
 Open access  Journal Article  DOI:10.2178/JSL/1264433928

The importance of Π⁰₁ classes in effective randomness — Source link 

George Barmpalias, Andrew E. M. Lewis, Keng Meng Ng

Institutions: Victoria University, Australia, University of Leeds

Published on: 01 Mar 2010 - Journal of Symbolic Logic (Association for Symbolic Logic)

Topics: Description number, PA degree, Turing degree, Turing reduction and Probabilistic Turing machine

Related papers:

 Algorithmic Randomness and Complexity

 Computability and randomness

 Lowness properties and randomness

 Kolmogorov complexity and the Recursion Theorem

 Π10 classes, LR degrees and Turing degrees

Share this paper:    

View more about this paper here: https://typeset.io/papers/the-importance-of-p-classes-in-effective-randomness-
4lp4pilvow

https://typeset.io/
https://www.doi.org/10.2178/JSL/1264433928
https://typeset.io/papers/the-importance-of-p-classes-in-effective-randomness-4lp4pilvow
https://typeset.io/authors/george-barmpalias-2rirqa30sy
https://typeset.io/authors/andrew-e-m-lewis-3dboc58za3
https://typeset.io/authors/keng-meng-ng-z1hvgu6379
https://typeset.io/institutions/victoria-university-australia-2ennm99m
https://typeset.io/institutions/university-of-leeds-jzzot01w
https://typeset.io/journals/journal-of-symbolic-logic-11f1sidy
https://typeset.io/topics/description-number-1yam2hc3
https://typeset.io/topics/pa-degree-2hvphoqu
https://typeset.io/topics/turing-degree-36ard8bq
https://typeset.io/topics/turing-reduction-2nec95f1
https://typeset.io/topics/probabilistic-turing-machine-3dw9cr84
https://typeset.io/papers/algorithmic-randomness-and-complexity-45837lhd8p
https://typeset.io/papers/computability-and-randomness-4gllpf4864
https://typeset.io/papers/lowness-properties-and-randomness-47qv57jozw
https://typeset.io/papers/kolmogorov-complexity-and-the-recursion-theorem-1mq3x9j9kx
https://typeset.io/papers/p10-classes-lr-degrees-and-turing-degrees-1y4np28cru
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/the-importance-of-p-classes-in-effective-randomness-4lp4pilvow
https://twitter.com/intent/tweet?text=The%20importance%20of%20%CE%A0%E2%81%B0%E2%82%81%20classes%20in%20effective%20randomness&url=https://typeset.io/papers/the-importance-of-p-classes-in-effective-randomness-4lp4pilvow
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/the-importance-of-p-classes-in-effective-randomness-4lp4pilvow
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/the-importance-of-p-classes-in-effective-randomness-4lp4pilvow
https://typeset.io/papers/the-importance-of-p-classes-in-effective-randomness-4lp4pilvow


THE IMPORTANCE OF Π0
1 CLASSES IN EFFECTIVE

RANDOMNESS.

GEORGE BARMPALIAS, ANDREW E.M. LEWIS, AND KENG MENG NG

Abstract. We prove a number of results in effective randomness, using
methods in which Π0

1 classes play an essential role. The results proved
include the fact that every PA Turing degree is the join of two random
Turing degrees, and the existence of a minimal pair of LR degrees below
the LR degree of the halting problem.

1. Introduction

1.1. Π0
1 classes in computability and effective randomness. Many

arguments in computability theory and algorithmic randomness involve Π0
1

sets of reals and techniques specific to such sets in an essential way. Two
major references to such arguments in computability theory and in partic-
ular the degrees of unsolvability, are the well known Jockusch-Soare papers
[JS72a, JS72b] on degrees of theories and members of Π0

1 classes. In this
work, Jockusch and Soare introduced the method of forcing with Π0

1 classes,
proved the now classic low basis theorem and showed a number of degree
theoretic results using compactness arguments with Π0

1 sets. For a sur-
vey of results concerning Π0

1 classes in computability theory we refer the
reader to Cenzer [Cen99]. In algorithmic randomness, Kučera’s early pa-
pers [Kuč85, Kuč86] (partly inspired by some questions in the above papers
of Jockusch and Soare) are a demonstration of how central Π0

1 classes are
in the study of the degrees of complete extensions of Peano Arithmetic (PA
degrees) and effective randomness. In this work he also introduced funda-
mental methods for coding into PA degrees (using universal Π0

1 classes) and
coding into effectively random sets (using Π0

1 classes of positive measure).
The importance of Π0

1 sets in arguments can be seen in a lot of recent work.
As an example we mention the construction of a low bound for the ideal
of K-trivial degrees by Kučera and Slaman [KS07] which uses Π0

1 sets for
coding in a very essential way.

In this paper we show a number of results about PA degrees and relative
randomness demonstrating the applicability of methods with Π0

1 classes to

Key words and phrases. Π0
1 classes, Martin-Löf randomness, Peano Arithmetic, K-

trivials, Turing degrees, LR degrees.
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the solution of some problems in this area, which do not currently have a
known solution via different methods. Firstly we show that every PA degree
is the least upper bound of two Martin-Löf random degrees, thus reveal-
ing more connections between these two classes of degrees, in the spirit of
Kučera’s work (see background below). Secondly, we study relative ran-
domness and in particular the LR degrees using (for the first time in the
literature) methods based on Π0

1 sets. The main result of this approach is
the construction of a minimal pair of LR degrees below the LR degree of
the halting problem. This was a problem in the area of relative randomness
which had resisted other techniques.

