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Financial Leverage, Risk Aversion, and Risk Management

Brent A. Gloy and Timothy G. Baker
�

ABSTRACT:   The problem of choice among risk management strategies is addressed
with the stochastic dominance with a risk free asset (SDRA) criteria.   The SDRA criteria
consider all possible combinations of the strategies and financial leverage.  This
consideration allows the possibility that strategies with less business risk, less expected
return, and greater leverage may dominate strategies with greater business risk and
greater expected return.  Results show that the inclusion of the risk free asset significantly
improves the discriminatory power of the ordinary SD criteria.

Introduction

Income uncertainty affects the welfare of agricultural producers.  Academics have

suggested that producers respond to income uncertainty by adopting the practice of risk

management.  Risk management can be viewed as a three-stage process of identification,

assessment, and implementation.  The manager must first identify practices or strategies

that could possibly alter the distribution of monetary returns associated with a production

or investment activity.  At the assessment stage, the manager must assess the impact of

the identified practice(s) on the distribution of returns.  Finally, he/she must choose the

alternative that produces the most desirable distribution of returns and implement that

strategy or practice.

Considerable effort has been devoted to the first two stages of risk management.

Many research and extension programs have identified alternative risk management
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strategies and probabilistic outcome information on these strategies (Schnitkey, Miranda,

and Irwin; Baker and Patrick, Iowa State, Harwood, et al.).  However, there has been

much less assistance provided to producers in choosing among the various strategies

identified and assessed in the first two stages of risk management.

This paper addresses the problem of choice among risk management alternatives.

The results give an indication of the importance of alternative assumptions about

economic behavior in risk management contexts and give direction for future work in risk

management research and education.  The next section briefly discusses the shortcomings

of several common economic frameworks used to evaluate risk management strategies

and the need for the acknowledgement of financial leverage.  Then, the stochastic

dominance with a risk free asset (SDRA) risk efficiency criteria are presented and

discussed.  Next, results comparing the ordinary SD criteria and the SDRA criteria are

presented.  Finally, conclusions about the importance of financial leverage and the SDRA

rules are given.

Choosing Among Risk Management Alternatives

Recently, researchers have spent little time developing methods to assist

producers in their choice among risk management strategies.  This approach is reasonable

given that choice among strategies generally requires knowledge of individual risk

preferences.  A lack of knowledge regarding the specific functional forms or parameters

of individual utility functions makes direct expected utility maximization an undesirable

approach for considering individual choice of risk management strategies.  However,

with the relatively inoffensive assumptions that producers prefer more wealth to less and



128

are risk averse, one can implement the first and second degree stochastic dominance (SD)

rules (Fishburn, Hadar and Russell, Hanoch and Levy).

While the generality of the risk preference assumptions supporting the SD rules is

appealing, their ability to discriminate between risky alternatives is typically low.  This

lack of discriminatory power is magnified in risk management contexts because the

ordinary SD rules cannot typically discriminate between alternatives which present the

agent with a risk for expected return trade-off, e.g., crop insurance and hedging.

Two common failings of the SD rules make them undesirable efficiency criteria

for comparing risk management strategies.  The common failings are the difference of

means and the lower tail crossing problems. The difference of means problem manifests

itself by requiring that the mean of the dominating distribution be at least as large as the

mean of the dominated distribution.  The lower tail crossing problem rules out dominance

of the alternative with the largest cumulative probability at the worst possible outcome.

Unfortunately, risk management strategies often suffer from the equality of means

problem as they present the decision maker with a trade-off of expected return for risk

reduction.  On the other hand, base strategies often suffer from the lower tail crossing

problem.  This means that the traditional SD rules are not usually empirically efficient

tools for evaluating risk management strategies because the efficient sets tend to be large.

