CENTRE for ECONOMIC P E R F O R M A N C E

CEP Discussion Paper No 915

March 2009

The Importance of Relative Performance Feedback Information: Evidence from a Natural Experiment using High School Students

Ghazala Azmat and Nagore Iriberri

Abstract

We study the effect of providing relative performance feedback information on performance under piece-rate incentives. A natural experiment that took place in a high school offers an unusual opportunity to test this effect in a real-effort setting. For one year only, students received information that allowed them to know whether they were above (below) the class average as well as the distance from this average. We exploit a rich panel data set and find that the provision of this information led to an increase of 5% in students’ grades. Moreover, the effect was significant for the whole distribution. However, once the information was removed the effect disappeared. To rule out the concern that the effect may be driven by teachers within the school, we verify our results using national level exams (externally graded) for the same students, and the effect remains.

Keywords: school performance, relative performance, piece-rate, feedback, natural experiment, social comparison, self-perception, competitive preferences
JEL classifications: I21, M52, C30

This paper was produced as part of the Centre’s Labour Markets Programme. The Centre for Economic Performance is financed by the Economic and Social Research Council.

Acknowledgements

We are grateful to Oiartzo Ikastola (former Orereta Ikastola) and the University of the Basque Country for giving us access to the data. We also thank Manuel Arellano, Samuel Bentolila, Stephane Bonhomme, Antonio Cabrales, Antonio Ciccone, Vincent P. Crawford, Vicente Cunat, Sergi JimenezMartin, Ignacio Palacios-Huerta, and Pedro Rey-Biel for their comments. Ghazala Azmat acknowledges financial support from ECO2008-06395-C05-01 and the support of the Barcelona GSE Research Network and of the Government of Catalonia. Nagore Iriberri acknowledges financial support from Ministerio de Educacion y Ciencia (SEJ2006-05455 and SEJ2007-64340) and the support of the Barcelona GSE Research Network and of the Government of Catalonia.

Ghazala Azmat is an Associate at the Centre for Economic Performance, London School of Economics. She is also an Assistant Professor of Economic with the Departament d'Economia i Empresa. Universitat Pompeu Fabra, Barcelona (Spain). Nagore Iriberri is an Assistant Professor with the Departament d’Economia i Empresa, Universitat Pompeu Fabra.

Published by
Centre for Economic Performance
London School of Economics and Political Science
Houghton Street
London WC2A 2AE

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means without the prior permission in writing of the publisher nor be issued to the public or circulated in any form other than that in which it is published.

Requests for permission to reproduce any article or part of the Working Paper should be sent to the editor at the above address.
© G. Azmat and N. Iriberri, submitted 2009

1. Introduction

Improving students' performance has been an important concern for academics and educational policy makers alike. Given the recent introduction of the OECD coordinated Programme for International Student Assessment (PISA), improvements in students' performance, measured by their grades, is at the heart of governmental reform. ${ }^{1}$ The education literature has focused on school inputs as the principle means to improve students' performance, in particular, reduction in pupil/teacher ratio, improved quality of teacher (experience and education), and extended term length (See Krueger (1999), Card and Krueger (1992)). There is however, a lively debate regarding the effectiveness of school inputs, largely due to their associated costs (Hanushek (1996, 2003)). Moreover, the PISA reports do not show a strong positive relationship between the amount spent per student and the performance in the standardised tests in mathematics, science and reading. For example, the US ranks second in expenditure per pupil $(91,770 \$$) but ranked twenty-second (out of 30) in performance (see OECD PISA report, 2006).

More recently, there has been interest in analyzing the relevance of performance evaluations and feedback information regarding these evaluations. The effect of interim feedback information about own performance on subsequent performance has been studied mostly in labour settings ${ }^{2}$. The importance of interim feedback information on students' performance has been empirically studied by Bandiera et al. (2008). The authors find that providing university students with interim feedback information about own performance has a positive effect on their final performance. However, feedback information involving relative performance has received less attention. The provision of relative performance feedback information allows for social comparison (individuals can evaluate their own performance by comparing themselves to others, Festinger (1954)). While this has been extensively studied in management and psychology literature (see Festinger (1954), Locke and Latham (1990) and Suls and Wheeler (2000) for an overview), it has not been fully explored in economics. ${ }^{3}$

[^0]In our paper, we investigate both theoretically and empirically the role that relative performance feedback information plays on students' performance. We use a natural experiment that took place in a high school, where for one year only, students were provided with relative performance feedback information in addition to the usual individual performance information. Typically, students received report cards containing the grades for each subject, where grades measured absolute performance since there was no grade curving (piece-rate incentives). However, during the academic year 1990-1991, students also received in their report card their own average (over all subjects), as well as the class average (over all subjects and students), such that they could observe whether they were above or below the class average, as well as the distance from this average. The relative performance information based on the class average allowed for social comparison, since students could observe whether they were performing better or worse than their classmates. This information treatment was removed after one academic year. The question we address is whether this additional information had any effect on students' real effort and, therefore, on their performance.

To our knowledge this is the first paper that addresses the effect of relative performance feedback information on performance under piece-rate incentives, in a real effort and natural setting. ${ }^{4}$ There are, however, two experimental papers that pose a similar question. Hannan et al. (2007) use an experiment (with no real effort) to compare the impact of providing relative performance feedback information to subjects under both, the tournament and piece-rate incentives. They find that for the subjects participating under piece-rate incentives, information regarding their position relative to the average, increases efforts for all subjects. Eriksson et al. (2008) on the other hand, use a two-person experiment (with real effort) to test the effect of providing the information about the other person's performance under both the tournament and piece-rate incentives. Under piece-rate incentives, they find no significant effect when the information is provided. However, they do find that the subject who is lagging behind makes significantly more mistakes. Our paper contributes to this line of research by proposing alternative theories for why the relative performance feedback would make a difference to real effort, and by providing empirical evidence from a natural experiment.
find that once the relative performance feedback is provided, the leading participants slack off and participants who are lagging behind give up.
${ }^{4}$ Falk and Ichino (2006) and Mas and Moretti (2009) look at the effect of social comparison (peer effects) on real effort under flat-rate incentives. They find evidence for the existence of peer effects.

The natural experiment that took place in a high school offers a unique opportunity to study the importance of relative performance information under piece-rate incentives. There are many important features that should be highlighted. First, the experiment takes place in a natural setting and allows us to measure real effort through their grades. Second, the provision of the additional information took place for exogenous reasons in the academic year 19901991. In particular, the adoption of a new application to produce report cards offered the possibility of including the extra information and the administrative staff (not the teachers) decided to use it. It was untargeted, that is, it was not introduced as a response to any initiative to affect performance. Third, there is no systematic difference between the year 1990-1991 and any other year in terms of class-sizes, number of teachers, subjects taught and/or the evaluation system. Fourth, we have panel data on 1,313 students (3,414 grades) registered at the high school between the years 1986 and 1994. Typically students would complete four years in high school before going to University. Since we can follow the same students over time we are able to control for individual fixed effects. Finally, the additional information was removed from the report cards after one year, allowing us to exploit the variation in students' performance before, during and after the treatment.

We consider two alternative explanations for why students would react to the relative performance information and the empirical analysis allows us to test the relevance of each explanation.

On the one hand, students might react to the additional information because individuals have inherently competitive preferences. ${ }^{5}$ When information that allows for social comparison is provided, people get utility (disutility) from being ahead (behind) of others. There are two important features to note. First, there is no explicit reward (penalty) derived from being above (below) the class average. Unlike in a tournament, students are not explicitly rewarded according to their relative performance but according to absolute performance (piece-rate incentives) ${ }^{6}$. Second, the relative performance information is private information such that it is different from status-seeking preferences. We will refer to this theory as the preferencesbased or competitiveness theory. We show that based on this explanation, when the relative

[^1]performance information is provided, all students would choose higher effort, and therefore higher performance would be observed.

On the other hand, students might react to the additional information because individuals have an imperfect knowledge of their own ability, such that the additional information is informative of one's own ability. Moreover, if performance is a function of both ability and effort, where ability and effort are complements in performance, then the self-perceived ability will affect the optimal choice of effort. Relative performance feedback affects the selfperceived ability and, therefore, the choice of effort. We will refer to this theory as the selfperception theory. We show that based on this explanation, top (bottom) performing students would choose higher (lower) effort, because this information encourages high ability (discourages low ability) students.

We find that the feedback information on relative performance had a strong positive effect on students' performance. Overall, we find a 5% increase in their grades. This is comparable, if not better than the effects found by the literature on improving school inputs. For example, Krueger (1999) uses an experimental study (the Tennessee Student/Teacher Achievement Ratio (STAR)), where students were randomly assigned to small or regular size classes, to show that reducing class size from 22 to 15 leads to internal rate of return of 6%. More importantly, contrary to improving school inputs, providing feedback information on relative performance involves no additional cost. Moreover, this positive effect is significant throughout the grade distribution, where the strongest effects are found at the tails of the distribution. This supports the competitive preferences rather than the self-perception hypothesis, since we do not observe top performing students reacting differently from bottom performing students. It has also important policy implications, as it implies that the students at the top as well as bottom of the distribution react positively. In addition, we find that when the relative performance feedback information is removed, the effect disappears, such that there is no lasting effect of the treatment.

A more detailed analysis shows that there are heterogeneous effects from the provision of relative performance feedback information. First, the effect is significant only for students in the first and fourth years of high school. It is reasonable to assume that in the first year of high school the relative performance feedback information provides new information and that students might be more reactive to it than in the subsequent years. As for the fourth year effect, given that the grades during this year are especially important in determining the final university entry grade, one may believe that any additional information regarding grades will provoke a reaction. Second, the positive effect is strongest in science subjects such as

Mathematics, as well as in language subjects. This has important policy implications since there has been a special interest in improving grades in more technical subjects such as Math. Third, we also find that, although girls overall obtain better grades than boys there is no significant gender difference in the reaction to the information that allows for social comparison ${ }^{7}$.

One may question whether the positive effect is driven by students, parents or teachers. While it is almost impossible to disentangle whether the effect is coming from students or their parents, we are able to rule out the possibility that teachers are artificially driving the effect. We use an external source of variation coming from national level exams, Selectividad, (similar to the Scholastic Aptitude Tests (SAT) used in the United States), completed at the end of the fourth year of high school. Selectividad differs from SAT in that it tests the knowledge on the topics covered during the last year of high school, such that effort and performance in this year should be highly correlated with the performance on the Selectividad test. The similarity is that both exams are written and graded by external bodies, such that the teachers in the school have no way to affect these grades. We replicate the analysis using the grades from the national level exams and find the same positive and strong effect.

The paper is organized as follows. Section 2 describes the natural experiment in detail. Section 3 derives theoretical predictions for why and how we would expect students to react to the additional information. Section 4 describes the data and presents the main descriptive statistics. Section 5 presents the results from the empirical analysis. As well as identifying and quantifying the treatment effect, we thoroughly investigate the impact of the information treatment. Finally, we conclude in Section 6. The web appendix provides further details ${ }^{8}$.

2. Description of Natural Experiment

The natural experiment took place in a high school located in the province of Gipuzkoa in the north of Spain (the Basque Country) during the academic year 1990-1991. The high school was a private, but subsidized, school where education was provided in Basque, while Spanish and English (or French) were taught as language subjects. The alternative to this private Basque school was the public school where three different language options were offered: an education in Basque (with Spanish as a language subject), an education in Spanish (with Basque as a language subject) and a mixed education in Basque and Spanish (where

[^2]some subjects are taught in Basque and others in Spanish) ${ }^{9}$. The main deciding factor to choose among these competing alternatives was the preference for an education in Basque. ${ }^{10}$ Tables 1-4 in the web appendix show the comparison of the main macro variables between Gipuzkoa, Basque Country and Spain.