1.2. Background: PA and Martin-Löf random degrees. The collec-
tion of sets separating two disjoint c.e. sets is a natural Π0

1 class. Hence the
set of complete extensions of a consistent theory forms a Π0

1 class, which is
universal in some sense. A Turing degree is called PA if it is the degree of a
complete extension of Peano Arithmetic. One of the standard characteriza-
tions of the PA degrees (due to Scott and Solovay, see e.g. [Odi89]) says that
a Turing degree a is PA iff the degrees below a form a basis for Π0

1 classes.
In [JS72a, JS72b] Jockusch and Soare, partly motivated by the study of PA
degrees, demonstrated how Π0

1 classes and compactness arguments can be
used in order to prove results about the Turing degrees. One of the most
popular definitions of algorithmic randomness is the one given by Martin-
Löf in [ML66], according to which a set is (Martin-Löf ) random1 if it does
not belong in any ‘effectively null’ set in the Cantor space. Effectively null
sets were defined to be those of the form ∩jEj where (Ej) is a uniformly
c.e. sequence of Σ0

1 classes such that µ(Ej) < 2−j−1.
Kučera was the first to see the strong connection between the PA degrees

and the Martin-Löf random degrees. In particular, in his well known early
paper [Kuč85] he demonstrated how coding techniques based on Π0

1 classes
of positive measure can be applied in order to show results about the degrees
of Martin-Löf random sequences. A distinctive feature of Kučera’s work has
always been that the theory of Martin-Löf random degrees is developed in
parallel to the theory of PA degrees, with the techniques in the two topics
being intrinsically connected. A definitive result about the relation between
the PA degrees and the Martin-Löf random degrees (extending previous work
of Kučera) was shown by Frank Stephan in [Ste06] and says that a PA degree
is Martin-Löf random iff it computes the halting problem. As discussed in
[Ste06] this result strongly suggests a dichotomy of the Martin-Löf random
degrees to the ones which contain a lot of information (they compute the
halting problem) and the ones which are computationally weak, in the sense
that they are not PA. In Section 2 we reveal another connection between
these classes of degrees: every PA degree is the least upper bound of two
Martin-Löf random degrees. The techniques involved in the proof are based
on properties of Π0

1 classes and Π0
1 classes of positive measure.

1in the following when a set is said to be random, we mean Martin-Löf random.
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1.3. Background: relative randomness, prefix-free complexity and

LR degrees. In Sections 3, 3.2 we demonstrate how methods that are
based on Π0

1 classes can be used to prove results about relative random-
ness. Martin-Löf randomness is equivalent to the so-called Chaitin-Levin
randomness, which is based on Kolmogorov’s idea of incompressibility of
binary strings 2. Let K denote the prefix-free complexity relative to a fixed
universal prefix-free machine. A set X is called Chaitin-Levin random if
its initial segments all have high K-complexity, i.e. K(X ↾ n) ≥ n − c for
all n ∈ N and a constant c. A standard measure of relative compressing
power of oracles is the LK reducibility ≤LK introduced in [Nie05b]. We
say that A ≤LK B if the prefix-free complexity of any string relative to
B is less than the prefix-free complexity relative to A, modulo a constant:
KB(σ) ≤+ KA(σ) for all σ ∈ 2<ω, where 2<ω denotes the set of finite binary
strings. This definition formalizes the intuitive idea of B compressing more
efficiently than A (modulo a constant). It is clear that if A ≤LK B then ev-
ery random set relative to B is also random relative to A, which was denoted
by A ≤LR B in [Nie05b]. The converse was shown by Miller in [Mil], so that
the relations ≤LK ,≤LR are identical. The equivalence classes induced by
these relations are often called LR degrees. The least LR degree consists of
the low for random sets (sets A such that every Martin-Löf random is also
Martin-Löf random relative to A), which coincide with the low for K sets
(sets A such that K(σ) ≤+ KA(σ)) or even the K-trivial sets (sets A whose
prefix-free complexity is less than the prefix-free complexity of a computable
sequence, modulo a constant). The equivalence of these three notions is one
of the most important recent results in the area of algorithmic randomness
and was shown in [Nie05b].

The structure of the LR degrees was studied in [BLS08, BLSss, Sim07] and
one of the questions that was not answered with the techniques developed
in these papers was about the existence of minimal pairs of LR degrees.
Miller [Mil] later showed that there exist such minimal pairs by using a
cardinality argument in conjunction with some properties of low for Ω sets,
where Ω =

∑
U(σ)↓ 2−|σ| is Chaitin’s halting probability of a universal prefix-

free machine U (a set is low for Ω if Ω is Martin-Löf random relative to
it). He actually showed that every pair of relatively 2-random sets form a
minimal pair in the LR degrees.