Because the efficient sets associated with the ordinary SD criteria are typically large,

researchers sought to refine the criteria.  The refinements typically strengthened the

ordinary SD criteria by more thoroughly specifying risk preferences.
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Meyer’ s generalization of the SD criteria made it possible to strengthen the

ordinary SD criteria by narrowing the range of risk aversion covered by decision rules

such as SSD.  This method allows the researcher to specify a range in which the

coefficient of absolute risk aversion lies.  By reducing the permissible range of the

coefficient of absolute risk aversion (ordinary SSD assumes that the coefficient of

absolute risk aversion lies in the interval from zero to positive infinity), one can

strengthen the SSD criterion.  This procedure is similar to direct expected utility

maximization in that one is making assumptions regarding the magnitude of the utility

function’ s parameter.  Unfortunately, there is little agreement regarding the proper range

of the coefficient of absolute risk aversion (Cochrane and Raskin).  As a result, McCarl

suggested that a more appropriate procedure was to identify the level of absolute risk

aversion at which preferences for prospects switch (1988, 1990).  Regardless, when

ordinary SSD does not exist, both methods require that the researcher specify risk

preferences beyond that of risk aversion.

The Importance of Financial Risk

Rather than refining the ordinary SD criteria by assuming a smaller relevant range

for the coefficient of absolute risk aversion, the SDRA criteria refine ordinary SD by

recognizing that agents have access to financial leverage.  This is an important extension

in risk management contexts because previous research has shown a clear relationship

between financial leverage and the use of risk management products (Shapiro and

Brorsen; Moss, Ford, and Castejon; Turvey and Baker 1989, 1990; Collins 1997).  For
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instance, Collins (1997) showed that models incorporating variables for the financial

structure of the firm could potentially explain hedging behavior.

Collins (1985) also developed a model that explained how a producer might

manage risk by adjusting both business and financial risk.  Most common risk

management tools are designed to control business risks, e.g., price hedging and output

insurance.  Financial risks are adjusted by varying the proportion of debt funds used to

finance the business.  Debt funds “ leverage”  the return to equity funds by magnifying

both positive and negative returns.  Thus, a producer might use risk management tools to

reduce business risk and consequently expected return.  To compensate for the reduced

expected return, the producer may slightly leverage the expected return of the risk

managed investments with debt funds.

The ordinary SD criteria are only capable of identifying strategies that are

business risk efficient for a particular level of leverage.  The SDRA criteria developed by

Levy and Kroll (1978) extend SD’ s characterization of risk to include financial risk.

When discussing the usefulness of the SDRA criteria in the context of evaluating the

performance of various mutual funds Levy and Kroll (1979, pg. 130) find an “ empirical

separation”  is generated by the SDRA rules.  For instance, the second degree SDRA

(SSDRA) set contained from 1.5 percent to 18 percent of the mutual funds evaluated over

different time horizons, while the SSD set contained 9 percent to 41 percent of the funds.

Thus, by recognizing an agent’ s ability to alter financing, one is able to reduce the

number of investments deserving managerial attention.
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The value of the empirical separation is important where it is not appropriate to

apply more commonly used risk efficiency models such as the mean-variance and the

mean-variance with a risk free asset (the Sharpe ratio) models (Markowitz, Sharpe).

These models are dependent upon the assumption that the return distributions being

compared differ by only the first two moments. The SDRA criteria are not contingent

upon this assumption, and allow for a much more thorough characterization of the

riskiness of an investment.  The criteria are especially well suited to evaluate risk

management alternatives such as option strategies that affect higher moments of the

distribution of returns.

The Risk Free Asset

SDRA is contingent upon the existence of an asset with a risk free return, i.e., no

variance in return, that can be traded with no transaction costs.  Johnson noted that risk

free assets exist in agriculture.  The important characteristic of such an asset is that its

returns are not variable over the time frame the agent is making her/his investment.

Turvey, Baker, and Weersink used cash rental of farmland (in and out) as a risk free

asset.  Likewise, borrowing money from a financial institution generates an obligation

that must be repaid with certainty.  Because the time frame for managing production risks

is one year, the agent observes the cash lease rate or the borrowing rate and fixes it. By

initially assuming that the borrowing and lending rates are equal, one can examine the

SDRA criteria’ s potential to narrow the risk efficient set in risk management contexts.
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Stochastic Dominance with a Risk Free Asset

The derivation and proof of the necessity and sufficiency of the SDRA rules for

ranking risky projects can be found in Levy and Kroll (1978) and Levy (1998).    The

rules are derived by constructing combinations of the returns to risky actions and the

return to the risk free action.  Consider the case where there are two risky outcomes X and

Y, and a risk free outcome r.  Following Levy and Kroll (1978) the risky outcomes can be

combined with the risk free outcome as shown in (1) and (2).

