
The Importance of Resistance Exercise
Training to Combat Neuromuscular
Aging

Older adults undergoing age-related decrements in muscle health can

benefit substantially from resistance exercise training, a potent stimulus for

whole muscle and myofiber hypertrophy, neuromuscular performance

gains, and improved functional mobility. With the use of advancing tech-

nologies, research continues to elucidate the mechanisms of and hetero-

geneity in adaptations to resistance exercise training beyond differences in

exercise prescription. This review highlights the current knowledge in

these areas and emphasizes knowledge gaps that require future attention

of the field.
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Introduction

Skeletal muscle is a highly adaptable tissue that
comprises ~30 – 40% of total body mass and is
remarkably compromised by aging (74). Declines
in muscle mass approach nearly 10% per decade
and are accelerated with advancing age (51, 87,
88). Muscle-associated clinical pathologies, in-
cluding sarcopenia and frailty, are more preva-
lent in individuals in the ninth decade of life (8,
102). Loss of muscle mass is particularly concern-
ing, given its important roles in physiological pro-
cesses including movement (92), metabolism
(154), signaling (107), disease and infection re-
sistance (25), independence (150), and quality of
life (9). Furthermore, declines in muscle health
have been associated with premature mortality
among community-dwelling older adults (16). As
a result, exercise training interventions that res-
cue muscle mass and function have enormous
potential to improve the experience of aging and
reduce the incidence of age-related conditions
that deteriorate quality of life. Progressive resis-
tance exercise training (RT) represents the most
widely recognized strategy to combat age-related
muscle atrophy and improve overall muscle
health on multiple levels: 1) muscle mass, 2)
neuromuscular performance (e.g., strength and
power), and 3) cellular and subcellular adapta-
tions. The purpose of this review is to 1) sum-
marize the health benefits of RT in the aging
neuromuscular system; 2) overview known un-
derlying mechanisms of RT adaptation in the
older adult; 3) outline an evidence-based RT pre-
scription proven to promote these adaptations;
and 4) highlight key knowledge gaps ripe for
future research.

Health Benefits of Resistance
Exercise Training in the Aging
Neuromuscular System

Muscle Mass

The etiology of age-related muscle atrophy is a
multi-faceted degenerative process involving both
atrophy of fast (type IIa and IIx) myofibers (78, 97,
108, 135) and a reduction in total myofiber number
(85). RT is a potent hypertrophy stimulus for all
myofiber types, particularly the type II fibers typi-
cally compromised by aging. With RT, older adults
exhibit well-characterized shifts in myofiber type
distribution (IIx to IIa shift) and concomitant myo-
fiber hypertrophy across fiber types (preferential to
type II myofibers) (13, 103, 142, 144). There is no
definitive evidence of myofiber hyperplasia in
adult humans (although we recognize current lim-
itations in measurement tools). Furthermore, the
limited evidence of hyperplasia in animal models
is based on an extreme degree of physiological
stress to induce myofiber splitting (148). Thus, to
our knowledge, no human intervention can restore
myofiber number: combating aging muscle atro-
phy with RT is likely fully dependent on the induc-
tion of myofiber hypertrophy. Still, many older
adults respond to RT with myofiber hypertrophy
sufficient to meet or exceed the type II myofiber
size of sex-matched young adults (13, 78).

Neuromuscular Performance

Whereas muscle mass declines at a rate of ~1% per
year, accompanying neuromuscular functional re-
ductions (e.g., muscle strength and power) occur
more rapidly (92). Longitudinal studies have dem-
onstrated decreases in muscle strength of ~2–4% per
year (54, 55), and another study found a reduction
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of ~8 –9% in muscle power over a 3-year period
(132). Muscle power is the product of force and
contractile velocity; thus age-related loss of muscle
power is driven by reductions in the force-gener-
ating capacity of muscle, as well as slowing of the
rate of force development (RFD) (93). Loss of mus-
cle power is a strong predictor of physical impair-
ment in older adults (26, 42, 98, 131). Contractile
properties of single myofibers, when normalized for
myofiber size, are not compromised with aging (55,
127, 130, 132), with some data suggesting that
heightened fiber function may compensate for def-
icits at the whole muscle level (61). Although the
notable reductions in lower extremity muscle
power (27, 122, 130, 132) suggest that whole mus-
cle atrophy is a major driver, muscle atrophy does
not account for the entirety of power decline: rel-
ative muscle power (i.e., adjusted for muscle mass)
is also reduced with advancing age (116, 121, 132,
135), suggesting that a neurological component is
also involved. Indeed, older adults may have ~30 –
40% fewer motor units compared with young
adults (76, 79, 108, 119 –121), and there is evidence
to suggest increased size of surviving motor units
[as supported by electromyographic studies (95,
121, 141)] and motor unit remodeling via type I
myofiber grouping (67, 77, 135). These findings
combined suggest that neural activation of these
larger type I motor units may play a role in reduc-
ing explosive force and thus power (89).