In Section 3.1 we use arguments based on Π0
1 classes to show that there

is a minimal pair of LR degrees, LR below ∅′. This result cannot be ob-
tained with previously known methods, and was the main motivation for
introducing Jockusch-Soare (as in [JS72a, JS72b]) type of arguments for the

2Given a prefix-free machine M (a Turing machine with prefix-free domain) the prefix-
free complexity of a string σ relative to M is the length of the shortest string τ such that
M(τ) = σ. There is a universal prefix-free machine, i.e. one that gives optimal descriptions
to every string, modulo a constant. For more background on prefix-free complexity, see
[Nie09].
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study of the LR degrees.3 We also get a number of useful facts about upper
cone avoidance in the LR degrees in relation with Π0

1 classes, which can be
used in order to derive other results about ≤LR. In Section 3.2 we discuss a
number of other applications of Jockusch-Soare arguments to the study of
the LR degrees. In Section 3.3 we discuss how the same methodology can
give results about the connection between hyperarithmetical complexity and
≤LR.

Finally in Section 4 we give a simple proof of a result in [Bar06] on cupping
with random sets. The first result in this topic was given in Nies [Nie07] and
was later simplified by Hirschfeldt and Miller using a more general argument
with Π0

2 null classes. We use the actual construction of Hirschfeldt and Miller
as a ‘black box’ to give a very short proof of the result in [Bar06], which
was originally given as a generalization of the non-cupping result of Nies
[Bar06].

2. PA and random Turing degrees

In a number of widely cited papers [Kuč85, Kuč86] Kučera developed some
theory about the PA, the dnr and the Martin-Löf random Turing degrees. In
particular, he treated these classes of degrees using similar approaches, while
often commenting on the differences between the coding methods available
for the PA degrees and the Martin-Löf random degrees. Coding into PA
degrees was seen to be much more flexible than coding into a Martin-Löf
random degree, and this is also reflected in [KS07] where all the K-trivial
degrees are coded into a low PA degree, while it is not known whether there
is a low random degree with this property. The relation between the PA
degrees and the Martin-Löf random degrees was clarified by the following
result of Stephan: a PA degree is Martin-Löf random iff it computes the
halting problem. This is a clear demonstration of a well-known dichotomy
in the Martin-Löf random degrees. There is a sharp qualitative distinction
between the complete Martin-Löf random degrees and the incomplete ones.
The former are random because they have a lot of information (indeed all
complete degrees are random [Kuč85]) while the latter are often branded the
true Martin-Löf random degrees (see [DHNT06]) and they have, as a matter
of fact, low information content. For example, by the above mentioned
theorem of Stephan, they cannot compute any complete extension of Peano
arithmetic.

In this section we provide a further relation between these two classes.

Theorem 2.1. Every PA degree is the join of two random degrees.

This result, combined with the above mentioned theorem of Stephan, gives
a plethora of pairs of Martin-Löf random degrees which join to a degree

3these include the compactness arguments they used, for example, in their proof that
every Π0

1 class with no computable paths contains two paths which form a minimal pair
in the Turing degrees.
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PA

random random

not random

random random

Figure 1. Every PA Turing degree is the least upper bound
of two random Turing degrees. Incomplete PA Turing degrees
are non-random degrees which are joins of two random de-
grees.

which is not Martin-Löf random; we just need to apply the result to any
incomplete PA degree and get a pair with this property. In fact, this was
the original motivation for this result.

Corollary 2.2. Incomplete PA degrees are non-random degrees which are
the join of two random degrees.

The category version of theorem 2.1 is not true, however. Recall that a
sequence is weakly 1-generic if every dense Σ0

1 set of strings contains a prefix
of it, and is 1-generic if for every Σ0

1 set of strings which does not contain
a prefix of it there is a prefix of the sequence which is not a prefix of any
string in that set.

Proposition 2.3. There exists a PA degree which is not the join of two
(weakly) 1-generic degrees.

Proof. By the hyperimmune-free basis theorem applied to the complete Π0
1

class containing only complete extensions of PA, there is a hyperimmune-
free PA degree. This cannot be the join of two (weakly) 1-generics as such
sequences are hyperimmune by a result of Kurtz [Kur81] (also presented in
[DH09]) and hyperimmune degrees are upward closed. �

2.1. Introduction to the proof of Theorem 2.1. Let C be a set of PA
degree. We wish to find randoms A, B such that C ≡T A ⊕ B. We would
like to start with a Π0

1 class P of randoms and find A, B inside P . The plan
is to use a perfect tree T of paths in P in order to code C into the join of
two of its paths A, B, thus achieving C ≤T A⊕B. The coding will be done
in such a way that if C can compute the tree T , then A⊕B ≤T C. In order
to achieve this, we will define a class of trees T such that [T ] ⊆ P , which
can be defined by a Π0

1 formula. In other words, there is a Π0
1 set of reals

which effectively represent the trees in this class. Then we can use the fact
that C is of PA degree to get a tree in that class which is computable from
C, and then use it in order to do the coding for C ≤T A⊕B. Before we go
into the details of the argument, let us give a formal definition of a tree.

