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[1] Based on a literature overview, this paper summarizes the impact and legacy of the
contributions of Wilfried Brutsaert and Jean-Yves Parlange (Cornell University) with
respect to the current state-of-the-art understanding in hydraulic groundwater theory.
Forming the basis of many applications in catchment hydrology, ranging from drought flow
analysis to surface water-groundwater interactions, hydraulic groundwater theory simplifies
the description of water flow in unconfined riparian and perched aquifers through
assumptions attributed to Dupuit and Forchheimer. Boussinesq (1877) derived a general
equation to study flow dynamics of unconfined aquifers in uniformly sloping hillslopes,
resulting in a remarkably accurate and applicable family of results, though often
challenging to solve due to its nonlinear form. Under certain conditions, the Boussinesq
equation can be solved analytically allowing compact representation of soil and
geomorphological controls on unconfined aquifer storage and release dynamics. The
Boussinesq equation has been extended to account for flow divergence/convergence as well
as for nonuniform bedrock slope (concave/convex). The extended Boussinesq equation has
been favorably compared to numerical solutions of the three-dimensional Richards
equation, confirming its validity under certain geometric conditions. Analytical solutions of
the linearized original and extended Boussinesq equations led to the formulation of
similarity indices for baseflow recession analysis, including scaling rules, to predict the
moments of baseflow response. Validation of theoretical recession parameters on real-world
streamflow data is complicated due to limited measurement accuracy, changing boundary
conditions, and the strong coupling between the saturated aquifer with the overlying
unsaturated zone. However, recent advances are shown to have mitigated several of these
issues. The extended Boussinesq equation has been successfully applied to represent
baseflow dynamics in catchment-scale hydrological models, and it is currently considered to
represent lateral redistribution of groundwater in land surface schemes applied in global
circulation models. From the review, it is clear that Wilfried Brutsaert and Jean-Yves
Parlange stimulated a body of research that has led to several fundamental discoveries and
practical applications with important contributions in hydrological modeling.
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1. Introduction

[2] Quantifying catchment-scale hydrological processes,
states, and fluxes remains difficult due to the scale of the
chosen control volume and the intrinsic heterogeneities of
soil, vegetation, and topographic parameters that define
these processes. A bottom-up approach (i.e., building large-
scale predictions explicitly from direct measurement of
parameters reflecting basic principles of underlying small-
scale processes) that attempts to characterize all relevant
heterogeneities seems to be infeasible with current technol-
ogy [McDonnell et al., 2007], although important progress
has been made using geophysical and remote sensing meth-
ods (e.g., ground penetrating radar and electrical resistance
tomography to scan subsurface soil properties at hillslope
scales, visible and near IR remote sensing to map vegetation
properties). We also lack solid theory that links small-scale
variability of soil and vegetation properties to large-scale
fluxes at the land surface and the subsurface [Troch et al.,
2008]. Therefore, analysis of catchment data, based on
appropriate hydrological theory, is a reasonable approach to
progress the understanding of catchment-scale processes.

[3] This approach is at the heart of the research executed
by Wilfried Brutsaert and Jean-Yves Parlange. While they
have addressed many different aspects of hydrology, here
we focus on their groundbreaking contributions regarding
the rainfall-runoff response at the catchment scale. In a
time when distributed hydrological models became popular
and seemingly the way out of the intractable problem of
identifying catchment response in light of landscape heter-
ogeneity, they emphasized the scientific method: formulate
the problem in ways that preserve the main physical prop-
erties but reduce the dimensionality, find exact or approxi-
mate solutions to the resulting flow and transport equations
to better understand the dominant modes of response, test
these simplified solutions with real catchment data, develop
methods to derive catchment-scale parameter values from
these data sets, and inspire colleagues to explain observed
inconsistencies between theory and observations.

[4] Their combined work on hydraulic groundwater
theory is a case study in the power of the scientific method
that they embraced. Hydraulic groundwater theory is simple
enough to allow derivation of exact or approximate analyti-
cal solutions to specific flow situations defined by the initial
and boundary conditions, yet it preserves the main physics
that drives the flow (i.e., advection and diffusion driven
flow and transport). Its simplicity is reflected in the amount
of parameters required to fully characterize the dynamic
response of a hillslope or a catchment. This limited amount
of system parameters is easily informed from the available
data sets of catchment response (hydrographs and rainfall
measurements). Agreement between theory and observa-
tions, quantified by validating predictions against measure-
ments, can be interpreted as closure at the catchment scale.
However, there are several alternative explanations that
lead to equally valid predictions, opening the debate of
what really controls catchment response. This fact does not
diminish the scientific method of Brutsaert and Parlange, it
strengthens it. It leads to the formulation of novel hypothe-
ses, the discovery of methods that allow testing between
these alternative hypotheses, and it can inspire new field
measurements that collect data required to accept or reject

these hypotheses. In short, it is the scientific method that
guarantees advancement in our understanding rather than
parameter estimation in absence of insight, as so often
encountered in the literature.

[5] This review paper describes the importance of hy-
draulic groundwater theory in catchment hydrology, and
the role Brutsaert and Parlange have played. Because of
this focus, we selected contributions that have played piv-
otal roles in developing catchment-scale theory of hydro-
logic response, and have left out many other important
contributions employing hydraulic groundwater theory.
Section 2 summarizes the main concepts leading to hydrau-
lic groundwater theory of riparian and perched aquifers that
drain into the catchment’s channel network. Section 3
reviews several exact and approximate analytical solutions
to the main equations of hydraulic groundwater theory,
many of which were proposed by Brutsaert, Parlange, their
students, and colleagues. Section 4 focuses on how hydrau-
lic groundwater theory can be used to interpret recession
flow at catchment scales. Section 5 extends the baseflow
analysis methods proposed by Brutsaert and Parlange to
quantify other hydrological fluxes, such as precipitation
and evaporation, as well as develop parsimonious rainfall-
runoff models. Section 6 reviews several extensions
recently made to hydraulic groundwater theory that attempt
to relax some of the important assumptions inherent in tra-
ditional hydraulic groundwater theory. In section 7, we
present studies that have formulated hydrologic similarity
theory based on the pioneering work of Brutsaert and Par-
lange. Finally, in Section 8, we review recent contributions
to understanding hydrologic response to climate change
based on hydraulic groundwater theory.

2. Hydraulic Groundwater Theory

2.1. The Dupuit-Forchheimer Assumptions

[6] Hydraulic groundwater theory of unconfined flow in
a horizontal or sloping aquifer is founded on the Dupuit-
Forchheimer assumptions. In 1863, Dupuit postulated that
given the aspect ratio prevelent in groundwater systems
that accurate descriptions of flow could be obtained by
ignoring the impact of vertical fluxes, and instead compute
groundwater flux assuming that water moves largely hori-
zontally in proportion to the saturated aquifer thickness and
the slope of the free surface of the aquifer [Dupuit, 1863].
Thus, the Dupuit-Forchheimer formulation neglects any
vertical gradient in hydraulic heads (equivalent to assuming
no energy losses in the vertical [Kirkham, 1956]), i.e., all
vertical profiles can be considered hydrostatic, resulting in
a groundwater flow pattern that is parallel to the underlying
bedrock. At larger scales (e.g., that of a hillslope), where
the horizontal dimensions are considerably larger than the
thickness of the aquifer, this assumption does not introduce
significant errors in prediction. However, near the bounda-
ries of the aquifer where vertical components in ground-
water flow may be expected, the simplified groundwater
equations will introduce a predicted groundwater table
shape which deviates significantly from the actual one,
which is an inescapable consequence of taking into account
the Dupuit-Forchheimer assumptions [Childs, 1971]. Strik-
ingly, however, in many contexts, the slightly shorter flow
paths of this approach almost exactly balance the slightly
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lower hydraulic gradients, and thus often give rise to flux
predictions more accurate than the predictions of watert-
able position [Brutsaert, 2005, p. 388]. The validity (and
limits of applicability) of the hydraulic assumption, i.e., the
Dupuit-Forhheimer assumptions, has been dealt with exper-
imentally by Ibrahim and Brutsaert [1965] and numerically
by Verma and Brutsaert [1970, 1971].

2.2. The Boussinesq Equation

2.2.1. Horizontal Aquifer
[7] When dealing with analytical solutions to the Boussi-

nesq equation, the majority of the researchers have consid-
ered one-dimensional (1D) flow along a hillslope of constant
width. Adopting the Dupuit-Forchheimer assumptions
allows the hydraulic head along a vertical section (i.e., per-
pendicular to the underlying impermeable basis) of the satu-
rated aquifer thickness to be equated with the elevation of
the groundwater table (setting the elevation head datum at
the underlying impermeable layer). Vertically integrating
Darcy’s law over the saturated thickness h yields an expres-
sion for the flow per unit width q:

q ¼ �kh
@h

@x
ð1Þ

[8] When this is combined with the continuity equation

f
@h

@t
¼ � @h

@x
dxþ Ndx; ð2Þ

[9] One obtains the Boussinesq equation for a horizontal
aquifer, considering a spatially constant recharge rate N [m
s�1]:

@h

@t
¼ � k

f

@

@x
h
@h

@x

� �
þ N

f
ð3Þ

where q [m2 s�1] is the flow rate in the x-direction per unit
width of the aquifer, k [m s�1] is the spatially constant satu-
rated hydraulic conductivity, f [-] is the spatially constant
drainable porosity, t [s] is time, and h [m] is the hydraulic
head.
2.2.2. Sloping Aquifer

[10] When a sloping aquifer is considered, it is advised to
consider the x; hð Þ coordinate system as displayed in Figure 1.