( ) [ )
( ) [ )�³+-=

�³+-=
0,              ,  1          (2)

,0                ,  1         )1(

bbb
aaa

�
�

YrY

XrX

where X �  and Y �  are the sets of all combinations of the risky outcome and the risk free

return, a and b are weights of the original risky outcomes X and Y in these combinations,

and r is the risk free return.  Each outcome in the set X �  or Y �  has an associated

cumulative distribution function (CDF).  The sets of CDF’ s can be denoted FX �  and GY� ,

where any particular element in FX �  or GY�  has the form shown in (3) and (4).  That is,

(3) ( ) ( )zXzFX �= 00 Pr ��

(4) ( ) ( )zYzGY �= 00 Pr ��

where z is some monetary outcome and Pr returns the probability that X � 0 or Y � 0 is less

than or equal to z.

Borrowing the risk free asset (a>1) pivots the CDF of the original strategy

clockwise around the risk free return.  In Figure 1, the solid CDF represents the original,

unleveraged CDF associated with action X.  The dashed line shows one potential CDF

that might be generated by borrowing the risk free asset, a >1.  When a is greater than 1,
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the agent invests in negative amounts of the r, i.e., borrows at the risk free rate of return.

The agent then invests these borrowed funds in the risky asset, X.  When the returns to

the activity are greater than the risk free return, the agent gains a net profit from

borrowing and adds this to the original return.  Thus, the cumulative probability is lower

at outcomes above the risk free return, r.  When the return is less than the risk free return,

the agent accepts a net loss from borrowing and must repay the funds borrowed at the risk

free return from the returns to the risky activity.  This loss is subtracted from the original

return to X and increases the probability of outcomes below the risk free return.  Similarly

when the agent lends the risk free asset, 0 � a < 1, the CDF pivots counter clockwise

around the risk free return.

The SDRA rules are developed by realizing that the ordinary SD rules can be

restated in quantile notation (see Chapter 4 of Levy 1998 for a thorough discussion of the

quantile formulation of both the ordinary SD and SDRA criteria).  The quantile function

is the inverse of the cumulative distribution function.  Define the set of quantile functions

for X �  and Y �  as (5) and (6).

( ) ( ) ( )
( ) )(1)()(        )6(

)(1        )5(
1

1

pQrxGpQ
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bb
aa
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where QF � (p) and QG� (p) are the sets of quantile functions associated with the cumulative

distribution functions for the leveraged activities X and Y respectively, p is cumulative

probability, x is a monetary outcome level, a and b are the proportion of the investment

in risky activities X and Y, and QF(p) and QG(p) are the inverse of the cumulative

distribution functions for the unleveraged activities X and Y.
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The condition for dominance of F(x) over G(x) by ordinary FSD is given by (7)

and preference by ordinary SSD is shown in (8).

[ ]
[ ] [ ] inequalitystrict  oneleast at   with 1,0   0)()(        (8)

inequalitystrict  oneleast at   with 1,0     0)()(        )7(

0
× ³"�-

³"�-
p

GF

GF

pdttQtQ

ppQpQ

where QF(p) and QG(p) are the quantile functions for activities associated with the CDF’ s

F(x) and G(x), p is cumulative probability, and t is a variable of integration.

Levy and Kroll prove that if one can find an element in FX �  that dominates GY

(the unlevered CDF of activity Y) then it will always be possible to find a CDF in FX �  that

dominates every CDF in GY�  (1978, pg. 556 for FSD, and pg. 561 for SSD).

That is, for first degree stochastic dominance with a risk free asset (FSDRA) one

must find a value of a for which (9) holds and for second degree stochastic dominance

with a risk free asset (SSDRA) (10) must hold.