The natural experiment occurred in the academic year 1990-1991. Typically, students would receive a report card at the end of each quarter (November, February, April and June). These report cards would provide the list of subjects taken and the grade obtained in each of the subjects. Grades measure absolute performance since there was no grade curving (see Section 4, Figure 1). In the academic year of 1990-1991, the treatment year, the computer application used to produce students' report cards changed. ${ }^{11}$ This change resulted in students being provided with additional information that facilitated social comparison. In particular, as well as the list of grades obtained in each of the subjects, students were also provided with their own average grade across all subjects and the class average grade across all subjects. This allowed a direct comparison between the students' own average grade with the average grade of the class. Moreover, students could observe whether they were above or below the class average, as well as the distance between their own average grade and the class average grade. Given that students received report cards four times during the academic year, they received this additional information four times during the treatment year. However, we only have one grade per subject for each academic year, which is an average over the four quarter grades (see Section 4 for a discussion on how this may affect the parameter estimates). Finally, the information treatment was removed after the academic year 1990-1991, lasting for only one year, and consequently the additional information was simply omitted from academic year 1991-1992 onwards. The removal was due primarily to parents' and teachers' complaints. ${ }^{12}$ See Figures 1, 2, and 3 in the web appendix for an example of the report cards before, during and after the experiment, respectively.

There are several important features of this natural experiment that make it almost like a randomized field experiment. First, it was an experiment that took place in a real environment, where grades can be used as a measure of real effort. Second, the introduction of the additional information was exogenously applied, without being a meditated decision of

[^3]school officials or teachers. The new computer application offered the possibility of providing the extra information and the administrative staff decided to incorporate it. Third, it was untargeted, that is, it was not introduced as a response to any initiative to affect performance. Finally, it took place in an arbitrary year that was not systematically different from any other year in our sample. In principle, no other significant differences occurred in 1990-1991 with regard to class-sizes, teachers, subjects/material taught and the evaluation system, as we will justify in Section 4 (Table 3).

The drawback of this experiment is that there is no "control group" per se because all groups in year 1990-1991 were affected by the treatment. Ideally, one would like to have both treatment and control groups at the same year. However, the richness of our data in terms of number of years and individual level panel data, as well as the off-on-off nature of the treatment, allow us to overcome this identification problem.

3. Theoretical Predictions: Why We Would Expect Students to React to Relative

 Performance Feedback informationIn this section we review two different theoretical frameworks that predict how students would react to the additional information. On the one hand, students may react to the additional information because individuals have inherently competitive preferences. When information that allows for social comparison is provided, people get utility (disutility) from being ahead (behind) of others. On the other hand, students may react to the additional information because individuals have an imperfect knowledge of their own ability, and the additional information that allows for social comparison is informative of one's ability.

Both competitiveness and self-perception theory consider $\mathrm{N} \geq 2$ students who differ in their ability, $a_{i} \in F[\underline{a}, \bar{a}]$, and choose effort levels, $e_{i} \in\lfloor\bar{e}, \bar{e}]$ where $i=1,2, \ldots N$. For each student i, both ability and effort levels yield deterministically their performance at school, given by the expression $p_{i}\left(a_{i}, e_{i}\right)$, which is represented by their grades. Performance is assumed to be increasing and strictly concave in both ability and effort. Effort is costly and the cost function, given by $c\left(e_{i}\right)$, is increasing and strictly convex in effort. Moreover, effort and ability are complements in performance, that is, effort is more productive for high ability
students as for low ability students. ${ }^{13}$ In the following sections, we will compare students' optimal effort levels, when the relative performance feedback is provided (treatment) and when it is not (control), for the two different models.

3.1 Preferences-based Theory: Competitiveness

We will show that the competitiveness theory predicts that students will react to the additional information exerting more effort and therefore, we would expect a higher performance level during the treatment year.

We assume that ability and effort levels are privately known to each student, such that students choose their optimal effort level. The utility shown below presents a specific form of competitive preferences. ${ }^{14}$ We assume all individuals have homogeneous preferences. ${ }^{15}$

$$
u_{i}=p_{i}\left(a_{i}, e_{i}\right)-c\left(e_{i}\right)+\alpha\left[p_{i}\left(a_{i}, e_{i}\right)-\frac{1}{N} \sum_{k=1}^{N} p_{k}\left(a_{k}, e_{k}\right)\right] \text { for } i=1,2, \ldots N . \text { (3.1) }
$$

We distinguish between two main settings.
On the one hand, in the absence of any information about others' performance, social comparison is not possible $(\alpha=0)$. Then, students can only choose their effort level in a simple decision making setting, where marginal benefits and costs of effort are compared.

13 The assumptions for the performance function include $\frac{\partial p_{i}\left(a_{i}, e_{i}\right)}{\partial a_{i}}>0, \quad \frac{\partial^{2} p_{i}\left(a_{i}, e_{i}\right)}{\partial a_{i}{ }^{2}}<0$, $\frac{\partial p_{i}\left(a_{i}, e_{i}\right)}{\partial e_{i}}>0, \quad \frac{\partial^{2} p_{i}\left(a_{i}, e_{i}\right)}{\partial e_{i}^{2}}<0$. Effort and ability being complements in performance means that $\frac{\partial^{2} p_{i}\left(a_{i}, e_{i}\right)}{\partial a_{i} \partial e_{i}}>0$. Notice that we can get the same results assuming that effort and ability are perfect substitutes in performance based on the competitiveness theory although this is no longer true for the selfperception theory. The assumptions for the cost function include $\frac{\partial c\left(e_{i}\right)}{\partial e_{i}}>0$ and $\frac{\partial^{2} c\left(e_{i}\right)}{\partial e_{i}{ }^{2}}>0$. Notice that this specification is equivalent to having a performance function that only depends on ability and a cost function that depends on both ability and effort in a way that effort is at least as costly for low ability students as to high ability students.
${ }^{14}$ Many specific models that incorporate competitiveness have been proposed. The model proposed in this paper is close to Kandel and Lazear's (1992) model where peer pressure enters additively into the utility function. A specific form of peer pressure mentioned by the authors is the difference between the average effort and one's effort, which is the same as our functional form. Charness and Rabin (1999) propose a simple linear utility in which others' payoffs enter negatively in one's utility. Dubey and Geanakoplos $(2004,2005)$ and Moldovanu et al. (2005) assume individuals have knowledge of the complete ranking and they assume individuals get positive utility from the number of individuals below them and negative utility from the number of individuals above them. Hopkins and Kornienko (2004) propose a utility in which "status" or position in the ranking enters multiplying the absolute income.
${ }^{15}$ We could relax this assumption. One could assume that competitive preferences are correlated with ability, which would change the predictions of Result 1. In particular, we would expect the grade dispersion to increase because high ability will exert more effort but low ability would not.

On the other hand, when information on others' performance is provided in the form of the average performance such that social comparison is possible $(\alpha>0)$, the setting becomes strategic. Each student, on top of the simple benefit/cost analysis of effort, can directly compare her performance with the class average performance. In that case, the utility function in (3.1) is composed of two differences. The first difference captures the purely decision making situation mentioned above. The second difference captures a purely competitive game, where students get a positive utility if they perform above the average and a negative utility if they perform below the average. The intuition behind this second difference in the payoff function resides in the appreciation or depreciation of a specific performance level depending on whether it has outperformed or underperformed with respect to the class average. For example, according to the utility function in equation (3.1) a grade of 7, in a scale between 0 and 10 , will yield higher utility if the average grade in the class was 6 , than if the average was 8 . In other words, any performance level that is above the class average gets inflated while any performance level that is below the class average gets deflated. Although the utility in (3.1) shows some resemblance with the utility presented by Bolton and Ockenfels (2000) to represent inequity aversion preferences, there are significant differences. ${ }^{16}$

We will compare the optimal level of effort, when social comparison is possible ($\alpha>0$) to when social comparison is not possible ($\alpha=0$), given the competitive preferences depicted in (3.1).

Result 1: Given competitive preferences in (3.1), for any ability level, the optimal effort level when social comparison is possible ($\alpha>0$) is higher than the optimal effort level when social comparison is not possible ($\alpha=0$).

The proof, shown in the Proof of Result 1 in the web appendix, is straightforward when comparing the first-order conditions for the two settings, when social comparison is possible and when it is not. The intuition is that the purely competitive game pushes the effort level up. If we focus only on the competitive game, such that effort is costless, students could do no better than to choose the highest effort level since this would reduce (increase) the negative (positive) difference between their performance and the class average performance for low (high) ability students.

[^4]
3.2 Self-perception Theory: Learning about Own Ability

We will show that the self-perception theory predicts that high ability (low ability) students will react to the additional information exerting more (less) effort and therefore, we would expect a higher (lower) performance level for high ability (low ability) students, during the treatment year.

We adapt the model proposed by Ertac (2006) to the type of relative performance feedback information provided in the natural experiment we study ${ }^{17}$. The main feature of this model is the assumption that students do not perfectly observe their own ability, such that they use both own performance feedback information and social comparison information, one's performance in comparison with others' performance, to learn about it. Students receive a noisy signal of their own ability.

$$
\begin{equation*}
s_{i}=a_{i}+\eta \quad i=1,2, \ldots . N . \tag{3.2}
\end{equation*}
$$

The shock, η, represents a common shock to performance. It can be interpreted as the easiness of the exam. Ability, a_{i}, is independently distributed according to $N\left(\bar{a}, \sigma^{2}\right)$ and the common shock, η, is distributed according to $N\left(0, \psi^{2}\right)$. In addition, ability and the common shock are independently distributed. Furthermore, when the social comparison information is revealed, students also observe the average signal.

$$
\begin{equation*}
\bar{s}=\frac{\sum_{k=1}^{N} s_{k}}{N}=\frac{\sum_{k=1}^{N}\left(a_{k}+\eta\right)}{N}=\frac{\sum_{k=1}^{N} a_{k}}{N}+N \eta \tag{3.3}
\end{equation*}
$$

Both the individually received signal as well as the average signal (when provided) will be informative about their own ability. Self-perceived ability in turn determines the optimal effort level. Both ability and effort levels yield deterministically their performance at school and for simplicity we will assume performance is given by $p_{i}\left(a_{i}, e_{i}\right)=a_{i} e_{i}$.

We distinguish between two main settings.
On the one hand, in the absence of any information about others' performance, social comparison is not possible (NSC) and students can only use their private signal about own performance $\left(s_{i}\right)$ to form the expected value of their own ability.

$$
\begin{equation*}
u_{i}^{N S C}=E\left[p_{i}\left(a_{i}, e_{i}\right)-c\left(e_{i}\right) \mid s_{i}\right]=E\left[a_{i} \mid s_{i}\right] e_{i}-c\left(e_{i}\right) \tag{3.4}
\end{equation*}
$$

[^5]On the other hand, when information on others' performance is provided $(S C)$, in the form of the average performance of the class composed by N students, \bar{s}, relative performance information is also used to form the expected value of their own ability. We will compare the optimal level of effort in theses two settings.

$$
\begin{equation*}
u_{i}^{S C}=E\left[p_{i}\left(a_{i}, e_{i}\right)-c\left(e_{i}\right) \mid s_{i}, \bar{s}\right]=E\left[a_{i} \mid s_{i}, \bar{s}\right] e_{i}-c\left(e_{i}\right) \tag{3.5}
\end{equation*}
$$

Result 2: If $s_{i}>s^{*}$ then $e^{N S C^{*}}\left(s_{i}\right)<e^{S C^{*}}\left(s_{i}, \bar{s}\right)$ and if $s_{i}<s^{*}$ then $e^{N S C^{*}}\left(s_{i}\right)>e^{S C^{*}}\left(s_{i}, \bar{s}\right)$, where $s^{*}=(\bar{s}-\bar{a}) \frac{N\left(\sigma^{2}+\psi^{2}\right)}{\sigma^{2}+N \psi^{2}}+\bar{a}$. Students whose signal is above (below) s^{*} should put in more (less) effort, when social comparison information is provided.

The proof, shown in Proof of Result 2 in the web appendix, is straightforward when comparing the first-order conditions for the two settings, with and without social comparison shown in equations (3.4) and (3.5). The comparison reduces to the difference between $E\left[a_{i} \mid s_{i}\right]$ and $E\left[a_{i} \mid s_{i}, \bar{s}\right]$. Notice that when the average signal is equal to the unconditional expected ability, $\bar{s}=\bar{a}$, then the $s^{*}=\bar{s}$, so that every student whose signal is above (below) the average signal should put in higher (lower) effort level when the social comparison information is provided. However, when $\bar{s} \neq \bar{a}$, then the average signal is informative about the easiness or difficulty of the exam, which determines the threshold signal, s^{*}, to be higher (lower) than the average signal when $\bar{s}>\bar{a}$ and $\bar{s}<\bar{a}$ respectively.