Only in such formulation, the Dupuit-Forchheimer assump-
tion of having a streamlines parallel to the underlying bedrock
can hold [Bear, 1972]. In this coordinate system, the Darcy
equation then becomes [Boussinesq, 1877; Childs, 1971]:

q ¼ �kh
@h

@x
cos iþ sin i

� �
ð4Þ

where i is the slope angle of the underlying impermeable
layer. Combining this equation with the continuity equa-
tion, one obtains the Boussinesq equation for a sloping aq-
uifer given a spatially constant recharge rate N to the
groundwater table:

@h

@t
¼ k

f
cos i

@

@x
h
@h

@x

� �
þ sin i

@h

@x

� �
þ N

f
ð5Þ

3. Exact and Approximate Solutions of the
Boussinesq Equation

3.1. Exact Solutions

[11] Boussinesq himself provided the first exact solution
to the equation for unsteady flow bearing his name using
the technique of separation of variables [Boussinesq, 1877].
Boussinesq considered the problem of an initially saturated
horizontal aquifer of unit width draining, under sudden
drawdown, to a channel. The initial conditions and bound-
ary conditions are as follows:

h ¼ 0 x ¼ 0 t � 0
@h

@x
¼ 0 x ¼ L t � 0

h ¼ D x ¼ L t ¼ 0

ð6Þ

[12] The solution is referred to as being late-time, or
long-time, because the curvilinear water table that arises
from these boundary conditions will only take such a shape
after drainage has proceeded for some time.

[13] A half-century later, Polubarinova-Kochina [1962]
considered a similarly initially saturated, horizontal aquifer
subject to sudden drawdown, but assumed a semi-infinite
aquifer (L!1). Thus, the initial and boundary conditions
are formulated as follows:

h ¼ 0 x ¼ 0 t � 0
h ¼ D x > 0 t ¼ 0

ð7Þ

[14] Polubarinova-Kochina [1962] used the Boltzmann’s
transformation to reduce the Boussinesq equation to an or-
dinary differential equation. The solution of Polubarinova-
Kochina [1962] is valid only so long as the flow can pro-
ceed as if the aquifer were infinitely wide, therefore is
referred to as an early, or short-term solution.

[15] Subsequently, the Boussinesq equation (3) has been
solved exactly for only a limited number of boundary and/
or initial conditions, all in the absence of rainfall recharge.
Parlange et al. [2000] found a solution for initially para-
bolic water tables in a horizontal and finite aquifer. For
what is, as far as we know, the only known exact solution
for a sloping aquifer, Daly and Porporato [2004] described
the evolution of a groundwater mound in an aquifer that is

Figure 1. Definition sketch of the cross-section of a hill-
slope resting on an impermeable layer of slope i. For easy
display, the sketch is distorted. In reality, the length L of
the hillslope is much larger than the total depth D of the
phreatic aquifer.
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infinite in both the upslope and downslope direction.
Rupp and Selker [2005] generalized the Boussinesq equa-
tion to include a hydraulic conductivity that increased as a
power function of height above bedrock, and solved the
generalized equation under the same conditions given by
equation (6).

3.2. Approximate Solutions

[16] Approximate analytical solutions have been found
to the Boussinesq equation for a wider variety of initial and
boundary conditions. By far most of these consider the hor-
izontal case. Here, we cite some examples to which Jean-
Yves Parlange contributed. Hogarth and Parlange [1999],
following Polubarinova-Kochina [1962], recast the Boussi-
nesq equation as a Blasius equation and solved it for the
same conditions given by equation (7), but to a much
higher degree of accuracy than Polubarinova-Kochina’s
original solution. Hogarth et al. [1999] and Lockington
et al. [2000] considered flow into an initially dry aquifer
from a channel with a water level that varies in time. Par-
lange et al. [2001] found a single solution to the initially
saturated aquifer that unified the early-time and late-time
solutions of Polubarinova-Kochina [1962] and Boussinesq
[1904], respectively. Solutions for a sloping aquifer are
much rarer: Rupp and Selker [2006b] found a late-time so-
lution for discharge only (not water table height) for an ini-
tially saturated finite aquifer under sudden drawdown and
hydraulic conductivity that increased as a power function
of height above bedrock.

[17] A rich set of approximate solutions has been found
by means of first linearizing the Boussinesq equation. The
assumption is that h varies in x relatively little compared to
the value of h itself (since h << L), so that the first h on the
right-hand side of equation (5) can be made a constant
equal to pD, yielding:

@h

@t
¼ kpD cos i

f

@2h

@x2
þ k sin i

f

@h

@x
þ N

f
ð8Þ

[18] In general, 0< p� 1. This linearization parameter is
best determined by treating it as an additional calibration
parameter [Brutsaert, 1994].

[19] Note that there are other ways to linearize equation
(5) (see, e.g., review in Rupp and Selker [2006b]). One of
these is to make the equation linear in h2, but equation (8)
is the most common [Brutsaert, 2005, Chapter 10.4]. Brut-
saert and Ibrahim [1966] contrasted solutions using both
linearizations (h and h2) and compared the solutions to ex-
perimental results.

[20] The first solution to equation (8) can be traced back
to Boussinesq [1877] for the same conditions given by
equation (6). The solution can be given as the summation
of an infinite series, from which Boussinesq [1877] retained
but the first term, whereas, according to Brutsaert [2005],
the full series was presented by Dumm [1954] and Kraij-
enhoff van de Leur [1958], as is also shown in Verhoest
et al. [2002].

[21] An exhaustive accounting of all the literature concern-
ing solutions to equation (8) for a horizontal aquifer is beyond
the scope of this review. Examples of J.-Y. Parlange’s contri-
butions include flow into an initially dry aquifer with a time-
varying boundary condition at the channel/aquifer interface

[Hogarth et al., 1997] and tidal-aquifer interaction with a
moving shoreline [Li et al., 2000].

[22] In the less tractable case of the sloping aquifer, Brut-
saert [1994] made a breakthrough contribution. He used a
Laplace transform to solve equation (8) for the classical con-
ditions given by equation (6), arriving at an infinite summa-
tion series for aquifer discharge. He further noted that
arbitrary inputs (as rainfall recharge or evaporation) could
be considered as well through convolution. Brutsaert’s solu-
tion was expanded to include constant recharge [Verhoest
and Troch, 2000], drainage at both the downslope and
upslope boundaries [Verhoest et al., 2002], and temporally
varying recharge [Pauwels et al., 2002, 2003]. Extensions
have been made to the linearized Boussinesq equation to
consider a nonuniform shape in the planar profile with slop-
ing bedrock [e.g., Troch et al., 2003], for which some analy-
tical solutions have been found [Troch et al., 2004]. We
expand on this topic is section 6.

4. Streamflow Recession: Theoretical Analysis of
Riparian Aquifer Properties

[23] In this section, we focus on methods developed
based on hydraulic groundwater theory to investigate catch-
ment storage dynamics from baseflow analysis under the
assumption that streamflow is the main catchment-scale
flux that results from storage release/increase. In section 5,
we will extend this review by including contributions that
look at all water balance fluxes at the catchment scale.

4.1. Basic Methodology

[24] The overall objective of this type of analysis is to use
the characteristics of the baseflow recession to estimate
lumped catchment hydraulic parameters, more specifically
D, k, and f. Employing solutions to the linearized Boussinesq
equation, one could use the decreasing limbs of observed
hydrographs and fit a theoretically derived expression for the
recession to these data. However, this implies that the exact
instance of the onset of the recession is known, since all
baseflow recession models explicitly depend on this variable.
For this reason, Brutsaert and Nieber [1977, henceforth
referred to as B&N] argued that a solution to this problem
might be the examination of relationships between the base-
flow fluxes and their first time derivatives. This eliminates
the variable time from the analysis. B&N then showed that
three solutions to the Boussinesq equation can be recast to
have the following exact power-law relationship between
the outflow and its first time derivative:

dQb

dt
¼ �aQb

b ð9Þ

[25] Qb stands for the baseflow (m3 s�1), and a and b are
parameters depending on the amount of water stored in the
aquifer.

[26] A first solution, valid for small values of time, uses
a fully saturated aquifer as initial condition. As the aquifer
starts to drain, the geometry of the aquifer at the most dis-
tant location from the outflow point (i.e., the hillcrest) does
not yet influence the outflow rate. Under these conditions,
based on an analytical solution under the assumption of an
infinitely long horizontal aquifer [Polubarinova-Kochina,
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1962] (see section 3), the parameters a and b in equation
(9) can be written as:

a1 ¼
1:133

kfD3W 2
0

b1 ¼ 3

8<
: ð10Þ

[27] Wo stands for the total length of streams in the
watershed, and the subscripts of a and b indicate this first
solution. A second solution, valid for late times in a hori-
zontal aquifer, uses an inverse incomplete Beta function as
initial condition. The parameters in equation (9) can now
be written as [Polubarinova-Kochina, 1962]:

a2 ¼
4:804W0

ffiffiffi
k
p

f
ffiffiffiffiffi
A3
p

b2 ¼
3

2

8>><
>>: ð11Þ

[28] A is the catchment drainage area. W0 and A can be
determined through an analysis of topographic data.