(9) [ ]1,0          0)( ³"�- pQpQ GF �

(10) [ ] [ ]1,0       0)()(
1

0

³"�-× pdttQtQ GF �

which are restatements of the ordinary SD rules in (7) and (8) with the leverage variable

a included.  Levy and Kroll (1978) prove that if an a exists such that (9) and/or (10)

holds, then for each CDF in GY�  one will always be able to find a CDF in FX �  which

dominates it by FSD and/or or SSD.  Thus, if (9) holds the decision maker who prefers

more wealth to less and has access to financial leverage would strictly prefer investment

X to investment Y.  If only (10) holds, any decision maker who is risk averse and has
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access to financial leverage would prefer X to Y.  On the other hand, if no a exists for

which (9) and/or (10) holds, neither FSDRA nor SSDRA of F(x) over G(x) exists.  By

substituting (5) into (9) and solving for a one obtains the FSDRA rule given by (11),

which Levy and Kroll (1978) prove is a necessary and sufficient condition for FSDRA

(1978, pg. 558 or Levy 1998 Chapter 4).

(11) ( )
( )( ) ( )

( )( ) rpQ
rpQ

rpQ
rpQ

F

G

prFF

G

rFp -
-�-

-
����
10

supinf ,

where inf represents the infimum, or greatest lower bound, p is probability, F(r) is the

cumulative distribution function of investment X evaluated at the risk free rate, QF(p) and

QG(p) are the quantile functions for investment X and Y, r is the risk free return, and sup

is the supremum, or least upper bound.  The necessary and sufficient condition for

SSDRA is obtained by using (5) and (10) and solving for a (Levy and Kroll, 1978 pg.

566 or Levy 1998 Chapter 4).  Formally, the SSDRA rule is given by (12):

(12)
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where p0 solves (13)

(13) ( )×= 0

0
0

p

F dttQrp ,

and everything is as before with the exception of p0, which is new.  The cumulative

probability level p0 replaces the cumulative probability associated with the risk free
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return, F(r), as the bounds of the infimum and supremum problem and is the value at

which the denominators in (12) are equal to zero.

A Graphical Interpretation of FSDRA

The SDRA conditions can be interpreted as a method to find the amount of

pivoting needed to induce ordinary SD dominance above (below) the boundary of the

supremum and infimum problems relative to the amount of pivoting that is allowed

below (above) this point.  Figure 2 shows one possible case.  Here the solid CDF, G(x),

might represent the returns to a base strategy such as using the natural hedge, and the

dashed CDF, F(x), could represent the returns to a risk management strategy such as

buying crop insurance.  It is assumed that the expected value of the risk management

strategy is less than the expected value of the base strategy.  Therefore, F(x) cannot

dominate G(x) by ordinary SSD.  Because G(x) has a larger probability at the smallest

outcome it cannot dominate F(x) by any degree of ordinary SD.

Define the values of a, b, c, and d with the ratios shown in (14) and (15) to correspond to

the terms in the necessary and sufficient condition for FSDRA given by (11):

(14) [ ))(,0
)(
)(

rFp
rpQ
rpQ

b
a

F

G ³"-
-=  and

(15) ( ]1),(
)(
)(

rFp
rpQ
rpQ

d
c

F

G ³"-
-= .

In the case shown in Figure 2, below F(r) the solution to the infimum is always

greater than one as b is less than a.  The smallest value of a/b will occur where b is the

greatest proportion of a or where the distance QG(p)  –  QF(p) is minimized.  Because the

infimum is greater than one, if FSDRA exists in this case, positive amounts of leverage
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must be used to induce dominance below the risk free return.  In this case, one can

interpret the solution to the infimum as the most leverage that can be added to the risk

management strategy without producing a lower tail crossing.

The supremum problem for the case depicted contains three ranges to discuss.  In

the probability interval above F(r) up to G(r), the ratio, c/d, is negative, as QF(p) – r is

always positive, and QG(p) – r is always negative.  Above G(r), but below the

intersection of the CDFs denoted on the probability axis as p*, the ratio is less than one as

d is greater than c.  After the distributions cross, the ratio will be greater than one as d is

less than c.  Thus, the solution to the supremum problem will occur when d is the

smallest proportion of c, or when QG(p) – QF(p) is maximized at probabilities above F(r).