3.3. Testable Hypothesis

We now summarize the main hypothesis regarding the predicted sign of the effect that the relative performance feedback information can have on performance, based on the alternative theoretical models depicted in the previous section.

Null Hypothesis: No effect on grades.

The null hypothesis is that we should find no effect for the additional information provided during the treatment year. There are two main explanations for why this might be the null hypothesis. Firstly, based on the preferences-based explanation, this would suggest that either the students' utility is unaffected by social comparison (no competitive preferences), or that the students already possess the relative performance information that allows for social comparison, such that, the fact that it is explicitly provided adds no extra information. Second, based on the self-perception explanation, this would suggest either that students do not have an imperfect notion of their ability or that again this relative performance information is known without the explicit provision of it.

Alternative Hypothesis:

(1) Positive effect on grades for all students.
(2) Positive effect on grades for high ability students and negative effect on grades for low ability students.

We consider two alternative hypotheses. On one hand, based on the preferences-based explanation and assuming that the additional information that allows for social comparison is really new to the students, then we would expect all students' grades to be higher during the treatment year with respect to the other years. Also, we should observe no differences in the dispersion among the grade distribution. On the other hand, based on the self-perception explanation we would expect students' grades to be higher (lower) for those high ability (low ability) students because students who find out they are above (below) certain threshold should be encouraged (discouraged). This implies that the dispersion among the grade distribution should increase. Notice that for being able to discriminate among the two hypotheses, it is necessary to look at the effect of the information treatment throughout the distribution of students' grades (see Sections 5.3), as well as to look at the effect of the treatment on the dispersion among students' grades (see Section 5.5).

4. Data Description and Descriptive Statistics

In this section we begin by describing the data from the natural experiment. We have data on students' grades for all subjects between the years 1986-1987 and 1994-1995 (3,414 grades). Grades range between 1.5 and 9.5 , see Table 5 in the web appendix for a full list of the possible grades and their numerical conversion. Although students received their report card four times in an academic year, we can only observe their yearly grades by subjects, which are an average over the four quarters. This has two implications. First, since students receive this information for the first time when they receive their grades in the first quarter, they can only react to the additional information from the second quarter onwards. In turn, this implies that any effect that we observe on the average grade over all four quarters will be weaker than the "true" effect. Second, we are unable to observe whether the effect is equally intense in the second, third and fourth quarters or the effect is strongest in the second quarter and then vanishes. Hannan et al. (2007) provide laboratory experimental subjects with relative performance information three times as in our natural experiment, and they observe the effect does not vanish over time.

Students stay in high school for four years, starting at the age of fourteen and finishing at the age of seventeen. We will refer to each of the four high school years as Levels 1 to 4, while years will refer to academic years between 1986 and 1994. We are able to identify each
student and follow them through each level of school. Overall, we have an unbalanced panel of 1,313 students. In Table 1, we show the number of students by each of the years and levels. Year 1990 is the treatment year and there are six full cohorts of students. We can see that within each cohort, there is attrition from one level to the next, and this is more pronounced from Level 3 to Level 4. Sometimes the number of students increases from one year to the next, either because new students enter the school or because there are students who repeat the year. Finally, from year 1990 onwards we observe that the number of entering students falls. This is partly due to the end of the baby boom cohort and also because a nearby middle school extended its studies to high school level. We have the grades data on the students who chose to stay in their nearby school but exclude these students from our analysis, as they did not receive the additional information. We do, however, check that there was no selection or reduced class size effects coming from this change. ${ }^{18}$

In Level 1, students are randomly divided into three (or four) groups. In Levels 1 and 2, students have a specified set of compulsory subjects that they must undertake. However, in Level 3, students have to choose between Arts or Science specializations, which they usually follow through in Level 4. In Table 2, we list the subjects and their mean grades and standard deviations by level. We can see that the average grades in Mathematics, Physics and Technical Drawing are generally lower while in subjects such as Religion, Music and Physical Education are typically higher.

Grades are not curved and therefore, they measure absolute performance. Figure 1 provides evidence that grades are not curved. We show the grade distribution for two subjects (Basque and Math) that are compulsory in all four levels. Each vertical bar represents the distribution of grades in a particular group and academic year, and the shaded regions show the proportion of students that obtain each grade (1.5, 4, 5.5, 6.5, 7 and 9.5). In line with grades not being curved, the distribution of grades varies widely across group-years. We have repeated this analysis for other subjects and we get quantitatively similar results.

At the end of Level 4 students also take a standardized final exam called Selectividad (similar to the Scholastic Aptitude Tests (SAT) used in the United States) before they can access University. For the students in our sample, we have data on their Selectividad grades. The final grade, that will determine entry into University, is composed of 50% of the Selectividad grade and 50% of the average grade of Levels 1 to 4. However, the Selectividad

[^6]exams are based on material covered only in Level 4, which gives Level 4 a much higher weight on determining the University entry grade.

In Table 3, we list the main descriptive statistics for all years combined and separately for the treatment year in 1990. From the table we can see that there were no significant differences between the treatment and the other years regarding class sizes, the number of teachers, students' gender composition and the proportion of repeaters. The only remarkable difference, shown later in the results, is the drop in attrition from Level 1 to 2 and Level 3 to 4. Overall, class sizes are on average around 30 students; the number of teachers per year is between 12 and 15 ; the frequency of girls is slightly higher than 50 percent; and the Science track is more frequently chosen than the Arts track.

5. Econometric Analysis

This section identifies and quantifies the effect the relative performance information feedback had on students' performance. We split the analysis into several parts. First, we analyze whether the treatment had any effect on students' performance. Second, we proceed to quantify this effect and check for its robustness. From these results, we are able to reject the null hypothesis of there being no effect. Third, we look deeper into the impact of the treatment, regarding the type of students affected, the specific subjects and the different high school levels. We then move from the mean analysis to the analysis of the effect of the feedback information on the dispersion among students' grades. The analysis in Sections 5.3 and 5.5 especially focus on discriminating among the two proposed theoretical explanations. We conclude the section with some robustness checks.

5.1. Identifying the Effect: Kernel Distribution

Figure 2 shows the kernel distribution of grades for all students before (1986-1989), during (1990) and after (1991-1994) the additional information treatment. We observe that the grade distribution is to the right of the grade distributions observed before and after the treatment. This shows that the additional information had an effect and that this effect was positive, resulting in higher grades during the treatment year. Moreover, we see that the treatment affects all parts of the distribution and in particular the tails of the distribution. Once the treatment is removed, we observe that the distribution of grades moves back in the direction of the distribution before the treatment was introduced. However, this post treatment distribution does not completely return to the pre treatment distribution. This may be due to
either lasting effects of the treatment after it is removed, or due to grade inflation over time ${ }^{19}$. We disentangle the two effects in the following analysis.

Figure 3, shows the kernel distribution of the grades for all students before (1986-1989), during (1990) and after (1991-1994) the additional information treatment, separated by Level. From the figures, it is clear that the strongest positive effects appear in Levels 1 and 4. We see that both the tails and the mean shift to the right during the treatment year. With regard to Levels 2 and 3, the differences appear to be more spurious ${ }^{20}$.

The rest of our analysis will quantify these results and test their robustness.

5.2. Quantifying the Effect: Estimation

In this section we proceed to quantify the effect of the additional information that allowed for social comparison. We start with a simple estimation of this treatment effect on the average grade (across all subjects) at the individual student level. ${ }^{21}$ We compare various estimators. Then, we check for the robustness of this effect using controls and placebo treatments.

We begin with a simple estimation to quantify the effect of the additional information, which allowed for social comparison, on the average grade (across all subjects) of student i in year t, Grade $_{i t}$. We pool all years between 1986 and 1994, identifying separately the treatment year 1990. We also include a linear trend to capture the grade inflation over the years.

$$
\begin{equation*}
\text { Grade }_{i t}=\beta_{0}+\beta_{1} \text { Trend }+\beta_{2} \text { Year } 1990+\varepsilon_{i t} \tag{5.1}
\end{equation*}
$$

In Table 4 columns 1 to 3 we show the results from this estimation using three different estimators: ordinary least squares (OLS), random effects (RE) and fixed effects (FE), respectively. According to the three estimators the additional information that allowed for social comparison clearly had a positive and highly significant effect on students' average grades. Overall, the marginal effect is between 0.275 and 0.296 , which at the average grade corresponds to approximately 4.5% increase in performance. This is a remarkable effect with significant policy implications. Our results are comparable to other factors that have an impact on increasing performance in schooling, such as reduced class sizes, or increased

[^7]school expenditure (see Krueger (1999)). However, many papers have found small or no effect of expenditure on students' performance (Hanushek (1996)). It is important to note that while these other measures have shown to be quite costly, providing information involves almost no cost.

We extend our analysis to include additional control variables, X, where X includes gender, level of study (Level 1-4) and whether the students are repeating the level.

$$
\begin{equation*}
\text { Grade }_{i t}=\beta_{0}+\beta_{1} \text { Trend }+\beta_{2} \text { Year } 1990+X_{i t}{ }^{\prime} \delta+\varepsilon_{i t} \tag{5.2}
\end{equation*}
$$

From column 4 to 6 in Table 4 we can see that the effect of the treatment year remains positive and significant, although the coefficient falls very slightly for each of the three estimators. With respect to the control variables, the results go in the expected direction. Female students outperform male students significantly. Students repeating a level do significantly worse compared to others when all students are pooled together (in the OLS specification) but once unobserved ability differences (i.e., individual fixed effects) are taken into account, they improve on their own previous performance. Regarding different levels, the students in their final levels, Level 3 and Level 4, do on average worse than in the first two levels. We can see that the students peak in their second year, Level 2, and do the worst in their final year, Level 4. This is plausible since the final years are more demanding than the first years but at the same time, the first year involves adjustment to the new environment (the transition from middle to high school.

Using only the OLS, one could argue that the observed effects are a result of the students in year 1990 being intrinsically different from other years. For example, if there was a complete replacement of students with higher ability students in the treatment year, we would expect to observe exactly the same effect. Since we have individual level data over each of the high school years (panel data at student level), we are able to rule out this possibility using the panel data estimations and by using a dynamic OLS specification (see columns 7 and 8). The inclusion of students' past grades enables us to control for students' unobserved characteristics such as ability. We can only do this for Levels 2 to Level 4. As we would expect, previous grades are usually highly correlated with current grade. If there was something special about the 1990 students it should be captured by the coefficient on previous grades, making the Year 1990 variable insignificant. However, we see that this is not the case because by using RE, FE and the dynamic OLS specification, the treatment years' effect remains positive and significant.

Our preferred estimator is the RE, since we do not lose variables that are fixed over time (as we do with FE) nor do we lose information by lagging grades (as we do with the dynamic OLS). ${ }^{22}$ In the tables that follow we will use RE whenever we use the panel element and OLS when using repeated cross sectional data.

In Table 5 we provide some robustness checks. In columns 3 and 4 we cluster the average grades at the group and year level, with and without controls. Although the standard errors increase slightly there is no change in the significance of any of the variables. In addition, to rule out the concern that the results are being driven by significant changes in the pool of teachers during the treatment year, in columns 5 and 6 we repeat the analysis controlling for the teacher fixed effects. We observe that, although the coefficient on the treatment variable decreases slightly, it remains positive and significant (at the 1% level). Given the robustness of the treatment effect, we will focus on equation (5.1) in the rest of this section.

In order to check whether the positive and significant effect that we have found is particular to the treatment year, we estimate equation (5.1) for the other years in our data. We perform this placebo treatment in two ways. First, we use only the years prior to 1990. Since there are potential lasting effects of the treatment in the subsequent years, we avoid this by only including the prior years to the treatment. Second, we use only Level 1 students' data for all years (except 1990), since there is obviously no concern for there being any lasting effect of the treatment for these students.