Definition 2.4. If T is a partial function from 2<ω to 2<ω we say that T is
a tree if for every σ ∈ 2<ω and i ∈ {0, 1} such that T (σ ∗ i) ↓:
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• T (σ) ↓⊂ T (σ ∗ i);
• T (σ ∗ (1 − i)) ↓ |T (σ ∗ i).

A tree T is perfect if T (σ) ↓ for all σ. A finite tree T of level n is the
restriction of a tree (as a map) to strings of length n.

A first attempt would be (and indeed was) to use an (infinite) indifferent
set on a random sequence (with respect to the Martin-Löf random sequences)
in order to get the required tree of randoms for coding (see figure 2). In
[FMN] a set of positions was called indifferent for a sequence with respect to
a class A if any alteration of the digits of the real in these positions produces
a sequence in A. It was proved (also see [Nie09]) that every random sequence
has an indifferent set (with respect to the Martin-Löf random sequences).
To find randoms A, B such that C ≤T A ⊕ B we can take any random X
and define

• A to be the random we get if we let the digit in the nth indifferent
position of X be C(n)

• B to be the random we get if we let the digit in the nth indifferent
position of X be 1 − C(n).

⋆

⋆

⋆

⋆

(a) Random real (b) Tree of random reals

Figure 2. (a) Indifferent set of positions ⋆ in a random se-
quence. (b) The associated tree of random sequences that we
get if we put 0 (represented by a white ball) or 1 (represented
by a black ball) into the indifferent positions on the real.

Now the indifferent set is computable in A⊕B (as it consists of the positions
where A, B differ) and so is C. However the class of trees of this type cannot
be expressed as a Π0

1 class in the Cantor space. The reason for this is that
2ω is compact while the space of perfect trees of definition 2.4 (even the
restricted class of figure 2) with the natural topology generated by the finite
trees4, is not. So although we can achieve C ≤T A ⊕ B we cannot achieve
Turing equivalence through this approach. The solution is to work in a
compact subspace of the space of trees.

4In this topology the basic open sets are indexed by the finite trees F of definition 2.4
and the basic open set corresponding to a particular F is the collection of perfect trees T

which have F as an initial segment.
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Definition 2.5. Let f : N → N be an increasing function. The function f
defines a partition on any given infinite string A. Let (σA(i)) be the unique
sequence of strings such that |σA(0)| = f(0), |σA(i + 1)| = f(i + 1) − f(i)
and

(2.1) A = σA(0) ∗ σA(1) ∗ . . .

Say that A, B are piecewise f-different from level n if σA(i) 6= σB(i) for all
i ≥ n.

Now given A, B which are piecewise f -different from level n, define the

tree T f,n
AB as follows (for convenience we let f(−1)=0):

T f,n
AB(∅) = A ↾ f(n − 1)

T f,n
AB(τ ∗ 0) = T f,n

AB(τ) ∗ min{σA(n + |τ |), σB(n + |τ |)}

T f,n
AB(τ ∗ 1) = T f,n

AB(τ) ∗ max{σA(n + |τ |), σB(n + |τ |)}

and consider the space

T f,n = {T f,n
AB | A, B are piecewise f -different from level n}.

(a) (b)

Figure 3. (a) The segments of piecewise f -different from
level n reals A, B. Solid and dashed lines represent lexi-
cographically larger and smaller corresponding segments re-

spectively. (b) The tree T f,n
AB .

Now it is not hard to see that T f,n is compact and f -effectively homeomor-
phic to the Cantor space. If f is computable then the set

Cn
f = {A ⊕ B | A, B are piecewise f -different from level n and [T f,n

AB ] ⊆ P}

(where P is a Π0
1 class consisting entirely of random sequences) is Π0

1 which
is exactly what we wanted. It suffices to show the following.

Lemma 2.6. There exists a computable function f such that, if P is a Π0
1

class of positive measure, then Cn
f 6= ∅ for some n ∈ N.

We need to work with finite approximations to the notion of piecewise dif-
ferent pairs of reals, therefore we introduce the following terminology.
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Definition 2.7 (Switching reals inside Π0
1 classes). Let f : N → N be an

increasing function and P a Π0
1 class. We say that A can be f -switched (or

just switched) at [n, m] inside P if it belongs to P and there exists B such
that σA(i) 6= σB(i) for all i ∈ [n, m] and for every sequence (xi) ∈ {A, B}ω

with xi = A for i /∈ [n, m], the real σx0(0) ∗ σx1(1) ∗ . . . is in P . In this
case B is a switching partner of A at [n, m] inside P . We say that A can
be f -switched (or just switched) from level n inside P if it belongs to P
and there is B such that σA(i) 6= σB(i) for all i ≥ n and for every sequence
(xi) ∈ {A, B}ω with xi = A for i < n, the real σx0(0) ∗ σx1(1) ∗ . . . belongs
to P .

If Cn,m(A) denotes the class of switching partners of A at [n, m] inside P
then Cn(A) = ∩mCn,m(A) is the class of switching partners of A from level
n inside P . Note that Cn,m(A) is clopen and Cn(A) is closed. Let Dn,m

(for 0 ≤ n ≤ m) denote the set of reals which cannot be switched at [n, m]
inside P . So Dn,m ⊆ Dn,m+1 and it is clear that the classes Dn,m are Σ0

1

uniformly in f . Let Dn be the set of reals which cannot be switched from
level n inside P .