In this case, the solution to the supremum problem identifies the largest distance that the

CDF must be pivoted to induce FSD above r.  The requirement that the infimum be

greater than the supremum insures that the allowed negative impact of leverage in the

lower tail must be greater than the required positive impact of leverage in the upper tail.

In other words, the amount of room available to pivot F(x) must be greater than the

amount of pivoting needed.

The above case demonstrates that SDRA allows one to rank two strategies with

different means in which the strategy with the smaller mean and less business risk

dominates.  Although not possible in the case depicted, it is also possible for a strategy

with a larger mean and larger probability at the smallest outcome (a base strategy) to

dominate a strategy with a smaller mean and smaller probability at the smallest outcome

(a risk management strategy).  This can be accomplished by lending (0� a<1) enough of
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the risk free asset, r, to pull the lower tail of the CDF of the base strategy below the lower

tail of the CDF of the risk management strategy.

Data

Two risk management simulation models were used to generate the distributions

compared with the rules.  The simulation models represent work associated with the

identification and probabilistic assessment stages of risk management.  Both were

designed to assist agricultural producers in determining the probabilistic impact of risk

management strategies on the distribution of gross revenues.  The AgRisk model is

currently available as an extension tool from The Ohio State University.  The data were

generated with a modified version of AgRisk that output the probability density functions

for each simulated alternative.  In the AgRisk case, 13 risk management marketing

strategies were simulated for a 300 acre corn and soybean farm in Decatur county

Indiana.  The probability density functions contained roughly 4,500 observations with

unequal probability weights.  The risk free return was calculated based upon the cash

rental rate plus variable costs of operation for a 300 acre Indiana farm with average

quality soils given in Doster, et al.

The return distributions produced by Nydene’ s simulation of a 1,000 acre crop

and 175 sow farrow to finish hog farm under various risk management policies were also

compared with the rules.  Nydene’ s study considered 23 risk management strategies

designed to manage both output price and output quantity risk.  The risk free return for

this farm was based upon a 9 percent borrowing rate and an estimate of the total assets of

the simulated farm.  The probability distributions consisted of 799 observations with
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equal probability weights.  The strategy codes used to report the results of both models

are explained in Table 1.

The means, standard deviations, and standardized skewness measures for the 13

pre-harvest risk management strategies simulated with AgRisk are shown in Table 2.

Table 3 contains the same information for the 23 risk management strategies simulated

by Nydene.  In both models, the natural hedge or cash sale strategy produced the largest

expected return.  In the AgRisk simulations this strategy also had the largest standard

deviation.  The smallest standard deviation in the AgRisk simulation was produced by the

forward contract 66 percent of expected production strategy (Fwd 66%).  The strategies

have different levels of skewness in both sets of distributions.  The ordinary SSD and

second degree SDRA efficient sets contained 6 and 4 strategies in the AgRisk simulation

and 6 and 3 strategies in the crop and hog farm model.  The strategies in each of these

sets are indicated with the ‡ (SSD efficient) and * (second degree SDRA efficient)

symbols.

Algorithms based upon the SD rules given by (7) and (8) and the SDRA rules

given by (11), (12), and (13) were written in the IML procedure of SAS V6.12.  Different

algorithms were necessary for the cases of equal and unequal probabilities.  Copies of

these algorithms are available from the authors.

The Results

Table 4 shows the number of strategies and the percent of strategies contained by

the FSD, SSD, FSDRA, and SSDRA efficient sets for both simulations.  In both cases all

of the strategies were included in the FSD efficient set.  Application of the SSD criterion
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reduced the number of strategies that must be considered by 54 percent (the SSD set) in

the AgRisk case and 74 percent in the crop and hog simulation.

The results show that the assumption of risk aversion discriminates more strongly

in the crop and hog simulations.  The difference in discriminatory power is partially

explained by the different number and types of strategies simulated with the models.  The

AgRisk case only considered marketing strategies, while the results from Nydene’ s

model considered output quantity and output price activities.  Further, all of the hedging

techniques simulated in Nydene’ s work placed hedges on 100 percent of expected

production, a practice that tended to be inefficient in both the AgRisk and crop and hog

simulations.