Figure 4 shows the placebo treatments for the years prior to 1990 . Here, we can see that for all years the treatment is insignificant at both the 1% and 5% level. Moreover, there is a clear spike in year 1990, with no increasing pattern in the average grades over the years. To ensure that this effect is neither a new state nor the beginning of a new increasing pattern, we want to be able to check the post treatment years. The only way we can cleanly do this, is by using data for Level 1 students only. This is shown in Figure 5. We can see here that the spike remains in the treatment year and that all other years are insignificant with the exception of 1994. In 1994, we see a large drop in the average grade which we cannot fully explain. This may be due to a smaller sample size that we have for Level 1 in 1994 or some other change in the school that we are unaware of. To ensure this is not affecting our main result, we replicated all of our analysis (equations (5.1) and (5.2)) by removing 1994. By doing so our main results hold and the coefficients are unchanged.

[^8]
5.3. Quantifying the effect: Who, What, Where

In this section we look more closely at the impact of the treatment effect across levels, students' gender and ability, and subjects. Here we find evidence in support of the competitive preferences hypothesis rather than the self-perception theory.

Since one might expect important differences across levels in reacting to such a policy, we begin by disaggregating the effect of additional information on average performance across Levels 1 to 4. In Table 6 we estimate equations (5.1) and (5.2) from the previous section by level. What is striking from this table is that while the effect is insignificant for Levels 2 and 3, there is a strong and positive effect for the first and final levels, Levels 1 and 4. Moreover, the coefficients on both Levels 1 and 4 are twice as large as the quantified effect at the aggregated level (shown in column 1). These estimates imply that the additional information led to an increase of 8% and 9% in the grades of students in Level 1 and Level 4, respectively. A plausible explanation for such a difference across levels may be related to how much prior knowledge students have about their position within the class. One might expect that the first year students have very little information about the ability of their classmates and therefore, whether they are above or below the average. Students in the other levels, on the other hand, might have a clearer picture of their position within the class. This is in line with the ability perception theory. Although we do not find that the relative performance information discourages students in the left tail of the distribution, we do find that the effect is more significant in Level 1, when the relative performance information is definitely new information. However, this does not explain the strong and positive effect in Level 4. One explanation for such an effect might be due to the importance grades attain in this final year. The grades in Level 4 strongly determine the entry grade for university, making them very prominent during this year. Students might therefore put a greater emphasis on social comparison during this crucial year.

Next, we look into the students' individual characteristics; in particular, there may be differential treatment effects by gender and ability, respectively. One may also believe that girls react differently to this additional information. We estimate the following equation to test for such differences.

$$
\begin{equation*}
\text { Grade }_{i t}=\beta_{0}+\beta_{1} \text { Trend }+\beta_{2} \text { Year } 1990+\beta_{3} \text { Girl }+\beta_{4} \text { Girl } * \text { Year } 1990+\varepsilon_{i t} \tag{5.3}
\end{equation*}
$$

In Table 7 we can see that, although girls do better than boys throughout high school, there does not appear to be any gender differences in reaction to the additional information. This is consistent with Niederle and Yestrumskas (2008).

Also, to understand the complementarities between the treatment and student ability, we look at whether high ability students are more/less affected by the treatment than low ability students. This is especially important as it allows us to discriminate between the two proposed theoretical frameworks, the competitiveness and the self-perception models. We do this in three ways.

Firstly, to understand which part of the grade distribution was most affected by the treatment, we estimate quantile regression using equation (5.1). In Figure 6, we plot the coefficients of the treatment year for each quantile. Although the coefficients are significant for most parts of the distributions, in line with what we observed in our kernel distributions, we can see that the students at the tails of the distributions are affected the most. This is a very interesting result, since it rejects the hypothesis that students at the lower end of the distributions might be discouraged by social comparison of this kind.

Second, using cross-sectional data, it is very difficult to disentangle ability from the treatment effect in a given year. The inclusion of students' past grades enables us to control for students' unobserved characteristics such as ability. Using the panel element of the data, we can control for students' ability by the previous year's grades. We define the dummy variable Above $_{i t-1}$ for those students whose grades are above the average of their level in the previous year. We interpret this as being high ability students.

$$
\begin{equation*}
\text { Grade }_{i t}=\beta_{0}+\beta_{1} \text { Trend }+\beta_{2} \text { Above }_{i t-1}+\beta_{3} \text { Year } 1990+\beta_{4} \text { Above } 90_{i t-1}+\varepsilon_{i t} \tag{5.4}
\end{equation*}
$$

In Table 8 we can see that the year 1990 did not affect differently those students who are high or low ability. This is in line with what we observed in the quantile regression. This has a desirable policy implication. One important concern (criticism of this policy) may be that the information that facilitates social comparison might discourage those students who are below the average. The results in Table 8 clearly suggest that this is not the case, since there is no differential effect. Although we see a strong positive relationship between current and past grades, the treatment did not affect differently those who are above and below the average. Moreover, we see that the treatment year effect remains positive and significant with the inclusion of these additional variables.

Finally, we complement the analysis above with a more refined students' grade distribution. We define four grade groups: students whose average grades are between (a) 8 and 10 , (b) 7 and 7.9 , (c) 5 and 6.9 and (d) 1.5 and 4.9 . We compute the hazard rates for each student moving across the grade groups and we analyze if there is a differential effect in the
treatment year. ${ }^{23}$ In Table 6 of the web appendix, we show the transition rates across grade groups for each year and in Table 9 we show the differential effect between 1990 and the average across all other years. We see that a student previously in group (a) is more likely to remain in this same group in 1990, compared with other years. Overall, students in a high grade group ((a) and (b)) are less likely to move to a lower grade group in 1990 compared to other years. Moreover, the students in the lowest grade group (d) are more likely to move to a higher grade group in 1990. These results suggest that the results are positive for all student grade (ability) groups.

The three different tests show that the provision of relative performance feedback information had a positive effect on all students' performance. This supports the competitive preferences hypothesis rather than the self-perception hypothesis.

Finally, we disaggregate the analysis at the subject level. We group subjects into four: Languages (Basque, Spanish and Foreign Language), Sciences (Maths, Biology, Chemistry, Physics, Geology and Technical Drawing), Arts (History, Latin, Philosophy, Literature, Greek and History of Art) and Others (EATP, Physical Education, Religion/Ethics, Music and Drawing). Table 10 includes the estimates for all levels and for each level separately. In column 1 we can see that students improve their performance in all subject groups. Moreover, the strongest effect is found in the Science group. From this analysis there are important policy implications. We can see that students are improving in subjects considered very relevant such as Math and Languages rather than in subjects such as Physical Education. In recent years the poor test scores in technical subjects, such as Physics and Math, in many western countries have hit the headlines and the improvement of which has been regarded as being high priority (See PISA reports 2006).

In columns 2 to 5 in Table 10, the estimates are presented for each of the different levels. Language and Science subjects show similar pattern to the aggregate results, with regard to the different levels. There appears to be a positive and strong effect on Levels 1 and 4, while the intermediate levels are unaffected. The exception to this is the Science subjects, which appear also significant (at the 5% level) during Level 2. Also, although we have seen a positive and significant effect on Arts, the level analysis shows that this is solely driven by changes in Level 3 that we cannot explain.

[^9]
5.4. Lasting Effect: Did the Treatment Have a Lasting Effect?

Our analysis so far has consistently shown that there is a positive and significant effect of the additional information on grades. We may also pose the question of whether there is a lasting effect of the treatment once it has been removed, that is, whether the effect persists on those students who received the information treatment. Given the panel element, we are able to track students over time to investigate whether there is a lasting effect of the treatment.

In Table 11, we allow for the possibility of lasting effects and we see that once the treatment was removed there was no further effect. When the relative performance information is removed, the grades of those students who did receive the information in the previous year are not distinguishable from the grades obtained in the academic years in which no information was provided. This may be the consequence of the students' lack of awareness about the relative performance information or, alternatively, it may be that the past information that students received is no longer relevant; since students moved to a new level or they have new classmates. In turn, the kernel distribution of Figure 2 implies that the difference in grades that we observe before and after treatment is the result of grade inflation, and not due to a lasting effect. The exception comes from Level 3 students who got the additional information in Level 1 and experienced a negative effect in their grades. By looking closely at each subject, we find that the effect is driven by only one subject, which is History. We cannot explain this effect.

5.5. Dispersion: What Happened to Dispersion Among Students?

In this section we turn our attention to the effect of the relative performance feedback information on the dispersion among students' grades. So far, we have observed that (overall) there has been a positive shift in the mean grades during the treatment. However, one may also be interested in understanding whether the treatment affected the spread of grades among students. The dispersion analysis offers a new angle from which we can evaluate the relevance of the competitiveness and self-perception theory, as well as the desirability of the social comparison policy. While increasing grades may be seen as a desirable outcome, increasing the dispersion may have negative connotations. In particular, increasing the gap between bad and good students could be seen as a drawback of the policy.

We measure dispersion using the variance. Our outcome variable is therefore, the squared difference between student i 's average grade across subjects in year t and the mean grade of that year and level, given by $\left(\text { Grade }_{i t}-\text { Mean }_{t}\right)^{2}$.
$\left(\text { Grade }{ }_{t}-\text { Mean }\right)^{2}=\beta_{0}+\beta_{1}$ Trendt β_{2} Yean 990 β_{3} Above_Mean $+\beta_{4}$ Above_Mear* Yr $90_{i t}+\varepsilon_{i t}$
We estimated equation (5.5) with and without controls. Table 12 shows the results with controls. From column 1 we can see that the dispersion among students was not affected by the treatment. In addition, we see that dispersion increases with the levels of high school. From our mean analysis we observed that grades fell in the later years in high school. Here, we see that the further the student progresses through high school, not only do subjects get more difficult, such that grades become lower, but there is also a greater separation between good and bad students. In column 2 we identify separately the dispersion among students who are above and below the mean (of their level) and interact it with the treatment year. We observe that there is no differential effect above and below the mean. From columns 3 to 8, this is separately done by Levels and the same results hold.

5.6. Robustness: Repeaters, Leavers

In this section, we conduct some robustness exercises to complement our main analysis. We look at whether the additional information affected the sample of students. In particular, we focus on those who repeat levels and those who leave school before graduating. We may be concerned that the policy affected them differentially and this affects, or even drives, our main results.

First, we focus on the students who repeat a level. We proceed in two ways. First, we look to see if the treatment had any effect on the probability of a student repeating a level. We find that this is not the case. Second, we re-estimate our main regression by including an interaction between the (treatment) year 1990 and the dummy for those who repeat a level. We do this for all levels, as well as for each level separately and conclude that there is no differential effect. See Table 7 in the web appendix.

Second, we turn our attention to those students who leave school. In order for us to see if the treatment had any effect on leaving school, we look at the probability of staying, leaving after the first, second and third year respectively. Overall, we find that there is no significant effect on staying in school, neither is there any effect in leaving school after the second or third year. However, we do see that students in Level 1 during treatment are less likely to leave. It may be that the pool of student changes as a result of this, however, one would expect that the worst students are the ones most likely to leave and we therefore would expect to find the negative effect on the grades in year 1990. Since our main results show that there
is a positive effect, this source of selection would bias down our results. See Table 8 in the web appendix.

5.7. External Validity: Using National Level Exams (Selectividad)

In this section we address the concern that the effect may be "artificially" driven by agents within the school such as teachers, and provide evidence that rules out this possibility.

An important concern is that the effect was entirely driven by the teachers who reacted to the treatment by altering the grades of the students in that year. Intuitively, there are a number of reasons why we have no reason to believe that teachers at any level would react to the additional information. Firstly, teachers always have this information since they know the distribution of grades in their class every year. Secondly, in principle they have no incentive to react, since they do not receive a "bonus" for good performance in the treatment year. Thirdly, if we believed that the teachers were curving the distribution, then we should not observe any effect of treatment (as they are trying to maintain the same distribution). Finally, schools in Spain are very careful to ensure that the Level 4 grades are representative of the Selectividad grade and many schools use this as a marketing tool to attract students to the school. However, all these reasons are not a guarantee for the teachers being ultimately driving the results in anticipation of students or their parents' reactions.