[29] If one has a rough estimate of the drainable porosity,
for example through pumping tests, equations (10) and (11)
form a system of two equations with two unknowns (k and
D). In order to solve this system of equations, a time series
of discharge needs to be available. The decreasing limbs of
the hydrographs are retained for further analysis. For these
data, the absolute values of the first time derivative of the
discharges are plotted as a function of the discharges them-
selves, in a double-logarithmic plot. If the data in the plots
would consist of only baseflow data for short and large val-
ues of time, the intercepts of two regressions through the
data set, with slope 3 and 1.5, would be estimates of the
values of a1 and a2, respectively (Figure 2). However, the
discharge data measured during recessions will generally
consist of both baseflow and some surface runoff data. Fur-
thermore, by taking into account discharge data only, one
is unable to determine whether the short or large time
approximations are valid or not. Under the assumption that
baseflow corresponds to lower absolute values of the first
time derivative than surface runoff (baseflow being the

slow component of discharge), B&N suggested to use the
lower envelopes of the data set. In other words, the inter-
cepts of the lower envelopes with slope 3 and 1.5 corre-
spond to the values of a1 and a2. Troch et al. [1993]
showed that the order of magnitude of the estimates of k
and D obtained in this manner did not alter strongly with
the exact location of these lower envelopes.

[30] This methodology to estimate catchment-averaged
aquifer hydraulic parameters has been used in numerous
studies since. However, since its development, a number of
improvements have been suggested.

4.2. Modifications to the Original Algorithm

[31] A first improvement was suggested by Huyck et al.
[2005]. In their study, which is based on the linearized Bous-
sinesq equation, two extra aquifer properties have been taken
into account, of which the first is the aquifer shape. More
specifically, instead of assuming the width of the aquifer to
be constant, an exponentially varying width is assumed:

W xð Þ ¼ W0e��x ð12Þ

[32] W0 is total length of streams in the watershed and �
is a shape parameter or the convergence rate. A second aq-
uifer property that has been taken into account is the aqui-
fer slope angle, i. Taking into account these properties,
Huyck et al. [2005] derived the following expression for
short values of time:

a1 ¼
�

8kfD3W 2
0 pcos i

b1 ¼ 3

(
ð13Þ

[33] The similarity between equations (10) and (13) is
apparent, as in both equations the parameters k, f, D, and
W0 appear to the same power, and b1 is in both cases equal
to 3. For late times, the following relationship is valid:

a2 ¼ K a2 þ z2
1

L2

� �
� U�

b2 ¼ 1

8<
: ð14Þ

z1 is the first solution of the following equation:

tan z ¼ � z

L � � að Þ ð15Þ

[34] a, K, and U can be calculated as:

K ¼ kpD cos i

f

U ¼ k sin i

f

a ¼ �U � K�

2K

8>>>>><
>>>>>:

ð16Þ

[35] For large values of time, a slope of 1 in the dis-
charge time derivative versus discharge plots is obtained,
which can be explained by the use of the linearized version
of the Boussinesq equation.

[36] A second improvement was developed by Rupp and
Selker [2006a]. In their study, they demonstrated that care

Figure 2. Illustration of baseflow recession in time
(upper panel) and the same data plotted on a Brutsaert-
Nieber plot.
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must be taken in the analysis of the –dQb/dt versus Qb

plots, and that one must account for the resolution of the
underlying data. More specifically, it was shown that the
time step used in the calculation of the first time derivatives
should not always be taken as constant for a correct estima-
tion of the aquifer properties.

[37] As pointed out in section 4.1, the original algorithm
uses a system of two equations (early-time and late-time
transient discharge) to solve for the two unknown aquifer
parameters. In cases where the early-time regime (b1¼ 3)
is ambiguous or not identifiable from discharge observa-
tions, a third modification to the algorithm is to use the
water table recession to provide the second equation. For
example, a similar envelope fitting method can be applied
using late-time water table observations where the second
equation takes the form dh/dt¼�ahb [Rupp and Selker,
2005] or Q¼ ahb [Rupp et al., 2009], where a and b are
again parameterized from solutions of the Boussinesq
equation.

4.3. Extensions and Criticism

[38] Most of the applications of the Brutsaert and Nieber
approach have been applied to natural systems. However,
man-made drainage systems can provide several useful
advantages. First, the idealized geometry of a well-defined
effective depth and width of the aquifer system are rigor-
ously valid, and known a priori. Further, well-defined water
table depths can be obtained from known positions along
the flow paths. This context provides exceptional opportu-
nities to employ and validate the methodology. Rupp et al.
[2004] focused on this application, and the approach led to
development of a simple and powerful method to obtain
field-scale values of hydraulic conductivity and drainable
porosity based only on measurements of outflow as a func-
tion of time, as well as on knowledge of the spacing and
depth of the drainage system. Given the wide-spread use of
drainage systems in agriculture, the method should be
broadly applicable.

[39] Akin to the example provided by Brutsaert and
Nieber [1977], Rupp et al. [2004] recognized the difficulty
in identifying an effective ‘‘time zero’’ at which a drainage
process could be thought to have started, and moreover, of
identifying a transition between early-time and late-time
during natural precipitation events. Following the B&N
strategy, Rupp et al. [2004] used ratios of successive meas-
urements to eliminate the need for a specific start time.
They presented four approaches to estimate hydraulic con-
ductivity, all of which used solutions to the nonlinear ver-
sion of the Boussinesq equation, two of which applied to
outflow measurements, while the other two make use of
measurements of groundwater heads in the field, either at
the center point between tiles, or at a well-defined distance
from the tile. Two of the solutions employed the integral of
flow rather than time derivatives (i.e., they avoided the
computation of dQ/dt), thus avoiding many of the pitfalls
pointed out in Rupp et al. [2006a].

[40] Rupp et al. [2004] compared the estimated field-
scale hydraulic conductivities with results from 40 soil
cores to find that the field values reproduced the median
value obtained from cores, but were eight times lower than
the mean value from the cores, suggesting that, in their
fields, up-scaled processes respected Darcian flow through

the bulk soil rather than preferential flow. While the
method presented by Rupp et al. [2004] was proposed in
the context of drained fields, the solutions obtained share
the basic assumptions that B&N and the articles that fol-
lowed employed, hence they should be expected to be ap-
plicable in a much broader range of settings.

[41] Although a baseflow recession analysis is widely
recognized as a valuable tool to characterize aquifers, fun-
damental criticism has also emerged. This mainly origi-
nates from the observation that the theoretically derived
slopes are hardly ever precisely obtained when discharge
data are analyzed. One possible explanation is the assump-
tion of homogenous parameters in the derivation of the
relationships between dQb/dt and Qb. The impact of verti-
cal parameter heterogeneity was studied by Rupp and
Selker [2005, 2006b], while the impact of horizontal aqui-
fer heterogeneity was studied by Harman and Sivapalan
[2009b]. Chapman [1999] suggested that the deviations
arose from the planform convergence of streamlines in hill-
slope hollows (an effect captured by Troch et al. [2003]’s
extension of the Boussinesq equation). A second possible
explanation is the implicit assumption that the behavior of
a collection of hillslopes is well approximated by the
behavior of a single hillslope, an assumption challenged by
Harman et al. [2009]. All these studies, which are further
explained in the next sections, demonstrate that parameter
heterogeneity explains deviations from the theoretically
derived slopes.

[42] Van de Giesen et al. [1994, 2005] offered an alterna-
tive explanation of the fact that in many catchment applica-
tions the theoretical values of b in (9), derived from exact
solutions to Boussinesq’s equation, are rarely observed,
and the fact that in many instances b tends to 1 for large
time (which can only be explained using Boussinesq’s
equation after linearization). They used analytical solutions
to Laplace equation with linearized surface boundary con-
ditions [Van de Giesen et al., 1994] to show that b! 1 for
t !1 and that b!1 for t ¼ 0 after sudden drawdown
(a situation similar to the one assumed by Polubarinova-
Kochina [1962]). They further showed that the transition of
values of b depends on the time of application of recharge
rates to the aquifer. The work of Van de Giesen et al.
[1994, 2005] should be further explored to shed light on the
applicability and limitations of the Dupuit-Forchheimer
assumptions in catchment hydrology.

4.4. Impact of Horizontal Heterogeneity

[43] The assumption of uniform aquifer parameters along
the slope ignores the potential influence of spatial varia-
tions in hydraulic conductivity to groundwater flow through
the hillslope. Szilagyi et al. [1998] examined the impact of
spatial heterogeneity in conductivity fields on recession
curves using a 2D numerical model of the Boussinesq
equation where slope effects were negligible. They found
the B&N method for estimating effective catchment-scale
parameters was robust for the degree of heterogeneity they
imposed in their synthetic catchments.

[44] Harman and Sivapalan [2009b] further examined
the impact of spatial heterogeneity for a sloping aquifer.
Their results showed that heterogeneity tended to increase
the rising limb of the aquifer response to recharge, delay
the approach to steady-state discharge, and extend the
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recession limb (relative to an aquifer with a uniform hy-
draulic conductivity equal to the log-mean of the heteroge-
neous field). This led to a higher exponent for the recession
curve, mimicking the early time behavior even for late
time. The effects were also found to depend on the relative
importance of the diffusive and advective terms, as cap-
tured by the Hillslope number (see section 7). For low-
gradient aquifers, lateral variations in hydraulic conductivity
induced compensating variations in the water table, driving
flow away from low conductivity areas, and toward high
conductivity areas. As a result, the effect of the spatial vari-
ability on the recession behavior was mitigated. For steeper
hillslopes, where the topographic gradient dominates, flow
accumulated behind low-conductivity road-blocks, creating
localized stores of water that were subsequently released
slowly from the hillslope. This produced recession curves
with high exponents at long times.

[45] The effect of these types of heterogeneities have
been partially captured in reformulations of the Boussinesq
equation using various stochastic extensions. Cayar and
Kavvas [2008] developed a stochastic form of the Boussi-
nesq equation for horizontal aquifers that is applicable to a
low level of variance. Harman et al. [2010] developed a
time-subordinated version of the kinematic-wave approxi-
mation of the Boussinesq equation. By comparison with
numerical solutions of the full Boussinesq equation, they
showed that this approximation produced analytical solu-
tions for the recession curve from a highly heterogeneous
sloping aquifer when advective forces dominate the flow.