The efficient sets suggested by the SDRA criteria are noticeably smaller than the

FSD and SSD efficient sets.  In both cases, the FSDRA efficient set contains only one

more strategy than the ordinary SSD efficient set.  In both cases, the assumption of access

to leverage is nearly as powerful as the assumption that decision makers are risk averse.

When access to leverage and risk aversion are both assumed, (the SSDRA criterion) the

efficient set contained 4 of the 13 AgRisk strategies and 3 of the 23 crop and hog

strategies.

In the AgRisk case, SSDRA removed 2 strategies from the SSD set, Fwd 66% and

the natural hedge.  The natural hedge strategy was guaranteed to be in the SSD set

because it had the largest mean return.  However the natural hedge strategy was

dominated in a SSDRA sense by several strategies.  Figure 3 demonstrates that when one
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recognizes the ability to adjust risk and return with financial leverage the natural hedge

strategy is shown to have an inefficient amount of business risk.

Figure 3 shows the results for the two ordinary SSD comparisons shown in (14)

and (15).

(14) Difference Area Cumulative)()(
1

0

1

0
%33 =- ×× dtpQdtpQ geNaturalHedFwd

(15) Difference Area Cumulative )()(
1

0

1

0
%33 =- ×× dtpQdtpQ geNaturalHedLevFwd

where QFwd33% represents the quantile function for a particular risk management strategy,

forward contract 33 percent of expected production, QNaturalHedge represents the quantile

function of the natural hedge strategy, cash sale at harvest, and QLevFwd33% represents the

quantile function of the risk management strategy leveraged by borrowing 10 percent of

the risk free asset.

Figure 3 shows a graph of these comparisons at every probability level.  For

dominance to exist the curve must not intersect the cumulative probability axis.  The

comparison in (14) (forward contract 33% of expected production versus natural hedge)

shows that the risk management strategy gains an early cumulative area surplus and SSD

is not ruled out until the 97 percent cumulative probability level.  On the other hand, the

curve showing the comparison in (15) (forward contract 33 percent of expected

production leveraged at 10% versus the natural hedge) shows that by leveraging the

forward contracting strategy the cumulative difference initially shrinks, but remains

positive over the entire range of probability.  Leveraging the risk management strategy
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has the effect of reducing returns below the risk free return and increasing them above the

risk free return.  Because the increase in returns above the risk free return cause the area

difference to increase faster than the cumulative area difference below the risk free return

shrinks, SSD emerges when leverage is applied.

Summary

The results lead to several conclusions.  The most apparent is that the

acknowledgement of access to financial leverage is important when making risk

management strategy selections.  In both cases this recognition alone caused a reduction

of the FSD set nearly as large as the reduction caused by recognizing risk aversion.

These results indicate that risk management decisions should not be made without

considering the impact of financial leverage.

While the acknowledgement of access to financial leverage is important when

selecting risk management strategies, risk aversion is also important.  By combining these

two assumptions one can reduce the set of strategies that merit managerial attention.  In

the two simulations conducted, combining these assumptions reduced the number of

strategies to be considered by 87 and 69 percent.

The SDRA results are important because they reduce the number of strategies that

managers must consider.  This reduction can simplify the farm manager’ s choice among

risk management strategies without making strong assumptions about risk preferences.

Unlike other refinements of the ordinary SD rules, the reduction is obtained by

recognizing that financial leverage can be used to increase the mean return of strategies

that contain relatively small amounts of business risk.  In many cases, (where SDRA
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exists) adding leverage is a more efficient way to increase return than reverting to a

strategy with a greater mean and greater business risk.  More importantly, because

decision makers have access to financial leverage, SDRA analysis of risky projects is

more complete than analyses conducted without recognizing the role of financial

leverage.  These results indicate that at least as much effort should be devoted to

educating producers about the impacts of, and selection of leverage levels as is devoted to

the selection of traditional risk management strategies such as hedging.
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Table 1.  Strategy Codes for Crop/Hog Farm Simulation Model.