To address this issue, we use students' grades from "Selectividad" exams and repeat our previous analysis. The Selectividad exams are national level exams (similar to SATs in the USA) taken by students after the completion of Level 4. These exams are written and graded by external bodies on national standards, accounting for 50% of the overall grade to enter University. The other 50% is determined by grades in Level 1 to Level 4. However, the Selectividad exams are based on the material covered only in Level 4, making this an important level. The drawback of this external validity check is that we can only perform it with Level 4 students. However, since the observed effect is strongest for Level 1 and Level 4 students, it is yet a very relevant test. Moreover, it is reasonable to assume that we can extrapolate our finding from the proposed test to rule out teachers' effect and apply this to the other years.

Replicating our earlier analysis, we find that in the treatment year (1990) there is a strong and positive effect of additional information that allows for social comparison on students' Selectividad grades. In Table 13 we see in the first two columns our earlier results for the effect of treatment for Level 4 and in the last two columns the analysis is replicated for using only Selectividad grades (on the same students). Overall, the effect seems to be even stronger
(around 0.75) for Selectividad. It is reassuring to see that our main findings hold with the Selectividad data, where the school teachers had no influence on the grading, which suggests that the effect is coming from students putting in more effort when the additional information is provided. We replicate the analysis using placebo treatment for all other years and find a very similar pattern to our school results (see Figure 7).

6. Conclusions

In this paper we have found that the provision of relative performance feedback information had a strong and positive effect on high school students' performance; it increased overall grades by 5%. This is a remarkable finding for two reasons. First, students did not receive any explicit reward (penalty) from being above (below) the average (piece-rate incentives), but still reacted to the information. Second, this effect is comparable with the effects found by the education literature on improving students' attainment by investing in school inputs. However, unlike investing in school inputs providing relative performance information involves no cost. Furthermore, this effect was significant for students of all ability types but it had no lasting effect once the treatment effect was removed.

We outlined two potential explanations for why students would react to the provision of relative performance feedback information and we find support for the competitive preferences hypothesis. There was no student who was discouraged by this information. However, we also find that this information becomes more relevant when students are less familiar about how their ability relates to the ability of other students (Level 1 students compared to students in subsequent years). This implies that the self-perception of ability may be an important driving force. Also, notice that unlike for the competitiveness theory, one important assumption for the self-perception theory is that ability and effort are complements in performance. This assumption might be questionable and one possible interpretation of the results is that effort and ability are in fact substitutes in performance.

This paper has shown the potential (positive) effect that the provision of relative performance feedback information can have in motivating high school students. Further research should be directed to analyzing the role that this information plays in motivating individuals, both in schooling as well as in any real-effort setting.

References

Aoyagi, M. 2007. "Information Feedback in a Dynamic Tournament." Mimeo.
Bandiera, O., V. Larcinese and I. Ramsul. 2008. "Blissful Ignorance? Evidence from a Natural Experiment on The Effect of Individual Feedback on Performance". Mimeo.

Bolton, G. and A. Ockenfels. 2000. "ERC: A Theory of Equity, Reciprocity and Competition". The American Economic Review 90(1), 166-193.

Card, D. and A. B. Krueger. 1992. "Does School Quality Matter? Returns to Education and the characteristics of Public Schools in the United States", Journal of Political Economy, 100, 1-40.

Casas-Arce, P., and F. Martinez-Jerez. 2005. "Relative performance compensation, contests, and dynamic incentives". Working paper, University of Oxford.

Charness, G. and M. Rabin. 2002. "Understanding Social Preferences with Simple Tests." The Quarterly Journal of Economics, 117(3), 817-869.

Clark, A. E., and A. J. Oswald. 1996. "Satisfaction and Comparison Income." Journal of Public Economics, 61(3), 359-381.

Dubey, P. and J. Geanakoplos. 2004. "Grading Exams: 100, 99, ..., 1 or A, B, C? Incentives in Games of Status." Cowles Foundation Discussion Paper No. 1467, Yale University.

Dubey, P. and J. Geanakoplos. 2005. "Grading in Games of Status: Marking Exams and Setting Wages." Cowles Foundation Discussion Paper No. 1544, Yale University.

Duesenberry, J.S. 1949. "Income, saving and the theory of consumer behaviour". Harvard University Press, Cambridge.

Easterlin, R. A. 1974. "Does economic growth improve the human lot? Some empirical evidence". David PA, Reder MW (eds.) Nations and households in economic growth.

Ederer, F. 2008. "Feedback and Motivation in Dynamic Tournaments." Mimeo.
Eriksson, T. A. Poulsen and Marie-Claire Villeval. 2008. "Feedback and Incentives : Experimental Evidence". IZA Discussion Paper 3440.

Ertac, S. 2006. "Social Comparisons and Optimal Information Revelation: Theory and Experiments." Mimeo.

Falk, A. and Ichino, A. 2006. "Clean Evidence on Peer Pressure". Journal of Labor Economics, 24 (1), 39-57.

Fehr, E. and F. Ederer. 2007. "Deception and Incentives: How Dishonesty Undermines Effort Provision". IZA Discussion Paper 3200.

Fehr, E. and K. M. Schmidt. 1999. "A theory of fairness, competition, and cooperation". The Quarterly Journal of Economics 114: 817-868.

Festinger, L. 1954. "A theory of social comparison processes". Human Relations 7: 117-140.

Frank, R. H. 1984. "Interdependent preferences and the competitive wage structure." Rand Journal of Economics 15: 510-520.

Frank, R. H. 1985. "Choosing the Right Pond: Human Behavior and the Quest for Status". Oxford University Press.

Greshkov, A. and M. Perry. 2007. "Tournaments with Midterm Reviews". Mimeo.
Hannan, R. L., R. Krishnan and D. Newman. 2007. "The Effects of disseminating Relative Performance Feedback in Tournament Versus Individual Performance Compensation Plans". Mimeo.

Hopkins, E. and T. Kornienko. 2004 . "Running to Keep the Same Place: Consumer Choice as a Game of Status". American Economic Review 94(4): 1085-1107.

Hanushek, E. A. 1996. "Measuring Investment in Education", Journal of Economic Perspectives 10-4, 9-30.

Hanushek, E. A. 2003. "The Failure of Input-Based Schooling Policies." Economic Journal 113, F64-F98.

Kandel, E. and E.P. Lazear. 1992. "Peer Pressure and Partnerships". Journal of Political Economy, 100(4), p.801-17.

Kräkel, M. 2007. "Emotions in Tournaments". Journal of Economic Behavior and Organization 67, 204-214.

Krueger, A.B. 1999. "Experimental Estimates of Education Production Functions". Quarterly Journal of Economics 114, 497-532.

Lai, E. K. and A. Matros. 2007. "Sequential Contests with Ability Revelation". Mimeo.
Layard, R. 1980. "Human satisfactions and public policy." Economic Journal 90: 737-350.
Lizzeri, A., M. Meyer and N. Persico. 2002. "The Incentive Effects of Interim Performance Evaluations". CARESS Working Paper 02-09.

Locke, E. A., and G. P. Latham. 1990. "A Theory of Goal Setting and Task Performance." Englewood Cliffs, NJ: Prentice Hall.

Mas, A. and Moretti, E. 2009. "Peers at Work". American Economic Review. Forthcoming.
Moldovanu, B., A. Sela and X. Shi. 2007. "Contests for Status." Journal of Political Economy 115.

Müller, W. and A. Schotter. 2003. "Workaholics and Drop Outs in Optimal Organizations," Mimeo, New York University.

Niederle, M. and A. H. Yestrumskas. 2008. "Gender Differences in Seeking Challenges: The Role of Institutions". Working Paper 13922 http://www.nber.org/papers/w13922.

Ok, E.A. and L. Kockesen. 2000. "Negatively Interdependent Preferences", Social Choice and Welfare, 17, 533-558.

Programme for International Student Assessment (PISA), OECD, 2006.
Suls J. and L. Wheeler (Eds). 2000. Handbook of Social Comparison: Theory and Research (pp. 271-293). New York. Kluwer Academic /Plenum Publishers.

Young, S. M., J. Fisher and T. M. Lindquist. 1993. "The effect of intergroup competition and intragroup cooperation on slack and output in a manufacturing setting". The Accounting Review 68 (3): 466-483.

Tables and Figures

Table 1. Number of Students by Year and Level					
	Level 1	Level 2	Level 3	Level 4	Total
1986-1987	109	81	70	81	341
$1987-1988$	121	91	71	59	342
$1988-1989$	139	104	91	54	388
$1989-1990$	137	122	101	75	435
$1990-1991$	92	130	124	80	426
1991-1992	99	97	122	93	411
$1992-1993$	97	92	101	106	396
1993-1994	93	87	99	97	376
1994-1995	56	75	78	90	299
Total	943	879	857	735	3414

Notes: Data on students' grades are provided by Oiartzo Ikastola (school) for academic years 1986-1995. The dataset contains 3,414 students but an unbalanced panel of 1,313. From 1990 onwards students have the option to stay at their nearby middle school and so there are fewer Level 1 students. We do, however, have the data on these students but chose not to include it in our analysis as they did not receive the treatment. We check for sample selection and class size changes. We have one class group missing from our dataset in 1994-1995.

Table 2. Subjects' Descriptive Statistics												
	Level 1			Level 2			Level 3			Level 4		
Subjects	Obs.	Mean	S. D.									
Basque	943	6.554	2.084	879	6.688	1.579	857	6.425	1.606	700	6.723	1.770
Spanish	943	6.437	1.951	879	6.601	1.703	124	5.964	1.810	718	5.919	1.722
Latin				879	6.848	2.068						
Foreign Language	943	6.654	1.901	879	6.128	1.902	855	6.022	1.940	714	5.937	1.699
Technical Drawing	943	6.413	1.754									
Philosophy							857	6.474	1.759	707	6.385	1.827
Geography				879	7.130	1.718						
Music	943	7.277	1.501									
History	943	6.486	1.906				857	6.461	1.989			
Religion	943	7.642	1.155	879	7.912	1.220	733	7.636	1.202			
Mathematics	943	6.215	1.953	879	6.211	1.979						
Physics/Chemistry				879	6.763	2.028						
Biology	943	6.599	1.713									
Physical Education	935	7.505	1.243	872	7.416	1.198	835	7.328	1.107			
EATP				879	7.888	1.063	857	7.477	1.291			
Third Level Options (Arts Track):												
Spanish Literature							306	6.165	1.704			
Latin							306	5.786	2.024			
Greek							110	5.805	1.941			
Mathematics							244	5.309	2.284			
Third Level Options (Science Track):												
Spanish Literature							13	5.885	2.033			
Biology							539	6.396	2.007			
Physics/Chemistry							550	5.880	2.349			
Mathematics							503	5.902	2.275			
Fourth Level Options (Arts Track):												
Spanish Literature										254	6.053	1.738
History										264	6.443	1.964
Latin										134	5.940	1.632
Greek										0		
History of Art										274	6.591	1.717
Mathematics										146	5.983	1.781
Fourth Level Options(Science Track):												
Mathematics										434	6.114	2.031
Physics										350	5.563	2.052
Chemistry										387	5.939	2.136
Biology										192	6.922	1.898
Geology										105	6.600	1.775
Technical Drawing										206	6.238	1.876

Notes: For each level, the mean and standard deviation for grades are reported. Students study 10 subjects per level. In Levels 1 and 2 all subjects are compulsory. In Levels 3 and 4 students can choose between the Arts and the Science track and can then choose options within each track. There are, however, four subjects (Basque, Spanish Mathematics and Foreign Language) that are taught in each level.

Table 3. Descriptive Statistics				
Variable	Level 1	Level 2	Level 3	Level 4
Years 1986-1994				
Prop. of Girls	0.54	0.56	0.56	0.6
Prop. of Repeaters	0.04	0.04	0.07	0.08
Group (Average size)	32.61	30.64	32.4	29.33
Attrition Number (by cohort)	--	-10.17	0	-16.17
Prop. of Science Route	--	--	0.64	0.61
Number of teachers	14	15	14	14
Year 1990				
Prop. Of Girls	0.54	0.62	0.52	0.6
Prop. Of Repeaters	0.03	0.02	0.07	0.04
Group (Average size)	30.67	32.5	31	27.67
Attrition Number (by cohort)	--	0	0	1
Prop. Of Science Route	--	--	0.7	0.56
Number of teachers	12	14	13	15

Notes: For each level, the means are reported for the treatment year (1990) and all other years in the data. In Levels 1 and 2 all subjects are compulsory. Attrition is the average number of students (in a given cohort) that leave (negative sign) or that arrive (positive sign) high school.