The effectiveness of RT in reversing age-related
reductions in muscle function has been consis-
tently demonstrated. A 25–35% increase in leg
muscle strength, measured as one repetition max-
imum (1RM) (105, 106, 115, 144), and similar im-
provement in upper body strength (28, 46, 66, 124)
occur in healthy older adults with at least 8 –12 wk
(28, 64, 105, 115, 144) of moderate to high-intensity
RT (�70% 1RM) (13, 24, 33, 144). Interestingly, the
increases in muscle strength and power with RT
occur before and exceed the hypertrophic mor-
phological response (34, 54). This is explained by
the early physiological phase of neuroadaptation
that normally follows the first weeks of training.
These findings support the hypothesis that a main
factor of muscle wasting is impaired neurological
control—more so than an intrinsic inability of
older muscle fibers to generate force—and confirm
the effectiveness of RT to improve neuromuscular
function in older adults. Moreover, an increase in
lower extremity muscle power is accompanied by
an improvement in balance (50, 69, 81, 82, 90) and
reduced fall risk, which contributes to reduced
mortality in older adults (43, 137).

The benefits of RT exceed improvements in skel-
etal muscle size and strength alone (FIGURE 1).
Strength improvement and myofiber hypertrophy
due to RT reduce the motor unit activation de-

mand to perform a given submaximal movement,
as we (115, 144) and others (71) have shown during
a sit-to-stand task. The basis of this may be related
to motor unit remodeling that accompanies sed-
entary aging as an apparent result of denervation-
reinnervation events (67, 75, 77). Encouragingly,
short-term RT appears to reverse this phenomenon,
at least in those individuals with a higher degree of
motor unit remodeling (76).

Mechanisms of Resistance Exercise
Training Adaptation in the Older
Adult

Muscle Protein Synthesis

Skeletal muscle mass is regulated by the fine bal-
ance between two cellular processes: protein syn-
thesis and breakdown. A positive net balance is
achieved when the rate of protein synthesis ex-
ceeds the rate of degradation. Several studies have
found that muscle protein synthesis increases after
an acute bout of RT (30, 31, 39, 56, 118), and the
effect can last up to 48 h. However, more recent
findings have also revealed that the acute response
to exercise is not always predictive of a long-term
adaptation (31, 101). Moreover, the magnitude of
the response to RT is different between younger
and older adults (40, 80), with aging affecting skel-
etal muscle tissue sensitivity to anabolic stimuli,
such as physical activity and nutrition (104, 138).

FIGURE 1. Neuromuscular benefits for older adults undergoing resistance
exercise training
The neuromuscular benefits for older adults undergoing resistance exercise training
(RT) extend beyond muscle mass and strength. For a summary of RT benefits on other
organ systems, see text.
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Despite these caveats, chronic RT increases
basal muscle protein synthesis in both young (133)
and older adults (103), and this has been shown to
correlate with increased skeletal muscle thickness
(133) and myofiber cross-sectional area (CSA) (31).
The perpetual repetition of training sessions stim-
ulates the activation of the mechanistic target of
rapamycin complex 1 (mTORC1), which directly
promotes protein synthesis via phosphorylation of
specific downstream effectors (S6K1, rpS6, eEF2,
and 4EBP1). It is beyond the scope of this review to
describe in detail the mechanisms that regulate
hypertrophy through mTORC1; however, it is in-
teresting to note that mTORC1 also plays a key role
on ribosomal function and biogenesis (21), which
are primary promoters of translational capacity.
Recent studies have demonstrated that muscle lev-
els of ribosomal RNAs (rRNAs) are highly elevated
after resistance exercise in young subjects (49) but
not in older adults (15, 143) and that basal levels of
upstream mRNAs (ribosome regulators) are pre-
dictive of the myofiber hypertrophic response to
RT (149). Furthermore, via cluster analysis, differ-
ential myofiber hypertrophy among older adults in
response to short-term RT appears to be mediated
at least in part by differential induction of ribo-
some biogenesis, enabling heightened capacity for
protein synthesis (143).

Several studies have also shown that a single
bout of RT can increase the muscle protein ana-
bolic response to nutritional stimuli (17, 37, 41).
Exercise, with an increased demand of blood flow
and energy, increases the delivery of dietary nutri-
ents and modulates the protein synthetic response
to food ingestion (41, 111). Indeed, very old adults
undergoing heavy RT benefitted further from the
addition of a protein supplement, further high-
lighting the link between RT-induced demand and
nutrient availability in aiding hypertrophy (10).
However, it has been recently shown that regular
RT increases basal muscle protein synthesis in
healthy older adults but does not further improve
the muscle protein anabolic response to amino
acids (103).