Code Description of Strategy
AgRisk Simulation

Natural Hedge Cash sale at harvest

Fwd Forward contract 33, 66, or 100 percent of
expected production

Hedge Forward contract 33, 66, or 100 percent of
expected production

ATM PUT Buy at the money puts on 33, 66, or 100
percent of expected production

PUT-CALL Buy out of the money puts and sell out of
the money calls on 33, 66, or 100 percent
of expected production

Crop and Hog Farm Simulation*
APH Buy Actual Production History Insurance

CO Buy Crop Options

CRC Buy Crop Revenue Coverage Insurance

GRP Buy Group Risk Plan Insurance

HC Hedge Crops

HF Hedge Feed

HH Hedge Hogs

HO Buy Hog Options

Naïve Cash Sale
*Source:  Table 4.1 Nydene (1999).
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Table 2.  The Means and Standard Deviations for the Marketing Strategies Simulated
with AgRisk.

Strategy Mean Standard Deviation Standardized Skewness*

‡Natural Hedge $ 87,147 $ 14,317 0.65

Fwd 100% $ 86,525 $ 13,330 -0.79

‡Fwd 66% $ 86,987 $ 11,760 0.02

‡*Fwd 33% $ 87,075 $ 12,298 0.56

Hedge 100% $ 86,069 $ 13,314 -0.59

Hedge 66% $ 86,436 $ 11,976 0.04

‡*Hedge 33% $ 86,792 $ 12,377 0.53

‡*ATM PUTS
100%

$ 86,769 $ 12,384 0.58

‡*ATM PUTS 66% $ 86,897 $ 12,734 0.71

ATM PUTS 33% $ 87,022 $ 13,390 0.73

PUT-CALL 100% $ 86,768 $ 12,545 0.19

PUT-CALL 66% $ 84,320 $ 12,388 0.42

PUT-CALL 33% $ 87,022 $ 13,187 0.62

* Indicates Membership in SSDRA Efficient Set
‡ Indicates Membership in SSD Efficient Set

* Skewness divided by standard deviation cubed, 
3

3)(

s
m-xE

.
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Table 3.  The Means and Standard Deviations for the Strategies Simulated with the Crop
and Hog Farm Model.

Strategy Mean Standard Deviation Standardized Skewness
‡ naïve $ 587,863 $  102,032 0.59
APH $ 581,152 $  101,044 0.63
CRC $ 578,998 $    99,895 0.68
GRP $ 580,948 $  101,511 0.61
HF $ 587,398 $  108,998 0.63
HO $ 585,347 $    90,324 0.61
‡ *HH $ 586,801 $    75,617 0.11
HC $ 586,685 $    81,197 0.23
CO $ 584,502 $    95,211 0.62
APH HC $ 579,974 $    79,733 0.28
APH CO $ 577,791 $    94,062 0.68
GRP HC $ 579,770 $    80,283 0.26
GRP CO $ 577,587 $    94,567 0.64
APH HO $ 578,636 $    89,123 0.67
‡ *APH HH $ 580,090 $    74,101 0.15
‡ HC HH $ 585,623 $    75,452 -0.01
HC HF $ 586,220 $    83,927 0.32
‡ HF HH $ 586,336 $    79,168 0.18
HF HO $ 584,882 $    96,328 0.70
APH HC HH $ 578,865 $    73,585 0.03
APH HC HO $ 577,458 $    74,111 0.11
‡ *APH HC HH HF $ 578,447 $    70,519 0.06
CRC HF HH $ 577,471 $    76,771 0.26
* Indicates Membership in SSDRA Efficient Set
‡  Indicates Membership in SSD Efficient Set

Table 4:  The size of the ordinary SD and SDRA efficient sets.
Simulation FSD SSD FSSDRA SSDRA
AgRisk: Number in Set
        Percent of Total Strategies

13
100%

6
46%

7
54%

4
31%

Crop and Hog: Number in Set
        Percent of Total Strategies

23
100%

6
26%

7
30%

3
13%