Table 4: Aggregate Effect on Performance (Grades): Different Estimators								
	OLS	RE	FE	OLS	RE	FE	$\begin{gathered} \text { OLS } \\ \text { (LAG) } \end{gathered}$	$\begin{gathered} \hline \text { OLS } \\ \text { (LAG) } \\ \hline \end{gathered}$
Constant	$\begin{array}{\|c\|} \hline 6.36 \\ {[0.046] * *} \end{array}$	$\begin{array}{\|c\|} \hline 6.877 \\ {[0.054]^{* *}} \end{array}$	$\begin{gathered} 7.632 \\ {[0.048] * *} \end{gathered}$	$\begin{gathered} 5.709 \\ {[0.072]^{* *}} \end{gathered}$	$\begin{gathered} 5.337 \\ {[0.087] * *} \end{gathered}$	$\begin{gathered} 5.542 \\ {[0.075]^{*}} \end{gathered}$	$\begin{gathered} 0.045 \\ {[0.110]} \end{gathered}$	$\begin{gathered} -0.797 \\ {[0.114]^{* *}} \end{gathered}$
Trend	$\left[\begin{array}{c} 0.06 \\ {[0.010]^{* *}} \end{array}\right.$	$\left\lvert\, \begin{gathered} -0.092 \\ {[0.010]^{* *}} \end{gathered}\right.$	$\left[\begin{array}{c} -0.26 \\ {[0.012]^{* *}} \end{array}\right.$	$\left[\begin{array}{c} 0.079 \\ {[0.009]^{* *}} \end{array}\right.$	$\left\lvert\, \begin{gathered} 0.07 \\ {[0.012]^{* *}} \end{gathered}\right.$	$\left\|\begin{array}{c} 0.065 \\ {[0.012]^{* *}} \end{array}\right\|$	$\begin{gathered} -0.042 \\ {[0.008] * *} \end{gathered}$	$\begin{gathered} -0.034 \\ {[0.008]^{* *}} \end{gathered}$
Year 1990	$\left[\begin{array}{c} 0.296 \\ {[0.072] * *} \end{array}\right.$	$\left\lvert\, \begin{gathered} 0.286 \\ {[0.041]^{* *}} \end{gathered}\right.$	$\left[\begin{array}{c} 0.275 \\ {[0.039] * *} \end{array}\right.$	$\left[\begin{array}{c} 0.255 \\ {[0.069] * *} \end{array}\right.$	$\left\lvert\, \begin{gathered} 0.272 \\ {[0.037] * *} \end{gathered}\right.$	$\left\|\begin{array}{c} 0.273 \\ {[0.037] * *} \end{array}\right\|$	$\begin{gathered} 0.187 \\ {[0.051] * *} \end{gathered}$	$\begin{gathered} 0.204 \\ {[0.047] * *} \end{gathered}$
Girl				$\left[\begin{array}{c} 0.279 \\ {[0.046]^{* *}} \end{array}\right.$	$\left[\begin{array}{c} 0.323 \\ {[0.070]^{* *}} \end{array}\right.$			$\begin{gathered} 0.13 \\ {[0.034]^{* *}} \end{gathered}$
Level 1				$\left[\begin{array}{c} 0.649 \\ {[0.066]^{* *}} \end{array}\right.$	$\left[\begin{array}{c} 1.069 \\ {[0.048]^{* *}} \end{array}\right.$	$\left\|\begin{array}{c} 1.054 \\ {[0.048]^{* *}} \end{array}\right\|$		
Level 2				$\left\lvert\, \begin{gathered} 0.787 \\ {[0.067]^{* *}} \end{gathered}\right.$	$\left[\begin{array}{c} 1.068 \\ {[0.042]^{* *}} \end{array}\right.$	$\left\|\begin{array}{c} 1.059 \\ {[0.042]^{* *}} \end{array}\right\|$		$\begin{gathered} 0.601 \\ {[0.043]^{* *}} \end{gathered}$
Level 3				$\left\lvert\, \begin{gathered} 0.376 \\ {[0.067]^{* *}} \end{gathered}\right.$	$\left[\begin{array}{c} 0.59 \\ {[0.037]^{* *}} \end{array}\right.$	$\left\lvert\, \begin{gathered} 0.584 \\ {[0.037]^{* *}} \end{gathered}\right.$		$\begin{gathered} 0.178 \\ {[0.042]^{* *}} \end{gathered}$
Repeater				$\left[\begin{array}{c} -0.965 \\ {[0.100]^{* *}} \end{array}\right.$	$\left[\begin{array}{c} 0.379 \\ {[0.059]^{* *}} \end{array}\right.$	$\left\|\begin{array}{c} 0.381 \\ {[0.059]^{*}} \end{array}\right\|$		$\begin{gathered} 0.945 \\ {[0.075]^{* *}} \end{gathered}$
Ave(t-1)							$\begin{gathered} 0.976 \\ {[0.015]^{* *}} \\ \hline \end{gathered}$	$\begin{gathered} 1.032 \\ {[0.015]^{* *}} \\ \hline \end{gathered}$
Observations	3414	3414	3414	3414	3414	3414	2156	2156

Notes: * denotes significance at the 5% level and ${ }^{* *}$ denotes significance at the 1% level. The number of observations falls when using OLS (LAG) as we must restrict analysis to students in Levels 2 to 4 .

Table 5: Aggregate Effect on Performance (Grades): Robustness						
Constant	6.877	5.337	6.877	5.337	7.731	5.514
	[0.054]**	[0.087]**	[0.212]**	[0.148]**	[0.107]**	[0.120]**
Trend	-0.092	0.07	-0.092	0.07	-0.262	0.053
	[0.010]**	[0.012]**	[0.031]**	[0.019]**	[0.003]**	[0.010]**
Year 1990	0.286	0.272	0.286	0.272	0.261	0.239
	[0.041]**	[0.037]**	[0.071]**	[0.065]**	[0.010]**	[0.009]**
Girl		0.323		0.323		0.362
		[0.070]**		[0.092]**		[0.058]**
Level 1		1.069		1.069		1.077
		[0.048]**		[0.081]**		[0.031]**
Level 2		[1.068		[1.068		1.065
		[0.042]**		[0.086]**		[0.022]**
Level 3		0.59		0.59		0.602
		[0.037]**		[0.075]**		[0.014]**
Repeater		0.379		0.379		
		[0.059]**		[0.067]**		
(by Class and Year) Teacher Fixed Effect	No	No	Yes	Yes	No Yes	No Yes
Teacher Fixed Effect	No	No	No	No	Yes	Yes
Observations	3414	3414	3414	3414	35218	35218

Notes: * denotes significance at the 5% level and ${ }^{* *}$ denotes significance at the 1% level. All estimations are done using random effects (RE) estimation. The number of observations increases approximately by a factor 10 when we control for teacher fixed effects because we must change the dimensionality of the data. Initially, we look by individual over time but now, since each student does 10 different subjects with different teachers, we reshape the data to allow for this additional feature.

Table 6: Year 1990 Effect on Performance (Grades) by Levels						
	All Levels	Level 1	Level 2	Level 3	Level 4	
Equation (5.1)	$\mathbf{0 . 2 8 6}$ $[\mathbf{0 . 0 4 1}]^{* *}$	$\mathbf{0 . 5 3 1}$ $[\mathbf{0 . 1 4 1] * *}$	$\mathbf{0 . 0 1 8}$ $[\mathbf{0 . 1 1 7]}$	$\mathbf{0 . 0 9 9}$ $[\mathbf{0 . 1 3 0]}$	$\mathbf{0 . 5 8 5}$ $[\mathbf{0 . 1 8 3}] * *$	
Equation (5.2)	$\mathbf{0 . 2 7 2}$ $[\mathbf{0 . 0 3 7] * *}$	$\mathbf{0 . 5 1 1}$ $[\mathbf{0 . 1 3 8}] * *$	$\mathbf{- 0 . 0 2 7}$ $[\mathbf{0 . 1 6]}$	$\mathbf{0 . 1 1 2}$	$\mathbf{0 . 5 5 8}$	
$[\mathbf{0 . 1 2 7]}$	$[\mathbf{0 . 1 8 1] * *}$					
Observations	3414	943	879	857	735	

Notes: * denotes significance at the 5% level and ${ }^{* *}$ denotes significance at the 1% level. We report the coefficients and standard errors for only the Year 1990 variable but in the regression we include all the variables in equations (5.1) and (5.2), respectively. Estimations using All Levels are done using random effects (RE) estimation and OLS estimation is used when we estimate each level separately.

Table 7: Effect on Performance (Grades) by Gender					
	All				
	Levels	Level 1	Level 2	Level 3	Level 4
Constant	6.746	6.127	6.389	6.105	5.876
	$[0.070]^{* *}$	$[0.090]^{* *}$	$[0.097]^{* *}$	$[0.116]^{* *}$	$[0.139]^{* *}$
Trend	-0.09	0.13	0.114	0.052	-0.002
	$[0.010]^{* *}$	$[0.017]^{* *}$	$[0.017]^{* *}$	$[0.019]^{* *}$	$[0.022]$
Year 1990	$\mathbf{0 . 3 4 1}$	$\mathbf{0 . 4 8 9}$	$\mathbf{0 . 0 8 3}$	$\mathbf{0 . 1 3 8}$	$\mathbf{0 . 6 7 6}$
	$[\mathbf{0 . 0 6 3}]^{* *}$	$[\mathbf{0 . 2 0 7}]^{*}$	$[\mathbf{0 . 1 8 8}]$	$[\mathbf{0 . 1 8 8]}$	$[\mathbf{0 . 2 8 8}]^{*}$
Girl	0.216	0.257	0.222	0.355	0.39
Girl*Year 1990	$[0.077]^{* *}$	$[0.088]^{* *}$	$[0.091]^{*}$	$[0.100]^{* *}$	$[0.123]^{* *}$
	$\mathbf{- 0 . 0 9 7}$	$\mathbf{0 . 0 7 2}$	$\mathbf{- 0 . 1 3 4}$	$\mathbf{- 0 . 0 3 5}$	$\mathbf{- 0 . 1 4 3}$
	$[\mathbf{0 . 0 8 3]}$	$[\mathbf{0 . 2 8 2}$	$[\mathbf{0 . 2 4 1]}$	$[\mathbf{0 . 2 5 9]}$	$[\mathbf{0 . 3 7 2]}$
Observations	3414	943	879	857	735

Notes: * denotes significance at the 5% level and ${ }^{* *}$ denotes significance at the 1% level. Estimations using All Levels are done using random effects (RE) estimation and OLS estimation is used when we estimate each level separately.