Training also impacts muscle protein breakdown
as a physiological response to the damage caused
by muscular contraction. Protein breakdown in-
creases following an acute bout of RT, and this
response seems to be similar in young and older
adults (57). Recently, Damas found that muscle
protein breakdown is more pronounced in novice
subjects, and this is reduced in favor of an en-
hanced protein synthetic response with subse-
quent training (29). These findings underpin the
positive effect of RT on muscle repair and regen-
eration, leading to reinstatement and maintenance
of muscle mass throughout life. Thus the primary
effects of exercise on muscle protein balance,

largely mediated through mTORC1 and ribosomal
biogenesis, facilitate a shift to a positive net bal-
ance and lead to an increase in muscle mass.

Insights from Exercise -Omics

The recent advent of genome-wide and phenome-
wide association studies (often termed the GWAS
and PheWAS era) has created heightened potential
for discovery, providing the opportunity to inves-
tigate all possible contributors to RT adaptations.
The burgeoning -omics fields are interconnected
through their influence on phenotype (FIGURE 2),
as recently described in greater detail in the con-
text of exercise physiology (14, 68, 157). These ar-
eas represent the new horizon for exercise biology,
and the currently available literature has barely
begun to scratch the surface of this enormous po-
tential. The field as a whole will be able to leverage
the amassed -omics data sets soon to be generated
in the ground-breaking NIH Common Fund initia-
tive, the Molecular Transducers of Physical Activity
Consortium (MoTrPAC). Early explorations, along
with studies targeted at investigating an isolated
pathway or biological process, have provided con-
siderable insight into potential mechanisms un-
derlying RT adaptations in older adults. With the
continual advancement of available technologies,
studies are often not uniform with regard to the
selected platform (e.g., targeted PCR to microarray
to transcriptomics). However, these methodologi-
cal differences (including disparities in exercise
regimens, biopsy timing, etc.) present a strength,
since several recurrent themes are still able to
emerge, including mitochondrial health (96, 136),
inflammation (128, 149), and regulation of protein
metabolism (7, 117, 126, 136, 149).

A focal point of exercise and aging research has
been the mechanistic investigation into response
heterogeneity to exercise training in aging adults
by comparing baseline muscle characteristics
across a range of hypertrophic responses to resis-
tance exercise. Targeted investigations into single
nucleotide polymorphisms in inflammatory cyto-
kines (35, 112) and upstream regulatory elements
(112) have shed light on the potential impact of
inflammation to blunt adaptive responses to RT (6,
97, 152). More comprehensive approaches using
microarray (117, 149) elaborate on the impact of
basal gene expression on the training response. For
instance, we have found enormous differential gene
expression (8,026 genes) between non-responders
and extreme responders to RT, predominantly as-
sociated with regulation of transcription, muscle
function and development, and inflammation
(149). Another investigation found increased activ-
ity of the rapamycin pathway in individuals who
responded best to RT training (117). Beyond this,
microRNA (miRNA) abundances (32, 109, 155) and
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transcript splice variants (156) have been impli-
cated in contributing to the magnitude of RT ad-
aptations, and additional regulatory mechanisms
of gene expression (e.g., methylation, acetylation)
are also likely involved.

Some studies have demonstrated limited plastic-
ity to exercise training in older adults compared
with young adults (59, 127, 139), and this may be
the result of a generally less robust adaptive re-
sponse in basal gene expression (128), gene silenc-
ing (via miRNA) (36, 134), and/or another yet
unexplored facet of metabolism. Nonetheless, RT
is more likely to reverse the expression of age-
related genes than those unaffected by aging (96).
Raue and colleagues provided early insight into the
relationship between the exercise response and
changes in gene expression, showing a basal in-
crease in 144 genes after RT training in older women
(128). In this study, two inflammation-related genes
(TNFRSF12A and NFKBIA) demonstrated significant
relationships with changes in skeletal muscle mass
and strength throughout training. Likewise, studies
have found relationships between RT-induced
gains and changes in abundances of miRNAs (32,
134, 155), highlighting the dynamics of posttran-
scriptional gene expression regulation and interde-
pendence of -omics tracks in adaptations to
exercise. In a comparison across three modes of
exercise, Robinson and colleagues found that RT
increased basal expression of 33 unique genes,
along with increased expression of angiogenic fac-
tors (e.g., targets of VEGFA) and growth signaling-
associated genes across all training modes. In a
concomitant proteomics analysis (136), the group
found 185 proteins that increased in response to
RT, mainly related to translation processes (e.g.,
tRNA aminoacylation) and ribosome function,
highlighting the importance of enhanced transla-
tional capacity to support the heightened demands
of RT.