Lemma 2.8. Dn = ∪mDn,m for all n.

Proof. It is enough to show that Dn = ∩mDn,m for all n. Indeed, if A ∈
∩mDn,m by compactness we have that Cn(A) = ∩mCn,m(A) 6= ∅ and so

A ∈ Dn (the other direction is trivial). �

We are going to show the following, which is stronger than lemma 2.6
since, by [Kuč85], a Π0

1 class of positive measure contains a final segment of
every Martin-Löf random real.

Lemma 2.9. There exists a computable function f such that if P is a Π0
1

class and X ∈ P is sufficiently random (weakly 2-random suffices) then for
some n ∈ N and some Y piecewise f-different to X from level n we have

[T f,n
XY ] ⊆ P .

2.2. Proof of Lemma 2.9. It suffices to inductively define a computable
function f such that

(2.2) µ(D̂n) ≤ O(2−n), where D̂n = Dn ∩ P .

Indeed, in that case the class ∩iD̂i is Π0
2 and is null. So for every weakly 2-

random X ∈ P there some n such that X 6∈ Dn, which means that [T f,n
XY ] ⊆

P for some Y . For (2.2) it suffices to make

µ(D̂n,n) ≤ 2−n−1(2.3)

µ(D̂n,m+1 − D̂n,m) ≤ 2−n−m−2(2.4)

for all n and all m ≥ n, where D̂n,m = P ∩ Dn,m. We show that

µ(D̂n,n) ≤ 2f(n−1) · 2−f(n)(2.5)

µ(D̂n,m+1 − D̂n,m) ≤ 2f(m) · 2f(m)−f(n−1) · 2−f(m+1)(2.6)
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for an arbitrary increasing f , and then choose a computable f appropriately.
For (2.5), fix σ of length f(n − 1) and for each τ of length f(n) − f(n − 1)

let Mστ (n, n) be the set of reals B such that σ ∗ τ ∗ B ∈ D̂n,n. By the

definition of D̂n,n we have that Mστ (n, n) ∩ Mσρ(n, n) = ∅ for any strings
τ 6= ρ of length f(n) − f(n − 1). Hence

∑
τ∈2f(n)−f(n−1) µ(Mστ (n, n)) ≤ 1

and so µ(D̂n,n ∩ [σ]) ≤ 2−f(n). Given that there are 2f(n−1) such strings σ,
we get (2.5).

For (2.6), say that a string τ of length f(m) − f(n − 1) is a switching
string for A ∈ P at [n, m] inside P if for some (equivalently, for all) η of
length f(n − 1) and B ∈ 2ω the real η ∗ τ ∗ B is a switching partner for A
at [n, m] inside P . For any string τ of length f(m) − f(n − 1) let Lτ be
the set of reals in P for which τ is a switching string at [n, m]. Since every

A ∈ P − D̂n,m belongs to some Lτ we have

(2.7) D̂n,m+1−D̂n,m = ∪{D̂n,m+1∩Lτ∩[σ] | σ ∈ 2f(m) ∧ τ ∈ 2f(m)−f(n−1)}.

Fix strings σ, τ of lengths as in (2.7) and for each string ρ of length f(m+1)−

f(m) let Mσρ,τ (n, m+1) be the set of all B such that σ∗ρ∗B ∈ D̂n,m+1∩Lτ .
As before we have that Mσρ,τ (n, m+1)∩Mσρ′,τ (n, m+1) = ∅ for any ρ 6= ρ′

of length f(m + 1) − f(m). Hence
∑

ρ∈2f(m+1)−f(m)

µ(Mσρ,τ (n, m + 1)) ≤ 1

and so µ(D̂n,m+1∩Lτ ∩ [σ]) ≤ 2−f(m+1). Then from (2.7) we get (2.6). Now
if we let

f(0) = 1 f(n + 1) = 2f(n) + n + 2(2.8)

then (2.5) and (2.6) give (2.3) and (2.4) respectively. This concludes the
proof of the lemma.

2.3. Proof of Theorem 2.1. Let P be a Π0
1 class which contains only

Martin-Löf random reals, fix f as defined in (2.8) and consider n such that

Cn
f 6= ∅. If C is of PA degree it computes some member T f,n

AB of Cn
f . Without

loss of generality we can assume that A ↾ f(n − 1) = B ↾ f(n − 1) and that
for each i ≥ n the string σA(i) is lexicographically smaller than σB(i) iff
C(i) = 0. Then A, B ∈ P and so they are random reals. We claim that
C ≡T A ⊕ B. It is clear that A ≤T C and B ≤T C. On the other hand for
every i, C(i) = 0 iff σA(i) is lexicographically smaller than σB(i).

3. LR minimal pairs and Jockusch-Soare arguments with Π0
1

classes

3.1. LR minimal pairs and Π0
1 classes. A basic question that one can

ask about a reducibility on 2ω or a degree structure is whether there exist
minimal pairs. These are pairs of non-trivial (with respect to the particu-
lar reducibility) reals with the property that every real below both of them
is trivial. Minimal pairs usually (for example with respect to the Turing
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reducibility) formalize the basic idea that two reals have no non-trivial com-
mon information. The same intuition applies to other reducibilities like LK,
only that the notion of triviality is now weaker: a real is trivial with respect
to ≤LK if it does not help a prefix free machine to compress more efficiently
than when it works without an oracle. A minimal pair with respect to ≤LK

is a pair of reals such that for every non-trivial real X at least one of them
does not compress more efficiently than X.