4.5. Impact of Vertical Heterogeneity

[46] El-Kadi and Brutsaert [1985] studied the effects of
spatial variability on outflows from a 2D (vertical slice) aq-
uifer, and found that only under a narrow set of circumstan-
ces could a set of effective ‘‘homogeneous equivalent’’
parameters effectively reproduce the recession behavior
over a range of flows. They used a random field of soil
properties. Field evidence of decreasing saturated hydraulic
conductivity with depth in some hillslopes [e.g., Brooks
et al., 2004] prompted Rupp and Selker [2005, 2006b] to
generalize the Boussinesq equation by allowing the verti-
cally averaged k to increase with saturated thickness h
above the impermeable bedrock:

k hð Þ ¼ kD

mþ 1ð Þ
h

D

� �m

ð17Þ

where kD= mþ 1ð Þ is the vertically averaged saturated hydrau-
lic conductivity when the water table is at the surface. An ap-
proximate solution to this generalized equation for a horizontal
aquifer valid for early-time (given the initial and boundary con-
ditions in section 3.1) yields equation (9) with parameters:

a1 �
1� �ð Þ
1� 2�ð Þ

mþ 1ð Þ mþ 2ð Þ
2kDfD3W 2

0
b1 � 3

ð18Þ

where m is given by:

� ¼ 4� 3� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 2� � 4

p
4� 2�

ð19Þ

and

� ¼ 2 mþ 2ð ÞB mþ 2; 2ð Þ ð20Þ

with B(mþ2,2), the beta function evaluated at mþ2 and 2
[Rupp and Selker, 2005]. Again, note the similarities
between equations (10), (13), and (17): in all equations, the
parameters k, f, D, and W0 appear to the same power, and
b1 is in all cases equal to 3.

[47] For late-time, an exact solution (see the initial and
boundary conditions in section 3.1) also yields equation
(9), though with parameters:

a2 ¼
mþ 2ð Þ

f

kDW 2
0 B mþ 2ð Þ= mþ 3ð Þ; 1=2ð Þ

2m mþ 1ð Þ mþ 3ð ÞDmAmþ3

� �1= mþ2ð Þ

b2 ¼
2mþ 3

mþ 2

ð21Þ

where B((mþ2)/(mþ3),1/2) is the beta function evaluated
at (mþ2)/(mþ3) and 1=2 [Rupp and Selker, 2005]. The range
of values taken by b2 varies from 3/2 to 2, as m varies from
0 to1.

[48] Lacking an analytical solution to their generalized
Boussinesq equation for sloping aquifers, Rupp and Selker
[2006b] ran a suite of numerical simulations with the clas-
sic boundary and initial conditions given in section 3.1. At
late-time, the recession discharge converged to the form
given by equation (9) regardless of the initial conditions
and the parameters could be approximated as follows:

a2 ¼
mþ 1ð Þ2

mfA

2kDW0sin i

mþ 1ð ÞDm

� �1= mþ1ð Þ

b2 ¼
2mþ 1

mþ 1

ð22Þ

[49] For sloping aquifers, as a consequence, the range
of values taken by b2 varies from 1 to 2, as m varies from
0 to1.

[50] These results demonstrate how decreasing conduc-
tivity from surface to bedrock expands the range of theoret-
ical values of b2 and provides one plausible explanation for
the fact that we observe a range of values in the field and
not only the classic late-time values of 3/2 and 1 predicted
by the traditional Boussinesq theory under the assumption
of a homogeneous aquifer.

4.6. Impact of Between-Hillslope Variability

[51] Implicit in the method of Brutsaert and Nieber
[1977] is the assumption that the entire watershed can be
replaced by an effective hillslope whose parameters can be
identified from the recession curve. Clark et al. [2009]
observed that recessions at the Panola Mountain Research
Watershed varied as a function of watershed scale, with
exponents around 1 at the hillslope scale and exponents
approaching 3 in the 41 ha watershed. They proposed that
this behavior could be explained by the superposition of
several sources of water with exponents of 1 but with dif-
ferent time constants, ranging from fast (in the steep head-
waters) to slow in the floodplain riparian aquifer.

[52] Harman et al. [2009] derived this effect using super-
statistics. They parameterized the watershed as a collection
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of parallel linear reservoirs whose time constants are given
by a probability distribution, such as a gamma distribution.
They then derived the unit hydrograph for the watershed
and the watershed response to various idealized inputs. The
results demonstrated that the exponent of the B&N reces-
sion slope curves could be related to the coefficient of vari-
ation of the distribution describing the individual linear
reservoir time constants. This result also demonstrated that
recession curves ought to vary depending on the time-
history of recharge, especially in areas with high spatial
variability between hillslopes. Note that the above formula-
tions can produce the full range of recession curves pre-
dicted from the original theory. This suggests that, when
applied to heterogeneous watersheds, the exponents of the
B&N recession slope curves may reflect the combined
effect of the geomorphological and geological structure of
the watershed, rather than the hydraulics of a single effec-
tive watershed.

4.7. Analysis of Baseflow Hydrograph Rising Limbs

[53] Another approach to estimate aquifer parameters
through the examination of baseflow records was recently
developed by Pauwels and Troch [2010]. In this study, the
argument was raised that full saturation of an aquifer prior
to recession occurs very rarely. This implies that the use of
the short-time relationship described in equation (10) can
lead to errors in the obtained parameter values. However,
based on an analytical solution to the linearized Boussinesq
equation, and starting from an initially empty aquifer, Pau-
wels and Troch [2010] derived the following recession
relationship:

dQb

dt
� 8W 2

0 N2 K

�
Q�1

b ð23Þ

[54] N is the recharge rate and K is a diffusion coefficient
defined according to equation (15). Equation (23) can be
used, in combination with equation (13), to estimate hy-
draulic conductivity values of the lower parts of an aquifer.
First, the points need to be selected for which equation (23)
is valid. In other words, the aquifer needs to be sufficiently
dry. It can easily be proven [Pauwels and Troch, 2010] that
for these points the following relationship is true:

Qb tð Þ
dQb tð Þ

dt

� 2Dt ð24Þ

[55] Dt is the time step of the measurements [s]. A linear
regression through a plot with QbN�2 as abscissa and dQb/dt
as ordinate, of all the points for which equation (23) is valid,
should then result in a slope of �1. The intercept of this
regression is denoted I2 (m4 s�1). Next, in the �dQb/dt ver-
sus Qb plot, the lowest values of Qb are retained. The inter-
cept of a linear regression with slope 1 through these data is
denoted as I1 (s�1). The following system of equations is
then solved in order to find the two unknowns k and pD

I1 ¼
kpD cosi

f

�pD cos i� sin i

2pDcos i

� �
2 þ z2

n

L2

� �
þ �k sin i

f

I2 ¼
8W 2

0 kpD cos i

f �

8>><
>>: ð25Þ

[56] Through a number of synthetic studies, Pauwels and
Troch [2010] demonstrated the accuracy of this methodol-
ogy, and the potential of the use of this equation for the esti-
mation of aquifer lower layer hydraulic conductivity values.

5. Streamflow Recession: Water Balance
Applications at the Catchment Scale

[57] A lasting contribution of the work of Wilfried Brut-
saert and Jean-Yves Parlange is their contributions to a
suite of tools for making inferences about the properties of
watersheds and their internal hydrologic dynamics directly
from the streamflow record. Given that streamflow data are
often the best (or only) observed component of the catch-
ment water balance, these tools are very useful. Methods
have been developed to make inferences about the evapo-
transpiration, recharge, and storage dynamics from the
streamflow recession directly. Furthermore, the functional
form and parameters of the relationship between stream-
flow and its time derivative can be investigated, aiding in
model identification and prediction, and providing a funda-
mental metric of catchment behavior that can be compared
to theory, to other watersheds, and tracked over time. The
streamflow recession analysis techniques of Brutsaert and
Nieber [1977] and the hydraulic groundwater theory are
central components of these techniques.

5.1. Streamflow Recession and Catchment Water
Balance

[58] Observations of diurnal and seasonal variations in
groundwater level and streamflow prompted early efforts to
estimate daily evapotranspiration by inference from varia-
tions in other components of the water balance [White,
1932]. Although multiple factors contribute to changes in
catchment storage S, in general the water balance reads:

dS

dt
¼ R� E � Q ð26Þ

where R is the total amount of rainfall per unit of time
[m3 s�1] and E corresponds to the total amount of evapo-
transpiration in the catchment per unit of time [m3 s�1].
Through consideration of the water balance, Tschinkel
[1963] suggested a method for estimating evapotranspira-
tion during periods when R ¼ 0 by comparing the diurnal
deviations in streamflows from the ‘‘potential’’ rate, which
(implicitly) depends only on the increment of storage and
can be estimated from nocturnal peak streamflows after
periods of low potential evapotranspiration. Daniel [1976]
later extended this to estimate evapotranspiration from the
analysis of recession curves over longer periods by assum-
ing a nonlinear functional relationship (derived from hy-
draulic groundwater arguments) between discharge and
riparian groundwater storage. Brutsaert [1982] suggested
a generalization of this approach by adopting a general
nonlinear storage-discharge relation of the form
Q ¼ f Sð Þ ¼ KSn and the use of equation (9) to determine
the ‘‘potential’’ rate of streamflow recession that would
occur in the absence of evapotranspiration. If the recession
curve can be characterized by aQb when evapotranspiration
is negligible, equation (9) can be expressed for other
times as:
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� dQ

dt
¼ aQb 1þ E

Q

� �
ð27Þ

allowing Brutsaert [1982] to suggest that evapotranspira-
tion can be estimated from the daily record of streamflow
recession as:

E ¼ � Q1�b

a

dQ

dt
þ Q

� �
ð28Þ

[59] Zecharias and Brutsaert [1988] used a quasi-steady-
state solution to the linearized Boussinesq equation [equa-
tion (8)] that results in b ¼ 1 to estimate evapotranspiration
from groundwater in 19 watersheds in the Allegeny Moun-
tains, and found that it was a minor part of the overall
groundwater balance. Szilagyi et al. [2007] used a detailed
2D aquifer simulation to validate the method. Wittenberg
[1994, 1999], Wittenberg and Rhode [1997], and Witten-
berg and Sivapalan [1999] developed an alternative tech-
nique for simultaneously identifying nonlinear storage-
discharge relations of the form Q ¼ f Sð Þ ¼ KSn during
seasons when evapotranspiration was low. Wittenberg and
Sivapalan [1999] used these to estimate not only evapo-
transpiration but also the full catchment groundwater bal-
ance (recharge and the time series of relative storage)
directly from the record of streamflow recessions.