Table 8: Effect on Performance (Grades) by Ability								
	All Levels		Level 2		Level 3		Level 4	
Constant	$\begin{gathered} 6.044 \\ {[0.071]^{* *}} \end{gathered}$	$\begin{gathered} 4.988 \\ {[0.092]^{* *}} \end{gathered}$	$\begin{gathered} 5.739 \\ {[0.075]^{* *}} \end{gathered}$	$\begin{gathered} 5.721 \\ {[0.083]^{* *}} \end{gathered}$	$\begin{gathered} 5.393 \\ {[0.087]^{* *}} \end{gathered}$	$\begin{gathered} 5.247 \\ {[0.099]^{* *}} \end{gathered}$	$\begin{gathered} 5.373 \\ {[0.140]^{* *}} \end{gathered}$	$\begin{gathered} 5.183 \\ {[0.153]^{* *}} \end{gathered}$
Trend	$\left[\begin{array}{c} -0.042 \\ {[0.012]^{* *}} \end{array}\right.$	$\begin{gathered} 0.043 \\ {[0.013]^{* *}} \end{gathered}$	$\left[\begin{array}{c} 0.091 \\ {[0.014]^{* *}} \end{array}\right.$	$\begin{gathered} 0.092 \\ {[0.014]^{* *}} \end{gathered}$	$\begin{gathered} 0.034 \\ {[0.016]^{*}} \end{gathered}$	$\begin{gathered} 0.04 \\ {[0.016]^{*}} \end{gathered}$	$\begin{gathered} -0.066 \\ {[0.023]^{* *}} \end{gathered}$	$\begin{gathered} -0.066 \\ {[0.023] * *} \end{gathered}$
Year 1990	$\begin{gathered} 0.194 \\ {[0.077] *} \end{gathered}$	$\begin{gathered} 0.254 \\ {[0.069] * *} \end{gathered}$	$\begin{gathered} -0.178 \\ {[0.118]} \end{gathered}$	$\begin{gathered} -0.188 \\ {[0.119]} \end{gathered}$	$\begin{gathered} 0.144 \\ {[0.125]} \end{gathered}$	$\begin{gathered} 0.169 \\ {[0.124]} \end{gathered}$	$\left[\begin{array}{c} 0.603 \\ {[0.197] * *} \end{array}\right.$	$\begin{gathered} 0.65 \\ {[0.196]^{* *}} \end{gathered}$
Above(t-1)	$\begin{gathered} 1.504 \\ {[0.057]^{* *}} \end{gathered}$	$\begin{gathered} 1.441 \\ {[0.054]^{* *}} \end{gathered}$	$\left[\begin{array}{c} 1.833 \\ {[0.066]^{* *}} \end{array}\right.$	$\begin{gathered} 1.819 \\ {[0.068]^{* *}} \end{gathered}$	$\left[\begin{array}{c} 1.992 \\ {[0.072]^{* *}} \end{array}\right.$	$\begin{gathered} 1.978 \\ {[0.074]^{* *}} \end{gathered}$	$\begin{gathered} 2.131 \\ {[0.103]^{* *}} \end{gathered}$	$\begin{gathered} 2.182 \\ {[0.108]^{* *}} \end{gathered}$
Above(t-1)*Year 90	$\begin{gathered} 0.048 \\ {[0.111]} \end{gathered}$	$\begin{gathered} -0.081 \\ {[0.099]} \end{gathered}$	$\begin{gathered} 0.123 \\ {[0.163]} \end{gathered}$	$\begin{gathered} 0.128 \\ {[0.163]} \end{gathered}$	$\begin{gathered} 0.066 \\ {[0.181]} \end{gathered}$	$\begin{gathered} 0.04 \\ {[0.180]} \end{gathered}$	$\begin{gathered} -0.01 \\ {[0.284]} \end{gathered}$	$\begin{gathered} -0.058 \\ {[0.283]} \end{gathered}$
Level 2		$\begin{gathered} 0.975 \\ {[0.047]^{* *}} \end{gathered}$						
Level 3		$\begin{gathered} 0.489 \\ {[0.043]^{* *}} \end{gathered}$						
Girl		$\begin{gathered} 0.24 \\ {[0.062]^{* *}} \end{gathered}$		$\begin{gathered} 0.051 \\ {[0.061]} \end{gathered}$		$\begin{gathered} 0.231 \\ {[0.066]^{* *}} \end{gathered}$		$\begin{gathered} 0.211 \\ {[0.098]^{*}} \end{gathered}$
Repeater		$\begin{gathered} 0.445 \\ {[0.076]^{* *}} \\ \hline \end{gathered}$		$\begin{gathered} -0.108 \\ {[0.153]} \end{gathered}$		$\begin{gathered} -0.057 \\ {[0.129]} \end{gathered}$		$\begin{gathered} 0.464 \\ {[0.188]^{*}} \end{gathered}$
Observations	2152	2152	777	777	771	771	604	604

Notes: * denotes significance at the 5% level and ${ }^{* *}$ denotes significance at the 1% level. Estimations using All Levels are done using random effects (RE) estimation and OLS estimation is used when we estimate each level separately. The number of observations falls when using All Levels as we must restrict analysis to students in Levels 2 to 4 .

Table 9: Differential in Grade Group Transition between 1990 and all other years					
Grade Group $(t-1)$	Grade Group (t)				
		A	b	c	D
	a	22.25	-16.76	-5.26	-0.23
	b	8.37	3.23	-12.54	0.94
	c	-0.50	0.16	11.68	-11.34
	d	0.00	-1.30	17.46	-16.16

Notes: The Grade Groups are classified as: (a) 8 and 10, (b) 7 and 7.9, (c) 5 and 6.9 and (d) 1.5 and 4.9. Each cell computes the difference between Year 1990 grade group and the grade group of the rest of the years. This table is derived using the transition rate table in Table A2 in the Appendix.

Table 10: Effect on Performance (Grades) by Subject Groups					
	All Levels	Level 1	Level 2	Level 3	Level 4
Languages	0.165	0.728	-0.144	0.195	0.587
	[0.044]**	[0.191]**	[0.145]	[0.158]	[0.182]**
Sciences	0.385	1	0.361	0.1	0.65
	[0.065]**	[0.182]**	[0.177]*	[0.222]	[0.223]**
Arts	0.336	0.146	0.186	0.685	0.265
	[0.063]**	[0.209]	[0.191]	[0.162]**	[0.205]
Others	0.157	0.245	-0.066	-0.098	NA
	[0.041]**	[0.104]*	[0.078]	[0.086]	NA
Observations	3404	943	879	857	725

Notes: * denotes significance at the 5% level and ${ }^{* *}$ denotes significance at the 1% level. Estimations using All Levels are done using random effects (RE) estimation and OLS estimation is used when we estimate each level separately. Language subjects include Basque, Spanish, Foreign Language; Science subjects include Mathematics, Biology, Chemistry, Physics, Geology, Technical Drawing; Art subjects include History, Latin, Philosophy, Literature, Greek, History of Art; Other subjects include EATP, Physical Education, Religion/Ethics, Music, Drawing.

Table 11: Lasting Effect on Performance (Grades)				
	Level 1	Level 2	Level 3	Level 4
Constant	6.275	6.529	6.337	6.121
	$[0.075]^{* *}$	$[0.081]^{* *}$	$[0.095]^{* *}$	$[0.116]^{* *}$
Trend	0.127	0.116	0.057	-0.014
	$[0.017]^{* *}$	$[0.018]^{* *}$	$[0.020]^{* *}$	$[0.027]$
Year 1990	$\mathbf{0 . 5 3 1}$	$\mathbf{- 0 . 0 0 9}$	$\mathbf{0 . 0 5 4}$	$\mathbf{0 . 6 2 7}$
	$[\mathbf{0 . 1 4 1}]^{* *}$	$[\mathbf{0 . 1 1 9]}$	$[\mathbf{0 . 1 3 4]}$	$\left[\mathbf{0 . 1 9 2] ^ { * * }}\right.$
Year 1991		$\mathbf{- 0 . 2 0 3}$	$\mathbf{0 . 0 1 6}$	$\mathbf{0 . 3 2 6}$
		$[\mathbf{0 . 1 3 6}]$	$[\mathbf{0 . 1 3 7]}$	$[\mathbf{0 . 1 8 6]}$
Year 1992			$\mathbf{- 0 . 3 6 6}$	$\mathbf{- 0 . 2 6}$
			$[\mathbf{0 . 1 5 3}]^{*}$	$[\mathbf{0 . 1 8 7]}$
Year 1993				$\mathbf{0 . 2 7 6}$
				$[\mathbf{0 . 2 0 5]}$
Observations	943	879	857	735

Notes: * denotes significance at the 5% level and ${ }^{* *}$ denotes significance at the 1% level. All regressions are estimated using OLS. The dummy variables Year1991, Year1992 and Year1993 denote lasting effect. For example, a student in Level 1 in 1990 will be in Level 2 in 1991.

Table 12: Effect on Dispersion of Performance (Variance of Grades)										
	All Levels		Level 1		Level 2		Level 3		Level 4	
Constant	$\begin{array}{\|r} 2.267 \\ {[0.145]^{* *}} \end{array}$	$\begin{array}{r} 2.344 \\ {[0.151]^{* *}} \end{array}$	$\begin{array}{\|r} 2.073 \\ {[0.169]^{* *}} \end{array}$	$\begin{array}{r} 2.206 \\ {[0.186]^{* *}} \end{array}$	$\begin{array}{\|r} 1.667 \\ {[0.194]^{* *}} \end{array}$	$\begin{array}{r} 1.679 \\ {[0.211]^{* *}} \end{array}$	$\begin{array}{r} 1.561 \\ {[0.210]^{* *}} \end{array}$	$\begin{array}{r} 1.563 \\ {[0.223]^{* *}} \end{array}$	$\begin{array}{\|r} 1.477 \\ {[0.295]^{* *}} \end{array}$	$\begin{array}{r} 1.671 \\ {[0.315]^{* *}} \end{array}$
Trend	$\left[\begin{array}{c} 0.03 \\ {[0.019]} \end{array}\right.$	$\begin{gathered} 0.031 \\ {[0.019]+} \end{gathered}$	$\left[\begin{array}{r} -0.14 \\ {[0.032]^{* *}} \end{array}\right.$	$\begin{array}{r} -0.14 \\ {[0.032]^{* *}} \end{array}$	-0.022 $[0.035]$	$\begin{gathered} -0.021 \\ {[0.035]} \end{gathered}$	$\begin{gathered} 0.087 \\ {[0.036]^{*}} \end{gathered}$	$\begin{gathered} 0.086 \\ {[0.036]^{*}} \end{gathered}$	$\begin{array}{r} 0.231 \\ {[0.048]^{* *}} \end{array}$	$\begin{array}{r} 0.235 \\ {[0.048]^{* *}} \end{array}$
Year 90	$\left[\begin{array}{l} -0.067 \\ {[0.140]} \end{array}\right.$	$\begin{aligned} & -0.103 \\ & {[0.195]} \end{aligned}$	$\begin{array}{r} -0.331 \\ {[0.264]} \end{array}$	$\begin{gathered} -0.647 \\ {[0.354]} \end{gathered}$	$\begin{array}{r} 0.319 \\ {[0.240]} \end{array}$	$\begin{gathered} 0.725 \\ {[0.345]^{*}} \end{gathered}$	$\begin{gathered} 0.124 \\ {[0.239]} \end{gathered}$	$\begin{aligned} & 0.019 \\ & {[0.327]} \end{aligned}$	$\begin{aligned} & -0.479 \\ & {[0.393]} \end{aligned}$	$\begin{aligned} & -0.625 \\ & {[0.566]} \end{aligned}$
Level 1	$\left[\begin{array}{r} -0.679 \\ {[0.134]^{* *}} \end{array}\right.$	$\begin{aligned} & -0.678 \\ & {[0.134]^{* *}} \end{aligned}$								
Level 2	$\left[\begin{array}{r} -0.782 \\ {[0.135]^{* *}} \end{array}\right.$	$\begin{gathered} -0.783 \\ {[0.135]^{* *}} \end{gathered}$								
Level 3	$\begin{array}{r} -0.544 \\ {[0.135]^{* *}} \end{array}$	$\begin{array}{r} -0.543 \\ {[0.135]^{* *}} \end{array}$								
Girl	$\left[\begin{array}{c} -0.124 \\ {[0.093]} \end{array}\right.$	$\begin{gathered} -0.109 \\ {[0.094]} \end{gathered}$	$\left\lvert\, \begin{gathered} 0.071 \\ {[0.157]} \end{gathered}\right.$	$\begin{gathered} 0.087 \\ {[0.158]} \end{gathered}$	$\begin{gathered} -0.192 \\ {[0.171]} \end{gathered}$	$\begin{gathered} -0.18 \\ {[0.171]} \end{gathered}$	$\begin{gathered} -0.331 \\ {[0.171]+} \end{gathered}$	$\begin{gathered} -0.335 \\ {[0.172]^{-}} \end{gathered}$	$\begin{gathered} -0.044 \\ {[0.250]} \end{gathered}$	$\begin{gathered} 0.003 \\ {[0.251]} \end{gathered}$
Repeater	$\left[\begin{array}{c} -0.304 \\ {[0.202]} \end{array}\right.$	$\begin{gathered} -0.371 \\ {[0.205]+} \end{gathered}$	$\begin{array}{r} 0.852 \\ {[0.420]^{*}} \end{array}$	$\begin{gathered} 0.762 \\ {[0.425]} \end{gathered}$	$\left[\begin{array}{c} -0.309 \\ {[0.434]} \end{array}\right.$	$\begin{gathered} -0.353 \\ {[0.444]} \end{gathered}$	$\left[\begin{array}{c} -0.108 \\ {[0.330]} \end{array}\right.$	$\begin{gathered} -0.106 \\ {[0.335]} \end{gathered}$	$\begin{array}{r} -1.405 \\ {[0.444]^{* *}} \end{array}$	$\begin{array}{r} -1.57 \\ {[0.454]^{* *}} \end{array}$
Above_Mean		$\begin{aligned} & -0.178 \\ & {[0.100]} \end{aligned}$		$\begin{aligned} & -0.273 \\ & {[0.167]} \end{aligned}$		$\begin{aligned} & -0.038 \\ & {[0.188]} \end{aligned}$		$\begin{aligned} & 0.001 \\ & {[0.186]} \end{aligned}$		$\begin{aligned} & -0.466 \\ & {[0.265]} \end{aligned}$
$\begin{aligned} & \text { (Above_Mean) } \\ & \text { *Yr90 } \end{aligned}$		$\begin{aligned} & 0.068 \\ & {[0.279]} \\ & \hline \end{aligned}$		$\begin{aligned} & 0.676 \\ & {[0.531]} \\ & \hline \end{aligned}$		$\begin{aligned} & -0.778 \\ & {[0.479]} \\ & \hline \end{aligned}$		$\begin{gathered} 0.229 \\ {[0.480]} \\ \hline \end{gathered}$		$\begin{gathered} 0.302 \\ {[0.784]} \\ \hline \end{gathered}$
Observations	3414	3414	943	943	879	879	857	857	735	735

Notes: * denotes significance at the 5% level and ${ }^{* *}$ denotes significance at the 1% level. Estimations using All Levels are done using random effects (RE) estimation and OLS estimation is used when we estimate each level separately. The dependent variable is the variance of the average grade.