Minimal pairs of LR (and so, LK) degrees were first constructed by
Miller [Mil] via a measure theoretic argument (this proof also appears in
[Nie09, Exercise 8.1.12]). He showed that for every low for Ω real A the set
{X | X ≤LR A} is countable hence, given that non-trivial LR upper cones
are null, he deduced the claim by the fact that a countable union of null sets
is null.5 With a similar argument (see [Mil, Nie09]) he also showed that ev-
ery pair of relatively 2-random reals form a minimal pair in the LR degrees
(this was also observed by Yu Liang). Since there is a pair of 0′′-computable
relatively 2-random reals6, this implies that there two reals Turing below 0′′

which form a minimal pair in the LR degrees.
In this section we present another method of obtaining minimal pairs of

LR degrees, which allows to construct them inside null sets, for example
LR below ∅′. This methodology involves Π0

1 sets of reals and compactness
arguments and goes back to [JS72b, JS72a] where it was used to derive
results about the Turing degrees. Before we start the formal argument we
recall the characterization of ≤LR given in [KH07]: A ≤LR B iff there exists
V B which is a Σ0

1(B) class of measure < 1 such that UA ⊆ V B where UA is
a member of the universal Martin-Löf test relative to A; also, A ≤LR B iff
every Σ0

1(A) class of measure < 1 is contained in a Σ0
1(B) class of measure

< 1. From now on U will always denote a fixed member of the universal
oracle Martin-Löf test and the term bounded Σ0

1(X) will refer to a Σ0
1(X)

class of measure < 1. We often use the term oracle Σ0
1 class to refer to a

c.e. operator which takes a set X to an X-c.e. set WX of strings, which is
seen as the Σ0

1(X) class of reals consisting of the infinite binary extensions
of the strings in WX .

The following is an atomic version of LR cone avoidance inside a Π0
1 class.

Lemma 3.1. Let P be a nonempty Π0
1 class, V an oracle Σ0

1 class such that
∀Z ∈ 2ω, µ(V Z) < 1, and A 6≤LR ∅. Then there exists some B ∈ P such
that UA 6⊆ V B.

Proof. Suppose that for all B ∈ P we have UA ⊆ V B. We define a Σ0
1 class

E such that µ(E) < 1 and UA ⊆ E, which shows that A ≤LR ∅. Let

E = {σ | [σ] ⊆ V Z for all Z ∈ P}.

5The same argument gives minimal pairs in the Turing degrees, but in that case it is
much easier since all Turing lower cones are countable.

6This follows by the low basis theorem relativised to ∅′ and the existence of a Π0
1(∅

′)
class which contains only 2-randoms.
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By hypothesis we have UA ⊆ E and by compactness E is a Σ0
1 class. Now

take Z ∈ P which exists since P 6= ∅. Then E ⊆ V Z and hence µ(E) ≤
µ(V Z) < 1. �

Now we are ready to show the full LR cone avoidance theorem inside a Π0
1

class.

Theorem 3.2. Given a nonempty Π0
1 class P and a countable sequence

(Ci) of sets such that Ci 6≤LR ∅ for all i ∈ N, there exists B ∈ P such that
Ci 6≤LR B for all i.

Proof. We show this for one C as it is clear how to generalize to (Ci). Let
(Ve) be an effective enumeration of all oracle Σ0

1 classes of bounded measure.
We force with Π0

1 classes and use lemma 3.1. First note that if UA 6⊆ V Z
e then

by the compactness of computations7 there is n ∈ N such that UA↾n 6⊆ V Z
e .

So if Qe is a Π0
1 class containing Z such that UA 6⊆ V Z

e then there is some
n ∈ N such that the Π0

1 subclass

Me,n = {Z ∈ Qe | UA↾n 6⊆ V Z
e }

is nonempty. Now let P0 = P and inductively suppose that Pi ↓ and Pi 6= ∅.
By lemma 3.1 and the previous discussion there is ni ∈ N such that the Π0

1

class

{Z ∈ Pi | UC↾ni 6⊆ V Z
i }

is nonempty. Let Pi+1 be this class. Now if we take B ∈ ∩iPi, then by
construction we have B ∈ P and UC 6⊆ V B

i for all i ∈ N. �

An application of Theorem 3.2 gives the following, in analogy with the line
of argument in [JS72b] for the Turing degrees.

Theorem 3.3. Every nonempty Π0
1 class contains two paths with greatest

lower bound 0 in the LR degrees.

Proof. Let P be a nonempty Π0
1 class. If it contains a low for random

path, the claim is immediate. Otherwise, by the low for Ω basis theorem of
[DHMN05] pick C ∈ P which is low for Ω. By [Mil] the lower cone

{Z | Z ≤LR C}

is countable, so let (Ci) be an enumeration of it. Now apply Theorem 3.2
and get B ∈ P such that Ci 6≤LR B for all i ∈ N. Then B, C form a minimal
pair in the LR degrees. �

Now a combination of Theorem 3.3 with a result from [BLSss] gives the
minimal pair LR below ∅′ that we mentioned above.