[60] Recently, Kirchner [2009] proposed a generaliza-
tion of this approach by defining the ‘‘discharge sensitivity
function’’ g(Q) as:

g Qð Þ ¼ dQ=dS ð29Þ

[61] The advantage of this approach over the previous
ones is that the functional form of the storage-discharge
relationship is not assumed a priori. This allows for a wider
class of relationships between storage and discharge to be
obtained depending on the observed functional form of
g(Q). Kirchner [2009] notes when the Brutsaert and Nieber
[1977] analysis suggests that equation (9) is a good fit to
the dynamics, the discharge sensitivity function is given
by:

g Qð Þ ¼ dQ

dS
¼

dQ
dt

�Q
¼ aQ b�1ð Þ ð30Þ

[62] The storage-discharge relationship can be obtained
by integrating equation (29). Kirchner [2009] distinguished
between three different classes of solutions: in case b < 2,
f(S) is a generalized form of the Coutagne [1948] nonlinear
function which includes S0 the residual storage for which
Q ¼ 0:

Q ¼ Qref
S � S0

�

� �1= 2�bð Þ
ð31Þ

where Qref is an arbitrary reference discharge and
�¼ f(a,b,Qref) is a scaling constant. In case b ¼ 2, f Sð Þ
becomes an exponential function:

Q ¼ Qref ea S�S0ð Þ ð32Þ

such that S0 is the value of S for which Q¼Qref ; in case
b> 2, S0 becomes an asymptotical upper storage limit [see
also Rupp and Woods, 2008]. In contrast to the use of sea-
sonal variations in potential evapotranspiration adopted by
Wittenberg [1999] to identify f Sð Þ, Kirchner [2009]
applied this method to hourly records of streamflow from
catchments in Wales using only night-time recession flows
from periods when potential evapotranspiration was low.
The use of hourly streamflow records and focus on the mar-
ginal (rather than absolute) relationship between storage
and discharge makes the Kirchner [2009] approach remi-
niscent of the methods developed by Tschinkel [1963]. The
use of night-time recessions to estimate the ‘‘potential’’
curve is problematic when the night-time storage recovery
in riparian aquifers is large, in particular during later stages
of recession when streamflow losses become small in com-
parison to daytime ET. Analyzing the composite daily
streamflow recession across different discharge conditions in
the Rietholzbach, Teuling et al. [2010] noted an increasing
time lag as well as a strong diurnal cycle (including dis-
charge increase during morning recession) at low discharge
values. An integration of the Kirchner [2009] approach with
those previously developed by Tschinkel [1963], Brutsaert
[1982], and others may help to overcome these challenges.

5.2. Comparison With the Boussinesq Model

[63] Given that the above approaches yield insights into
the catchment-scale storage-discharge relations derived from
data, it is interesting to compare their results to the theoreti-
cal derivations based on the Boussinesq equation as applied
to hillslopes. Different applications of the Boussinesq or
other equations result in a range of values for b, shown in
Table 1, below. For comparison, alternative model formula-
tions are also shown.

[64] The Brutsaert-Nieber [1977] (or similar) recession
data analysis has been applied to many catchments. Witten-
berg [1999], using a power law S(Q) relationship applied to
�100 German streams, found (equivalently) b ranging
from 1 to 2, with a peak in the range 1.5–1.7. Lyon and
Troch [2007] found b¼ 1.5–1.6 for hillslope strips in the
steep (�40�) New Zealand Maimai catchment and b¼ 1.29
for the moderately steep (�10�) Troy (Idaho, USA) hill-
slope. Kirchner [2009] analyzing the Severn and Wye
headwaters at Plynlimon, Wales, UK, found b¼ 2.17 and
b¼ 2.10, respectively.

[65] Teuling et al. [2010] applied the discharge sensitiv-
ity method to the Swiss Rietholzbach catchment. Here,
even more so than in Plynlimon, the log g(Q) function was
found to depend nonlinearly on log Q. Instead of using a
single quadratic expression, as Kirchner [2009] used, they
applied a piecewise linear fit (in log-log space). It was
found that low flows were characterized by b¼ 2.6, inter-
mediate flows by b ¼ 2, and high flows by b¼ 1.69. These
results were interpreted in terms of storage-dependent
changes in dominant processes. Under dry conditions, the
discharge sensitivity is low, but increases when the catch-
ment storage increases. Birkel et al. [2011] applied the
method to two Scottish catchments. Plots of log g(Q) ver-
sus log Q showed little if any nonlinearities. Equivalent
values of b were high, ranging from 2.38 to 2.52.

[66] In all these examples, it is clear that the majority of
steep catchments show b> 1.5, which is not consistent with
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any of the models listed in Table 1 that assume a homoge-
neous conductivity profile. Exceptions are Rupp and
Selker’s [2005] power-law profile, and the exponential
model (31) that is equivalent with the formulation used in
TOPMODEL [Beven and Kirkby, 1979]. Several explana-
tions for high b values related to the heterogeneity of the
landscape are given in section 4, and generalizations of the
Boussinesq equation that could account for high values of b
are discussed in section 6 of this paper.

[67] Inappropriate application of the Brutsaert and
Nieber [1977] technique may also explain some of the high
observed values of b. Chapman [2003] suggested that the
assumption that recharge goes to zero soon after rainfall
events may not be realistic in many cases, and the form of
the streamflow recession may owe much to extended drain-
age from the unsaturated zone. Evapotranspiration can
have a significant effect on the shape of the recession, an
effect exploited by Brutsaert [1982] and others to estimate
the water balance as described in section 5.1. Szilagyi et al.
[2007] showed that ET affects both the apparent slope b
and intercept a. Shaw and Riha [2012] analyzed individual
recession events within the �dQ/dt ‘‘data-cloud,’’ and
found that b values deviated considerably from those
obtained by taking the lower envelope, but also showed
considerable seasonal variation. This is shown in Figure 3,
which shows the seasonal trend in the intercept parameter a
for several watersheds in New York State, USA. This effect
could be explained by the seasonal cycle of ET. This sug-
gests that Brutsaert and Nieber [1977] recession curve
analysis can be improved by methods that account for
evapotranspiration, such as those of Brutsaert [1982], Wit-
tenberg and Sivapalan [1999], and Kirchner [2009].

[68] However, even the Kirchner approach cannot fully
exclude all confounding effects, in particular during later
stages of recession when streamflow losses become small
in comparison to daytime evapotranspiration. Analyzing
the composite daily streamflow recession across different
discharge conditions in the Rietholzbach, Teuling et al.
[2010] noted an increasing time lag as well as a strong diur-
nal cycle (including discharge increase during morning
recession) at low discharge values. Both observations con-
stitute serious complications to current approaches trying
to link theoretical values of b to those derived from late
recession analysis in natural catchments.

5.3. Storage

[69] A useful application of both Wittenberg’s [1999]
approach to the nonlinear storage-discharge function f(S)

and the Kirchner [2009] discharge sensitivity function g(Q)
is the estimation of the catchment dynamic storage (or
‘‘active’’ storage as Wittenberg [1999] named it), defined
as the difference in storage between dry and wet periods,
and found by integrating the reciprocal of the hydrological
sensitivity [Kirchner, 2009]:

dS ¼
Z

1

g Qð Þ dQ ð33Þ

[70] Wittenberg [1999] found that estimates of storage
variability obtained using an equivalent form of this
method compared well with water table observations, but
noticed a nonlinear discrepancy that suggested aquifer
drainable porosity varied with depth. Application of equa-
tion (32) to Plynlimon yielded a dynamic storage of 62 mm
(Wye) to 98 mm (Severn), which is approximately 3–5% of
net annual precipitation. Application to the Swiss Rietholz-
bach [Teuling et al., 2010] yields a dynamic storage of
�175–200 mm which corresponds to �20% of net annual
precipitation. Birkel et al. [2011] applied both the discharge
sensitivity method and a tracer-constrained conceptual
rainfall-runoff model to assess dynamic storage for two

Table 1. b-Values for Different Aquifer Representations (Late-Time Behavior in Case of Boussinesq Equation)

Model b Value

Kinematic wave model; steep hillslope; homogeneous aquifer b¼ 0 (P. W. Bogaart, D. E. Rupp, J. S. Selker, and Y. van der Velde, Late-
time drainage from a sloping Boussinesq aquifer, under review with Water
Resources Research, 2013)