Table 13: Aggregate Effect on Performance (Grades):				
Selectividad Grades				
	L4 Grade	L4 Grade	Select.	Select.
Constant	6.127	5.924	5.045	5.085
	$[0.115]^{* *}$	$[0.136]^{* *}$	$[0.095]^{* *}$	$[0.108]^{* *}$
Trend	-0.005	0.004	0.149	0.153
	$[0.022]$	$[0.022]$	$[0.018]^{* *}$	$[0.017]^{* *}$
Year 1990	$\mathbf{0 . 5 8 5}$	$\mathbf{0 . 5 5 8}$	$\mathbf{0 . 8 0 8}$	$\mathbf{0 . 7 5 2}$
	$[\mathbf{0 . 1 8 3}] * *$	$[\mathbf{0 . 1 8 1}]^{* *}$	$[\mathbf{0 . 1 2 9}]^{* *}$	$[\mathbf{0 . 1 2 5] * *}$
Gender		0.368		0.029
		$[0.115]^{* *}$		$[0.085]$
Repeater		-0.655		-1.1
		$[0.205]^{* *}$		$[0.172]^{* *}$
Observations	735	735	469	469

Notes: Data on students' grades are provided by Oiartzo Ikastola (school), for academic years 1986-1995. Data on students' Selectividad grades (for the same students) are provided by University of Basque Country, for academic years 1986-1995. * denotes significance at the 5% level and $* *$ denotes significance at the 1% level. All regressions are estimated using OLS. The analysis is restricted to Level 4 students.

Figure 1: Distribution of Grades for Basque and Math Subjects by Group-Year

Notes: Each vertical bar represents the distribution of grades in a particular group and academic year, and the shaded regions show the proportion of students that obtain each possible grade (1.5, 4, 5.5, 6.5, 7 and 9.5).

Figure 2: Kernel Distribution Before, During and After the Treatment

Notes: Kernel distribution of students' grades, over all students. The dotted line represents the treatment year (1990)

Figure 3: Kernel Distribution Before, During and After the Treatment (By Level)

Notes: Kernel distribution of students' grades, by level. The dotted line represents the treatment year (1990)

Figure 4: Placebo Treatment (Years Before)

Notes: Equation (5.1) using data for years 1986-1989 and for comparison the figure includes the effect in the treatment year (1990). The dotted line represents a 95% confidence interval.

Figure 5: Placebo Treatment Using Only Level-1 (All Years)

Notes: 5 (1) using data Level 1 data for all years (excluding treatment year (1990)) and for comparison the figure includes the effect in the treatment year (1990). The dotted line represents a 95% confidence interval.

Figure 6: Quantile Regression for Equation (5.1).

Notes: 10% to 90% quantile. The dotted line represents a 95% confidence interval. At the $60^{\text {th }}$ quantile the average grade is 6.3 and this is close to the average.

Figure 7: Placebo Treatment Using Selectividad Grades

Notes: Equation (5.1) using data Selectividad data for all years (excluding treatment year (1990)) and for comparison the figure includes the effect in the treatment year (1990). The dotted line represents a 95% confidence interval.

CENTRE FOR ECONOMIC PERFORMANCE Recent Discussion Papers

914	L Rachel Ngai Robert M. Samaniego	Accounting for Research and Productivity Growth Across Industries
913	Francesco Caselli Tom Cunningham	Leader Behavior and the Natural Resource Curse
912	Marco Manacorda Edward Miguel Andrea Vigorito	Government Transfers and Political Support

899	Kosuke Aoki Takeshi Kimura	Central Bank's Two-Way Communication with the Public and Inflation Dynamics
898	Alan Manning Farzad Saidi	Understanding the Gender Pay Gap: What's Competition Got to Do with It?
897	David M. Clark Richard Layard Rachel Smithies	Improving Access to Psychological Therapy: Initial Evaluation of the Two Demonstration Sites
896	Giorgio Barba Navaretti Riccardo Faini Alessandra Tucci	Does Family Control Affect Trade Performance? Evidence for Italian Firms
895	Jang Ping Thia	Why Capital Does Not Migrate to the South: A New Economic Geography Perspective
894	Kristian Behrens Frédéric Robert-Nicoud	Survival of the Fittest in Cities: Agglomeration, Selection and Polarisation
893	Sharon Belenzon Mark Schankerman	Motivation and Sorting in Open Source Software Innovation
892	Guy Michaels Ferdinand Rauch Stephen J. Redding	Urbanization and Structural Transformation
891	Nicholas Bloom Christos Genakos Ralf Martin Raffaella Sadun	Modern Management: Good for the Environment or Just Hot Air?
890	Paul Dolan Robert Metcalfe	Comparing willingness-to-pay and subjective well- being in the context of non-market goods
889	Alberto Galasso Mark Schankerman	Patent Thickets and the Market for Innovation: Evidence from Settlement of Patent Disputes
888	Raffaella Sadun	Does Planning Regulation Protect Independent Retailers?
887	Bernardo Guimaraes Kevin Sheedy	Sales and Monetary Policy
886	Andrew E. Clark David Masclet Marie-Claire Villeval	Effort and Comparison Income Experimental and Survey Evidence
885	Alex Bryson Richard B. Freeman	How Does Shared Capitalism Affect Economic Performance in the UK?
The Centre for Economic Performance Publications Unit Tel 02079557284 Fax 02079557595 Email info@cep.lse.ac.uk Web site http://cep.lse.ac.uk		

[^0]: ${ }^{1}$ For example, Germany is considering a complete revamp of their traditional education system, Gymnasium, in response to PISA reports (See Economist, Oct 17 ${ }^{\text {th }} 2008$); in 2008, United Kingdom extended the compulsory school leaving age by one year; since 2001 the United States has implemented the No Child Left Behind Act.
 ${ }^{2}$ Many papers analyze the optimal provision of interim feedback information on own performance using a principal-agent model in a tournament setting (Aoyagi (2007) and Ederer (2008)) and under piece-rate and flatrate incentives (Lizzeri et al. (2002) and Ertac (2006)).
 ${ }^{3}$ The provision of relative performance feedback information has received attention mostly in the tournament literature. Greshkov and Perry (2007), Kräkel (2007) and Lai and Matros (2007) study the optimal provision of relative performance feedback information in tournaments. For empirical work see Casas-Arce and MartinezJerez (2005) and Young et al. (1993). Finally, for experimental work see Muller and Schotter (2003), Hannan et al. (2007), Fehr and Ederer (2007) and Eriksson et al. (2008). Empirical work finds ambiguous results; while some authors find that the provision of relative performance feedback increases all participants' effort, others

[^1]: ${ }^{5}$ There is extensive work on preferences that include social comparison, such as negative interdependent preferences (Kandel and Lazear's (1992), Charness and Rabin (1999), Ok and Kockesen (2000)), and preferences over relative income (Duesenberry (1949), Easterlin (1974), Layard (1980), Frank (1984, 1985), Clark and Oswald (1996), Hopkins and Kornienko (2004), Dubey and Geanakoplos (2004, 2005), Moldovanu et al. (2005)). Note that competitive preferences are different from preferences that show inequity aversion (Fehr and Schmitd (1999) and Bolton and Ockenfels (2000)). This is explained in Section 3.
 ${ }^{6}$ There is an extensive literature on tournaments and contests as optimal contracts (See Prendergast for a literary review).

[^2]: ${ }^{7}$ This finding is consistent with the Niederle and Yestrumskas (2008) finding that women and men do not differ in their preferences over receiving relative performance feedback information.
 ${ }^{8}$ The web appendix is available at http://www.econ.upf.edu/ \sim azmat// and http://www.econ.upf.edu/~iriberri/ .

[^3]: ${ }^{9}$ There was no annual fee to attend public school, while for the private Basque school the fees were subsided by the local government.
 ${ }^{10}$ Basque private schools, known as Ikastolas, were first founded in the 1960s. For more information about the history of Ikastolas, see www.ikastola.net .
 ${ }^{11}$ The adopted software was provided by COSPA. For more information see http://www.cospa-agilmic.com
 ${ }^{12}$ From private communication with school officials, we could find out that the main complaint against providing this additional information was that it fostered competition among students, which many parents and teachers considered it to be a negative thing.

[^4]: ${ }^{16}$ Individuals who show inequity aversion get disutility when their outcome is different from the average outcome, whether their outcome is above or below the average, since they want to reduce differences and inequalities. However, competitive individuals get disutility only if their outcome is below the average outcome since when their outcome is above the average they want to increase differences and inequalities.

[^5]: ${ }^{17}$ Ertac (2006) presents a principal-agent model and analyzes the effect of feedback information regarding own past performance and others' past performance under different types of contracts. Since in the natural experiment we study the treatment variable is social comparison information in the form of average grade of the class, and the incentive structure is fixed where students' performance is evaluated according to their grades (piece-rate), we focus on the effect of the class average grade on students' effort levels.

[^6]: ${ }^{18}$ By repeating our analysis with these students included, our results remain unchanged. Moreover, class sizes do not change, instead of four classes in Level 1 there are now three classes but this is the number of class in subsequent years and in many other levels over time.

[^7]: ${ }^{19}$ Since we are following students throughout their high school years, those students who received treatment in Levels 1, 2 or 3, remained in the school in their following year. Having had the information about their position in the class might also affect their performance in subsequent years (despite the information being removed). We refer to this effect as being the lasting effect studied in Section 5.4.
 ${ }^{20}$ Note that in Level 1 there is no lasting effect from previous years but in Levels 2, 3 and 4 any difference that we observe in the post-treatment years might be due to the lasting effect.
 ${ }^{21}$ The information was given at class level. However, since students are randomly assigned into classes in Level 1 , there should be no difference across classes in the average grade. We check for this and find no difference.

[^8]: ${ }^{22}$ A Hausman test based on a contrast between the FE and RE estimators gives a chi-squared statistic of 2.5. This is not significant at the 5% level and so we do not reject the null hypothesis of no correlation between the individual effects and explanatory variables.

[^9]: ${ }^{23}$ We estimate a simple transition rate $\left(\mathrm{h}_{\mathrm{ab}}\right)$ using: $\operatorname{Pr}\left(S_{t}=a \mid S_{0}=a, S_{t} \neq c, S_{t} \neq d\right)=e^{-h_{a b_{t}}}$. We take the negative of the \log to compute the transition rate. The transition rates in Table A. 6 are multiplied by 100 so that they can be interpreted as the percentage of students in one grade group moving to another in the course of a year.

