the field of proteomics;

however, gaining specific training and

knowledge in proteomics data and also in

the physics of mass spectrometry will

enable the statistician to spot obvious

problems that will bias the results of a

proteomic experiment. For example, most

of theMALDI and SELDI data that we

analyse cover theM/Z range from 0 to

about 20,000 Th. In this range, most of the

peptides will be singly charged, so that the

biggest peak will occur where Z¼ 1;

however, there will also be a smaller peak

corresponding to the case where Z¼ 2.

Superimposing plots of the spectra against

M/Z and of the spectra against 2*M/Z

provides a quick check of whether the data

calibration is off, and the likely charge

states of peaks of interest, as the singly and
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Figure 5: Flowchart of
the important issues to
know how to address
before proteomic
expression profiling
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doubly charged peaks should line up. The

data from a study on prostate cancer11 are

used as an example. Figure 6 shows a

specific mass region, with a slight location

shift of the set of singly and doubly charged

peaks that are respectively illustrated by the

black and the grey curves.

Current research in the field of

proteomics and, more broadly, in the field

of high-throughput biological assays and

biomarker discovery is exciting. Using

highly advanced technological tools,

however, still requires careful adherence

to rather simple guidelines and ensuring

the reproducibility of experimental

findings.
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