Boussinesq equation; steep hillslope; homogeneous aquifer b¼ 0 (P. W. Bogaart et al., manuscript in review, 2013)
Linear reservoir b¼ 1 [Brutsaert, 2005]
Boussinesq equation; horizontal aquifer; homogeneous aquifer b¼ 1.5 [Brutsaert and Nieber, 1977]
Kinematic wave model; steep hillslope; exp. decreasing conductivity b¼ 2 [Troch et al., 1993b]
Boussinesq equation; horizontal aquifer; power-law k-profile b¼ 1.5–2 [Rupp and Selker, 2006b]
Kirchner [2009] equation (17) b> 2 [Kirchner, 2009]

Figure 3. Relationship between time of year and the
intercept of regression lines (with slope b¼ 2 in log-log
space) fit to individual recession event dQ/dt versus Q data
for several catchments in New York State, U.S. As indi-
cated in the figure, the intercept of recession curves tends
to be shifted upward in the summer and early fall months
(Julian Day 150–270) due to the impact of evapotranspira-
tion losses. Data taken from Shaw and Riha [2012].
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nested catchments in the Scottisch Highlands. They found
that the tracer-constrained estimates (approx. 10–15% of
P�E) exceeded the estimates based on g(Q) (approx. 2–
5%). However, an analysis based on oxygen isotope mixing
indicates a total storage of about 100% of annual P�E.
This result, which is corroborated by alternative, independ-
ent approaches, suggests that the chemical response time of
catchments cannot easily be estimated from the hydrologi-
cal response time.

5.4. Future Directions

[71] The use of a general nonlinear storage discharge
relationship [Brutsaert, 1982; Wittenberg, 1994] or dis-
charge sensitivity approach [Kirchner, 2009] can be seen as
a generalization of the Brutsaert and Nieber [1977] reces-
sion analysis technique. These approaches allow the empir-
ical functional properties of watersheds and the dynamics
of the groundwater balance to be inferred directly from
analysis of streamflow. However, when applied to steep
catchments, the empirical properties of the nonlinear stores
are difficult to reconcile with the Boussinesq equation. The
deviations may be due to the effects of unconstrained
recharge or evapotranspiration dynamics, or they may arise
from the structural properties of natural watersheds that
deviate from the assumptions of the Boussinesq equation.
The assumption of vertically homogeneous hydraulic con-
ductivity within a relatively thin soil layer may be inappro-
priate in many natural soils. In addition, tracer-based
estimates of the total catchment storage involved in mixing
indicates that passive storage exceeds active storage by a
factor 5 or more. Again, this result is difficult to reconcile
with the assumptions underlying the Boussinesq model. An
alternative set of assumptions, such as a decreasing satu-
rated hydraulic conductivity with depth, might be more
appropriate for these cases. Examples include the TOPMO-
DEL assumption of exponentially decreasing conductivity,
or the power-law conductivity model used in the Boussi-
nesq framework by Rupp and Selker [2006b]. Both the
recession analysis (b¼ 2 for TOPMODEL, b¼ 1 to 3 for
Boussinesq) and the storage volume (large to infinite for
TOPMODEL, small, and finite for Boussinesq) point in
that direction. Also, Kirchner’s [2009] interpretation of S0

in case of b> 2 in terms of a maximum (instead of residual)
storage is in line with the TOPMODEL use of storage defi-
cit as a state variable, rather than storage itself.

[72] A possible solution to reconcile the evidence for high
b values found in steep catchments, and the success of the
Boussinesq equation applied to more gentle terrain is dis-
cussed in Brutsaert [2005, p. 431], where it is suggested that
in steeper catchments the hydrological response in the early
stages of recession is dominated by the steep hillslopes, but
during later stages of recession, when the catchment dries
and saturated areas shrink, the hydrologic response is there-
fore dominated by riparian areas. These areas are not only
characterized by gentle slopes, but also consist of sediment
of fluvial origin, such that the vertical variation of hydraulic
conductivity is either layered or relatively homogeneous and
indicate that the assumptions underlying the Boussinesq
equation might be valid here. This suggests that steep catch-
ments with pronounced valley bottoms might experience a
shift from TOPMODEL-like behavior under wet conditions
(when the hillslopes dominate) toward more Boussinesq-like

conditions under dry conditions (when the valley bottom
aquifers dominate).

[73] Future extensions to recession analysis should there-
fore focus on the unraveling of at least three classes of
unknowns. One is the relative contribution of drainage ver-
sus recharge from the unsaturated zone and evapotranspira-
tion in the water balance, while a second is the relative
contribution of hillslope and valley bottom domains, and
their associated hydraulic architecture, under various levels
of wetness. Moreover, a third unknown, which has only
recently received much attention, is the relative roles that
geomorphology and a dynamic river network play in deter-
mining the shape of the recession curve [Biswal and Mar-
ani, 2010; Mutzner et al., 2013].

6. Extensions to the Boussinesq Equation

[74] The Boussinesq equation and its analytical solu-
tions, as presented in previous sections, have been instru-
mental in creating a better understanding of subsurface
flow and storage phenomena along hillslopes. Tradition-
ally, the work has been aimed at increasing our understand-
ing by seeking analytical solutions, which are typically
only to be obtained under strict geometric conditions (e.g.,
one-dimensional, straight slopes). Real hillslopes, however,
have more complex, three-dimensional (3D) shapes. The
papers reviewed in this section aim to extend the applic-
ability of Boussinesq’s original work, and the work that fol-
lowed from it, to complex hillslope geometries, leaky
aquifers, and the unsaturated zone.

6.1. The Hillslope-Storage Kinematic Wave Model

[75] The papers of Fan and Bras [1998] and Troch et al.
[2002] are amongst the first aimed at relaxing the strict condi-
tions regarding hillslope geometry that are traditionally
required when applying a Boussinesq model. Both papers
make use of a simplified form of Boussinesq’s equation, a ki-
nematic wave approach that assumes the second-order diffu-
sive term in the Boussinesq equation is negligible, and
introduce a conceptualization whereby the three-dimensional
soil mantle overlying the hillslope bedrock is collapsed into a
one-dimensional storage profile. Hereafter, this model will be
referred to as the hillslope-storage kinematic-wave (hsKW)
model. The subsurface mass balance equation for both Fan
and Bras [1998] and Troch et al. [2002] reads:

@S

@t
þ @Q

@x
¼ NW ð34Þ

where W is the hillslope width function that in this case is
not necessarily modeled according to equation (12). The
storage function is defined as:

S ¼ Whf ð35Þ

[76] As already mentioned, it is further assumed that the
flow rate can be described using a kinematic form of
Darcy’s equation:

Q ¼ �k
S

f

@�

@x
ð36Þ

where � is the bedrock height (m).
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[77] In Fan and Bras [1998], these equations are applied
to a set of three realistic hillslopes of which the geometric
properties (i.e., hillslope width and bedrock topography)
are measured, while the work of Troch et al. [2002] applies
this approach to a set of hillslopes ranging from convergent
to divergent in both plan and bedrock shape, yielding nine
characteristic combinations. In both papers, analytical solu-
tions are presented using the method of characteristics. Fan
and Bras [1998] use a second-order polynomial to describe
the bedrock topography, while Troch et al. [2002] use a
more general power function, and perform a dimensional
analysis that allows for scaling of results to differently
shaped hillslopes. Both papers illustrate clearly the major
influence that hillslope shape and steepness exert on runoff
and storage dynamics.

6.2. The Hillslope-Storage Boussinesq Model

[78] The assumption of a negligibly small second-order
diffusion term in the hsKW model is thought to hold only
for particular flow conditions where the water table gra-
dients are small in comparison to bedrock gradients (e.g.,
for steep hillslopes). In the two-part paper by Troch et al.
[2003] and Paniconi et al. [2003], the full Boussinesq
equation is cast in a hillslope-storage formulation. The
resulting hillslope-storage Boussinesq (hsB) model can
thus account for complex hillslope plan shapes and diffu-
sive processes.

[79] Troch et al. [2003] provide a comprehensive
description of the hsB model, along with several linearized
and simplied versions. These variants, as well as the hsKW
model, are compared against the full hsB model for the
same set of characteristic hillslopes described in Troch
et al. [2002], for two average slope gradients, 5 and 30%,
and for both a free-drainage scenario and a recharge sce-
nario. The hillslope-storage Boussinesq equation is derived
by combining the mass-balance formulation in equation
(33) with a Boussinesq-type flow equation:

Q ¼ � kS

f
cos i

@

@x

S

fw

� �
þ sin i

� �
ð37Þ

to obtain

f
@S

@t
¼ kcos i

f

@

@x

S

w

@S

@x
� S

w

@w

@x

� �� �
þ ksin i

@S

@x
þ fNw ð38Þ

[80] The full hsB model is solved by means of numerical
integration. In Paniconi et al. [2003], the hsB model is
benchmarked against a fully 3D numerical Richards equa-
tion model.

[81] In a follow-up paper by Hilberts et al. [2004], the
condition of noncurved bedrock (i.e., a constant bedrock
slope) that was inherent in the hsB model presented in
Troch et al. [2003] is relaxed, and a series of benchmark
tests are conducted on the same hillslopes used in Troch
et al. [2003] and Paniconi et al. [2003]. Comparisons are
made between this extended hsB model, the fully 3D nu-
merical Richards equation model, and the hsKW model. In
addition, a dimensional analysis is performed, and the
results of the study are presented using dimensionless vari-
ables. The conclusions are that the hsB model and the fully

3D numerical Richards equation model compare very favor-
ably in terms of both simulated runoff and storage dynamics
along the hillslope. Similar to what was found in Troch et al.
[2003], it is again found that hsKW performance improves
as hillslopes become steeper and more divergent.