Corollary 3.4. There are A, B ≤LR ∅′ which form a minimal pair in the
LR degrees.

7that is, the fact that oracle computations only use a finite segment of the oracle. This
is also known as the use principle.
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Proof. In [BLSss] it is shown that there is Π0
1 class P such that Z ≤LR ∅′

and Z 6≤LR ∅ for all Z ∈ P . If we apply Theorem 3.3 to P we get the
claim. �

All known minimal pairs in the LR degrees have the property that one
member of the pair has countable lower cone and, indeed, is low for Ω.8 It
is therefore natural to ask the following.

Question 3.5. Are there sets A, B which have uncountable LR lower cones
and form a minimal pair in the LR degrees?

3.2. More Jockusch-Soare arguments with ≤LR. The methodology in-
troduced in [JS72a, JS72b] for the study of the Turing degrees through Π0

1

classes and compactness arguments can also be applied to the study of ran-
domness (weak) reducibilities—for example, the study of ≤LR. We give a
number of examples of such an approach, omitting proofs in the interest
of space.9 Recall that the degree spectrum (with respect to some notion
of degrees) of a Π0

1 class is the set of the degrees of its members. We can
show that the LR degree spectrum of a Π0

1 class with no K-trivial members
contains an antichain of size 2ℵ0. Moreover this antichain can be chosen
disjoint from any given countable sequence of non-trivial LR upper cones.
This can be seen as an analog for ≤LR of Theorem 2.5 in [JS72b] which
referred to the Turing degrees. Notice that a collection of reals that form
an antichain of LR degrees also forms an antichain in the Turing degrees.
In connection to this result, it is well known (see Sacks [Sac63]) that the
Turing degree spectrum of every perfect set of reals contains an antichain of
size 2ℵ0 . We do not know if the same holds for the LR degrees.

In relation to category, we can show that the LR upper closure of a Π0
1

class which does not contain K-trivials is meager. This can be seen as the
LR analogue of Theorem 5.1 in [JS72b]. The latter result states that the
Turing upper closure of a Π0

1 class with no computable members is meager.
Naturally, results about the spectra of Π0

1 classes have consequences in the
study of the Medvedev and Muchnik lattices of Π0

1 classes. Motivated by
these connections, Cole and Simpson showed in [CS07] that given any special
Π0

1 class P (i.e. one containing no computable paths) we can find another
special nonempty Π0

1 class Q such that X 6≤T Y for all X ∈ P , Y ∈ Q.
The analog of this result for the LR degrees is also true: given a Π0

1 class
containing no K-trivials we can find another nonempty Π0

1 class Q containing
no K-trivials, such that X 6≤LR Y for all X ∈ P , Y ∈ Q. Since every Π0

1

class contains a path of c.e. Turing degree, this implies that: if P is a
Π0

1 class with no K-trivial members then there exists a c.e. set A which
is not K-trivial and X 6≤LR A for all X ∈ P . Finally, we can show the

8by definition the property low for Ω is downward closed with respect to ≤LR.
9The proofs for the results presented in this Sections 3.2 and 3.3 were removed from

an earlier version of the paper, after a request by the referee. They are available from the
authors.
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following, which can be seen as a strengthening of Theorem 4.7 of [JS72b].
There is a perfect Π0

1 class such that any two distinct members of it are LR
incomparable.

3.3. Hyperarithmetical complexity LR below ∅′. The Jockusch-Soare
methodology discussed above is also a very useful tool for the study of
features of ≤LR that do not have an analogue in the Turing degrees. For
example, we can show that there is a proper hyperarithmetical hierarchy of
LR degrees below the LR degree of the halting problem. An LR degree is ∆0

2

if it contains a ∆0
2 set. Similarly, it is ∆0

α (where α is a computable ordinal) if
it contains a set in ∆0

α. For the definition of the hyperarithmetical hierarchy
we refer the reader to [AK00]. Recall from [AK00] that given Kleene’s O
as a system of notations for the computable ordinals we can define the sets
H(a) for a ∈ O by recursion, in such way that H(x) ≡T H(y) for notations
x, y ∈ O representing the same ordinal. Given a computable ordinal α, let
∅(α) be some H(a) for a notation a ∈ O such that a represents α. For an
infinite ordinal α we let ∆0

α be the class of oracles which are computable
from ∅(α); for finite ordinals n let ∆0

n be the usual arithmetical class Σ0
n∩Π0

n

(notice the non-uniformity in the transition from the finite to the infinite
case). We can show that for each computable ordinal α ≥ 2 there is an LR
degree below the LR degree of ∅′, which is ∆0

α and is not ∆0
γ for any γ < α.

The proof is a forcing argument with Π0
1 classes. It uses a Π0

1 class with no
K-trivial paths, such that all of its paths are ≤LR ∅′. This was constructed
in [BLSss]. Also, it uses certain features of ≤LR like those used in Section
3.1.