[82] Troch et al. [2004] derived an analytical solution for
a linearized version of the hsB equation under the specific
condition of a hillslope width function of exponential form.
This variant of the hsB model is then compared against a
numerically integrated hsB model, and the results show an
almost exact match, thus confirming the validity of the nu-
merical results obtained in the earlier papers. Moreover,
Troch et al. [2004] extend the analysis by expressing the
Peclet number, often used in groundwater transport studies,
as a function of hillslope characteristics. This aspect is fur-
ther discussed in section 7.

6.3. Modeling Unsaturated Zone Effects in a
Boussinesq Aquifer

[83] Traditionally, model parameters such as the drain-
able porosity f are considered constant when applying the
Boussinesq equation, and generally a value equal to the sat-
urated soil moisture content minus the residual soil mois-
ture content, �s � �rð Þ, is attributed to f. In a benchmark
paper by Parlange and Brutsaert [1987], the capillarity
effect on groundwater systems is modeled by assuming a
deep profile for which � ¼ �r holds at the land surface and
instantaneous equilibrium in the unsaturated zone. An ana-
lytical expression that accounts for capillarity effects is
thus derived and can be added to the Boussinesq equation.
Barry et al. [1996] extended the equations derived by
Parlange and Brutsaert [1987] to include higher-order
capillarity effects. Hilberts et al. [2005] on the other hand
intervene directly on the drainable porosity parameter,
treating it as a function of the water table height h and the
soil depth D. Assuming an unsaturated zone soil moisture
profile that is in equilibrium with the water table, and using
an alternative parameterization of the van Genuchten rela-
tionships to describe the unsaturated zone characteristics
that is amenable to analytical integration, the authors derive
the following expression for drainable porosity:

f hð Þ ¼ �s � �rð Þ 1� 1þ 	
h� D

cos i

� �n� �� nþ1
nð Þ

( )
ð39Þ

where 	 and n are van Genuchten parameters that describe
the retention behavior of the unsaturated zone. The hsB
model is then rederived using equation (38) for what is
now a state variable-dependent drainable porosity parame-
ter. Drainage simulations with this revised hsB model are
then compared against the original hsB model (equation
(37)) as well as against experimental discharge and water
table observations from a laboratory hillslope set up for
two plan shapes (divergent and convergent) and for three
gradients (5, 10, and 15%). It is found that both the new
and original hsB models match the observed discharge
rates well, but that the revised model with a more general
representation of f allows a much more accurate description
of water table dynamics.

[84] In follow-up work to Hilberts et al. [2005], Hilberts
et al. [2007] couple a one-dimensional Richards equation
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model to the hsB model with a variable drainable porosity.
This allows the recharge rate N to be modeled as a function
of unsaturated zone storage dynamics, so that a more accu-
rate representation of the rainfall to aquifer recharge trans-
formation process is possible. Results for an experiment
consisting of constant rainfall followed by pure drainage
are compared against both the original hsB model and the
fully 3D numerical Richards equation model. The three-
way comparison indicates a much improved performance
of the coupled hsB model over the original version. The
results also highlight some interesting features of poten-
tially rapidly rising water tables as a result of a soil mois-
ture pulse propagating through the unsaturated zone and
encountering the capillary fringe above the water table.

6.4. Incorporating Bedrock Leakage and Other
Processes

[85] In addition to neglecting the unsaturated zone,
another basic assumption of classical Boussinesq and hsB
models is that the unconfined aquifer overlays an imperme-
able bedrock. In upslope areas where water tables are
deeper, allowing leakage or percolation through the bottom
of the unconfined aquifer is essential for capturing the pro-
cess of groundwater recharge to confined aquifers. In
downslope regions where water tables are shallower and
typically intersect a lake or stream, the leakage process can
occur in the reverse direction, with flow from a deep aqui-
fer traversing the unconfined aquifer to discharge into the
stream. Representing this contribution to the stream hydro-
graph is critical for baseflow estimation.

[86] Koussis et al. [1998] introduced a leakage term into
a linearized version of Boussinesq’s equation, approximat-
ing the exchange flux across the aquitard as a Darcy expres-
sion involving the aquitard properties and the head
difference across this unit. Broda et al. [2011] use an
approach similar to the comparative studies conducted in
the hsB papers previously cited (i.e., simulating with a 3D
numerical Richards equation model idealized hillslopes of
uniform, convergent, and divergent shape at different slope
angles), but at the same time they extend the vertical hori-
zon to include an unconfined and a confined aquifer sepa-
rated by an aquitard of specified thickness. Their results
show that leakage can be downward or upward (in the
reverse direction) at different points along the hillslope and
at different times during a drainage or recharge event, and
that these dynamics are strongly influenced by hillslope ge-
ometry (for instance, convergent hillslopes contain the larg-
est portions of upward directed leakage), boundary
conditions, and aquifer hydraulic properties.

6.5. Extending the Hillslope-Storage Boussinesq Model
to Catchment-Scale Applications

[87] Having added complex geometry, unsaturated zone
effects, bedrock leakage, and other factors and processes to
the classical Boussinesq model as described in the preced-
ing sections, a natural next step is to try to extend the
applicability of the hsB model to catchment and river basin
scales, under the guiding principle that hillslopes can be
considered fundamental flow units or building blocks in
watershed hydrology. The basic idea is to couple an hsB
representation for shallow subsurface flow to models that
will handle deeper groundwater flow and overland and

channel flow routing. The numerous challenges in doing so
include ensuring that the process submodels (hsB, ground-
water, surface routing) are compatible and that the
exchanges between each component (flows between hill-
slope units as well as flows between submodels) can be rea-
sonably well represented or estimated.

[88] Matonse and Kroll [2009] focus their study on a
small steep headwater catchment and on low flow estima-
tion, so deep aquifer and overland flow processes are not
considered. They find that a higher level of partitioning
(discretization of the catchment into more hillslope units),
by enhancing the ability of the model to represent hydro-
geologic heterogeneity, improves the model performance.
Broda et al. [2012] couple the hsB model to an equally par-
simonious and computationally efficient analytic element
model of deep regional groundwater flow. Iterative updat-
ing of the hydraulic head levels in the shallow subsurface
and deep aquifers is used to determine the exchange flux
(leakage across a hypothetical aquitard) between the hill-
slope and regional groundwater units. In comparisons
against a benchmark 3D Richards equation model, good
matches for head, discharge, and interaquifer exchange are
generally obtained, with the poorest performance noted for
very steep and convergent hillslopes.

[89] Carrillo et al. [2011] used the hillslope-storage
Boussinesq model as the core of a semidistributed water-
shed model. They combined a root zone water and energy
balance model with the hsB equation to account for
unsaturated-saturated zone interactions on runoff genera-
tion and hydrological partitioning. Vegetation effects are
accounted for to influence interception and transpiration,
while deep aquifer dynamics are modeled as in Kirchner
[2009]. Carrillo et al. [2011] applied their model to 12
catchments across a climate gradient in the USA, and con-
cluded that it can be used to produce models that can cap-
ture hydrological dynamics at different temporal scales,
from decades to daily.

7. Similarity Analysis of Baseflow Recession

[90] Geometric similarity in relation to Boussinesq was
already discussed nearly 50 years ago in the experimental
analysis by Ibrahim and Brutsaert [1965]. Based on analyt-
ical solutions to the governing dynamic equations, it is also
possible to develop similarity indices capable of discerning
how similar or dissimilar landscapes are with respect to
their hydrological response [Wagener et al., 2007].

7.1. The Hillslope Number

[91] Brutsaert [1994] derived an analytical solution to a
linearized Boussinesq equation to study the hillslope sub-
surface flow unit response, corresponding to the free drain-
age of an unconfined aquifer (hereafter the characteristic
response function or CRF). The motivation for his work
was to provide a direct link between the underlying physi-
cal mechanisms of hillslope subsurface flow and the gen-
eral linear theory of catchment hydrology [Dooge, 1973].
The analytical approach provides a powerful framework to
analyze the influence of the different characteristics (hy-
draulic and geometric) of hillslopes on the shape of its
hydrological response [Berne et al., 2005]. Brutsaert’s
[1994] work suggests that, under given boundary
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conditions, the variables in the equations describing the
governing dynamics for subsurface flow in shallow, sloping
aquifers can be scaled producing a dimensionless number
for straight (nonconverging) hillslopes called the ground-
water hillslope number (Hi). Hi is defined as:

Hi ¼ L tan i


0

ð40Þ

with 
0 is the average water table height within the hill-
slope. This dimensionless parameter represents the relative
magnitude of the slope term (that is the effect of gravity)
with respect to the diffusion term [Brutsaert, 2005].

7.2. The P�eclet Number

[92] Continuing along this line of exploration and start-
ing from the Laplace domain solution derived by Troch
et al. [2004] to the linearized hsB equation, an additional
dimensionless number for advective-diffusive subsurface
flow dynamics along complex hillslopes can be derived.
This hillslope P�eclet (Pe) number as a similarity parameter
extends the Brutsaert Hi number by explicitly accounting
for exponentially converging/diverging hillslopes in the
landscape. This extension is possible through the develop-
ment of low-dimensional hillslope storage dynamics
models capable of handling three-dimensional hillslope
structures in a parsimonious way [e.g., Troch et al., 2003].
Applied to flow response of a hillslope of length L, the Pe
number becomes:

Pe ¼ UL

2K
ð41Þ

where U is a characteristic advective velocity equal to U �
K� in equation (15) and K is the complex-hillslope diffu-
sion coefficient defined according to equation (15). Troch
et al. [2004] showed that the Pe number can be expressed
in terms of only quantifiable geomorphic properties :

Pe ¼ L tan i

2pD
� �L

2
ð42Þ

where pD is the effective aquifer depth and � is the rate of
(exponential) plan shape convergence (or divergence) of
the hillslope [equation (12)].