4. Random non-cupping revisited.

The property of joining a random degree to ∅′ was first addressed by
Kučera in a meeting in Cordoba in 2004. The first result was produced by
Nies in [Nie07] where he constructed a promptly simple set which cannot
be joined with a random to ∅′. Such sets with the latter property were
called Martin-Löf non-cuppable. He also observed that such a set has to
be K-trivial and showed that the above result holds even if we replace ∅′

with an arbitrary ∆0
2 random set. Shortly after this proof was circulated,

Barmpalias [Bar06] produced a different proof, which shows the stronger
result that ∅′ in the above statement can be replaced by an arbitrary ∆0

2

set. In fact, he showed the following.

Theorem 4.1 (Barmpalias [Bar06]). For every ∆0
2 noncomputable set Y

there is a promptly simple set A such that Y ≤T A⊕R ⇒ A ≤T R for every
random set R.

Later Hirschfeldt showed that if ∅′ ≤T A ⊕ R for a K-trivial A and
a Martin-Löf random set R then ∅′ ≤LR R, and Miller and Hirschfeldt
(see [Nie05a] or [Nie09]) showed that for every null Σ0

3 class there exists a
promptly simple set which is Turing below all Martin-Löf random members
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of the class. Given that the class of LR-complete sets is Σ0
3 and null, and it

contains Turing incomplete Martin-Löf random sets, it follows that there is
a promptly simple Martin-Löf non-cuppable set.

Let (We) be the standard effective sequence of all c.e. sets and let (Φe) be
the standard effective sequence of all Turing functionals. In the following we
give a simple proof of Theorem 4.1 given the proof of the above mentioned
result of Hirschfeldt and Miller. Their proof is effective and produces a c.e.
set. It can also easily be combined with lowness requirements, so that it
uniformly produces a lowness index for the constructed set. In other words,
this modified argument can be seen as a pair of computable functions f1, f2

which take an index of a Σ0
3 class10 S and return a c.e. index f1(e) of a c.e.

set W (i.e. a number k such that W = Wk) and a lowness index f2(e) of W

(i.e. a number t such that W ′ = Φ∅′
t ) such that

• W is Turing below all Martin-Löf random members of S
• if S is null then W is promptly simple.

Notice that by the properties of f1, f2 we also have W ′
f1(e) = Φ∅′

f2(e) for all e.

Given a non-computable ∆0
2 set Y with a computable approximation (Ys)

the class

Se = {X | Y ≤T X ⊕ We} = ∪m ∩s0,n ∪s>s0{X | ΦX⊕We
m,s ⊃ Ys ↾ n}

(where Φm,s denotes the finite approximation to the Turing functional Φm

at stage s) is Σ0
3(We). Also, Se is null in the case that Y 6≤T We, and it is Σ0

3

in the special case where We is low. In fact, there is a computable function
g such that if n is a lowness index of a low set We then g(e, n) is a Σ0

3 index
of Se. By the double recursion theorem there exist e, k ∈ N such that

Wf1(g(e,k)) = We and Φ∅′

f2(g(e,k)) = Φ∅′

k = W ′
e.(4.1)

The set We is not computable, because otherwise Y 6≤T We, so by [Sti72] Se

is null and therefore Wf1(g(e,k)) is promptly simple (by the properties of f1),
a contradiction. If Y ≤T We ⊕ R for any Martin-Löf random set R, then
R ∈ Se and by the properties of f1 we have We ≤T R.

References

[AK00] C. J. Ash and J. Knight. Computable structures and the hyperarithmetical
hierarchy, volume 144 of Studies in Logic and the Foundations of Mathematics.
North-Holland Publishing Co., Amsterdam, 2000.

[Bar06] George Barmpalias. Random non-cupping revisited. J. Complexity, 22(6):850–
857, 2006.

[BLS08] George Barmpalias, Andrew E. M. Lewis, and Mariya Soskova. Randomness,
Lowness and Degrees. J. of Symbolic Logic, 73(2):559–577, 2008.

[BLSss] George Barmpalias, Andrew E. M. Lewis, and Frank Stephan. Π0
1 classes, LR

degrees and Turing degrees. Ann. Pure Appl. Logic, (in press).

10as usual, we can assume that every number is the index of some Σ0
3 class. Recall

that a (Σ0
3) index of a Σ0

3 class S is the index of a Turing machine which, given a triple
(i, j, k), outputs a clopen set of reals Vi,j,k such that S = ∪i ∩j ∪kVi,j,k.



THE IMPORTANCE OF Π0
1 CLASSES IN EFFECTIVE RANDOMNESS. 15

[Cen99] Douglas Cenzer. Π0
1 classes in computability theory. In Handbook of com-

putability theory, volume 140 of Stud. Logic Found. Math., pages 37–85. North-
Holland, Amsterdam, 1999.

[CS07] Joshua A. Cole and Stephen G. Simpson. Mass problems and hyperarithmetic-
ity. J. Math. Log., 7(2):125–143, 2007.

[DH09] Rod Downey and Denis Hirshfeldt. Algorithmic Randomness and Complexity.
Springer-Verlag, in preparation, 2009.

[DHMN05] Rod Downey, Denis R. Hirschfeldt, Joseph S. Miller, and André Nies. Rela-
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