[93] Berne et al. [2005] used moment generating func-
tions to analytically relate the hillslope Pe number to the
moments of the CRF of subsurface flow. In addition, they
showed the Pe number as an efficient similarity parameter
to describe the hillslope subsurface flow response and used
laboratory data from a scaled hillslope model to validate
the derived relationships (Figure 4). The Pe number has
also been successfully applied to ‘‘real-world’’ data (i.e.,
the hydrological response determined from hillslope-scale
field experiments) at the hillslope-scale by Lyon and Troch
[2007] and at the small catchment scale by Lyon and Troch
[2010]. For these later similarity applications, effective pa-
rameters to capture the subsurface heterogeneity at hill-
slope scales were required and assessed based on recession
flow analysis [i.e., Brutsaert and Nieber, 1977], which has
been demonstrated throughout the literature in various
climatologic and geomorphologic settings [Lyon et al.,

2008; Troch et al., 1993a; Zecharias and Brutsaert, 1988].
Lyon et al. [2010] have shown further utility of similarity
approaches like those considered via the Hi and Pe numbers
through simple empirical estimation of climatic impacts on
catchment-scale water travel times brought about through
alterations of landscape storage and structure.

7.3. The Combined Hydraulic-Geomorphology-
Climate-Boundary Conditions Number

[94] The linearization approach and the derived analyti-
cal solutions depend on the identification of an effective
value of the aquifer thickness pD. As the previous work
had shown, the average storage thickness 
0 determines
whether the advective or diffusive terms of the Boussinesq
equation play the dominant role in the system behavior.
However, that storage is itself an outcome of the interplay
between the magnitude and variability of recharge (and
leakage through the bedrock), the boundary condition at
the toe of the hillslope, and the hydrologic response itself.
This point was made by Beven [1982], when he showed
that the kinematic approximation to the steady-state Bous-
sinesq equation was adequate for low values of the �-index
proposed by Henderson and Wooding [1964]. This index is
given by:

� ¼ 4N cos i

k sin 2i
ð43Þ

[95] The dependence of the effective thickness pD on the
history of recharge excludes the application of these
Boussinesq-based similarity parameters to sequences of
events [Stagnitti et al., 2004]. Rupp and Selker [2006a,
2006b] have also commented on potential shortcomings
with the use of such a linearization.

[96] Harman and Sivapalan [2009a] relaxed the assump-
tions of the linearized solutions in order to investigate these

Figure 4. Theoretical scaling relationships between the
P�eclet number and the dimensionless moments of the char-
acteristic response function (first order in blue, second
order in magenta). Symbols represent observations from ar-
tificial hillslopes (þ) ; real-world hillslopes located in Mai-
mai, New Zealand (circles), and Idaho, USA (diamonds);
and small catchments in Arizona, USA (triangles).
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controls in the full Boussinesq equation. To simplify the
analysis, they cast the equations in a dimensionless form
(similar to that of Henderson and Wooding [1964] and
Koussis [1992]) using the characteristic length and time
scales l� ¼ Ltan i and t� ¼ Lf = ksin ið Þ. The timescale can
be obtained from the advective time scale of Berne et al.
[2005] for straight hillslopes, and is the characteristic
response time scale of a kinematic wave moving through
the hillslope.

[97] Asymptotic analysis of the dimensionless equations
showed that a range of storage-discharge relations and
recession curves could be obtained from the resulting equa-
tions, depending largely on the average value of the dimen-
sionless storage thickness 
 ¼ 
0= Ltan ið Þ, which is the
dynamic equivalent of the reciprocal of the Hillslope num-
ber. For instance, scaling arguments were used to show
how, when 
 	 1 (or equivalently Hi
 1), the assump-
tion of a fixed, vanishingly small flow depth at the hillslope
toe produced storage-discharge relations (equation (29))
with an exponent b of 2, but the assumption of a fixed gra-
dient boundary condition (dh

dx jx¼0 ¼ 0) produced an expo-
nent of b¼ 1.

[98] Harman and Sivapalan [2009a] also showed how
the concept of ‘‘regimes’’ presented in Robinson and Siva-
palan [1997] could be applied to understand the role of
recharge variability on the behavior, under the simplifying
assumption of rectangular recharge pulses. They defined
the ‘‘regime storage’’ as:


R ¼
�

4

1� e�tr=t�

1� e� trþtbð Þ=t�
ð44Þ

where tr is the duration of a recharge pulse, and tb is the
time between recharge pulses. This storage can then be used
to determine the appropriate value of the storage thickness
controlling the response under different boundary condi-
tions, hillslope configurations, and regimes of recharge
variability.

8. Relevance of Hydraulic Groundwater Theory in
Understanding Climate Impacts on Hydrologic
Response

[99] Boussinesq relations and the methods pioneered by
Brutsaert and Parlange provide powerful tools in the context
of climate-induced and human-induced changes in ground-
water storage dynamics. Consider the example of perma-
frost thawing in northern landscapes. Permafrost change
and thawing has been identified as a key proxy for changes
in climate. Direct observations of permafrost change, how-
ever, are difficult to perform at scales larger than the local
(borehole) scale, creating the need for indirect detection
methods of permafrost change and its effects on larger
scales. Recent work by Lyon et al. [2009] outlined a theoret-
ical connection between Brutsaert-Nieber recession flow
analysis and changes in permafrost at the catchment scale,
assuming storage changes, as reflected in the recession pa-
rameters and drainage time scale, are due to thawing. This
differs from previous recession analysis work in northern
systems [Carey and Woo, 2001; Yamazaki et al., 2006] in
that Lyon et al. [2009] related long-term changes in reces-
sion characteristics to storage-discharge dynamics via Bous-
sinesq relationships.

[100] This application of B&N analysis to assess perma-
frost thaw has been successfully applied across scales and
geological settings in Scandinavia [Lyon et al., 2009;
Sjöberg et al., 2012] and the Yukon river basin [Lyon and
Destouni, 2010]. Sjöberg et al. [2012] further demonstrated
that the approach is consistent with results from a physi-
cally based three-phase flow groundwater model [i.e.,
Frampton et al., 2011] that directly solves for coupled fluid
flow and heat transport in partially saturated porous media.
Brutsaert recently extended upon this approach with appli-
cation to Eurasia [Brutsaert and Hiyama, 2012].

[101] Such applications of Boussinesq to assess long-term
changes are not limited to climate-impacted cold regions as
was demonstrated by a recent analysis from an arid-region
application in Brutsaert [2012]. There Brutsaert demon-
strates via assessment of groundwater storage changes from
low-flow dynamics that for several large North American
deserts (namely, the hot Chihuahua, Sonora, and Mojave
deserts and the cold Great Basin desert), there is no discern-
ible shift in groundwater storage or corresponding increases
in aridity in these systems. From this, it can be concluded
that deterioration of groundwater conditions in these sys-
tems [e.g., Tillman et al., 2008] are likely attributable to
human activities rather than purely to climatic shifts.

[102] The Boussinesq theory is the common denominator
between this and the aforementioned permafrost work.
Brutsaert [2008] illuminates on this connection for investi-
gating changes in aquifer storage. Put simply, as the areal
average underground water storage in a natural catchment
is directly manifested by the low flow or baseflow features,
it follows that baseflow data can therefore provide a quanti-
tative estimate of the basin-scale groundwater storage
changes that have taken place over a period of record. As
such, any systematic changes in storage-discharge dynam-
ics (assessed, for example, through the B&N analysis) are
conditionally brought about due to changes in either stor-
age (as is the case in the desert example) or in the aquifer
itself (as is the case in the permafrost examples). This
approach has been used in assessing long-term aquifer
changes in the US [Brutsaert, 2008, 2010] and Japan
[Sugita and Brutsaert, 2009]. Taken together with remote
sensing methods for assessing groundwater storage change
(e.g., GRACE), there is good potential for continued appli-
cation of the Boussinesq theory (with connection to the
methods pioneered by Brutsaert and Parlange) by future
generations of hydrologists.

9. Discussion and Outlook

[103] Hydraulic groundwater theory originated with
French engineers and scientists of the 19th century, promi-
nently Dupuit and Boussinesq, and was further developed
into a coherent theoretical framework for catchment-scale
investigations of hydrological processes by Brutsaert and
Parlange. Many researchers have used this framework to
develop methods to study baseflow dynamics, rainfall-
runoff processes and even the impact of climate change on
catchment-scale processes. Several other researchers have
questioned the validity of hydraulic groundwater theory
and have argued that other properties of riparian aquifers
are responsible for the observed dynamics in streamflow.
Such criticism is welcome as it invites us to think deeply
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about the meaning of what we observe and to develop alter-
native hypotheses that can form the basis of a novel theo-
retical framework of catchment-scale response to climate
forcing. The aim of this review article is to provide back-
ground information to hydrologists new to this body of
work and to encourage them to make contributions to this
important field of catchment science. So far, streamflow
observations are the main data used to explore the validity
of hydraulic groundwater theory, but since the way water
flows through catchments affects many other processes,
such as geochemical weathering and ecosystem dynamics,
it is hoped that future investigations will take advantage of
emerging data sets, generated by national programs in the
United States such as the Critical Zone Observatories, to in-
terrogate the applicability of the theoretical framework
based on hydraulic groundwater theory and its alternatives.
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