Resistance Training Prescription for
the Older Adult

Exercise dosage underlies all potential physiologi-
cal benefits of RT. Most RT intervention studies
have only used one or two training doses, which
provides little insight into a dose-response rela-
tionship. To our knowledge, only one study has
employed four doses (144) in an attempt to titrate
the optimal exercise regimen. Nevertheless, a col-
lective agreement in the field is that progressively
overloading the muscle through RT is necessary to
create continuous adaptations (2). When familiar-
ization to proper exercise technique and struc-
tured progression are components of the study
design, RT is safe and effective for older adults,
with rates of injuries extremely low and similar

across all ages and intensities (48, 52). Further-
more, adherence and dropout rates do not differ by
training intensity (129), but adherence may be
slightly higher on a lower-frequency regimen (144).
It is important to note that, even within a given
prescription, response heterogeneity is still evi-
dent; thus the truly optimal exercise dose is likely
variable by individual.

Frequency, Intensity, and Volume

Training dose is dependent on several factors, in-
cluding number of sets and repetitions, frequency,
and intensity. Each of these components is an im-
portant consideration in designing an RT regimen.
For example, total weekly volume is equal in the

FIGURE 2. Regulation of skeletal muscle gene expression and protein
expression
Regulation of skeletal muscle gene expression and, ultimately, protein expression, oc-
curs at multiple levels, influencing both baseline phenotype and responsiveness to an
RT. Molecular networks of interest, based on current knowledge (32, 36, 117, 128,
134, 136, 149, 155, 156), are highlighted in this diagram and provided in context in
the text.
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following two scenarios: 1) 3 sets of 15 repetitions
per set at a 45-kg load repeated 2 days/wk and 2) 3
sets of 6 repetitionss per set at a 75-kg load re-
peated 3 days/wk. There is considerable variance
across studies with regard to exercise programs,
but the primary outcome of the study (e.g., hyper-
trophy, strength, functional mobility) likely dic-
tates the optimal exercise prescription. Although
the ACSM recommends that older adults partici-
pate in a minimum of two RT sessions per week (3),
some researchers use a low frequency as a minimal
effective dose (1 day/wk) to promote adaptations
(38, 145), and others use a more aggressive ap-
proach to maximize changes (3 days/wk) (13, 45,
84, 86, 110). Several have found no difference
across training frequencies for strength adapta-
tions (19, 38, 145).

Frequency, however, is not the sole determinant
of adaptation. In our recent four-arm, randomized
dose-response RT trial among older adults, we
noted substantially greater gains in total body lean
mass, thigh muscle mass, and isometric strength
when the 3 day/week prescription involved a lower
intensity “light” day during the midweek session,
as compared with high-intensity training all 3 days
each week (144). This finding highlights that, in
designing exercise prescriptions for older adults,
recovery must be considered as carefully as inten-
sity. However, there is no standardized definition
of high, moderate, or low intensity in the literature.
Two previous analyses have classified �70% 1RM
as high intensity, 50 –70% 1RM as moderate inten-
sity, and �50% 1RM as low intensity (11, 129).
High-intensity RT has been shown to improve
lower body strength to a greater degree than mod-
erate or lower intensity, if training volume is equiv-
alent (129). High-intensity RT has also been shown
to improve strength, anaerobic power, and mobil-
ity, and to increase bone mineral density more
than low-intensity RT (47, 147). Outside of inten-
sity, explosive training has also been an interest in
the field due to its potential to maximize RFD,
which could translate into better functional mobil-
ity and balance. One meta-analysis found that
there was a similar effect between high-intensity
strength training and explosive training (62), al-
though gains in RFD and muscle strength did not
always coincide.

Session volume (number of sets and repetitions
per session) was found to be positively associated
with lean body mass increases in a meta-analysis
of 49 studies averaging 20 wk in duration (113). If
intensity is held constant, short-term (6 –10 wk)
gains in muscle mass and strength are similar be-
tween high (3 sets) and low (1 set) session volume
(18, 125), but a clear benefit appears for the
higher session volume prescription by the 20th
week of training (123). In a small, 20-wk study of

community-dwelling older adults, a high session
volume (3 sets vs. 1 set to failure) training program
improved muscle strength, endurance, and 400-m
walk time. However, both training programs im-
proved functional movements (chair rise, 6-m back-
ward walk, stair climb) and muscular endurance (58).
These studies further support the well-accepted con-
cept of progressive overload to continue to promote
training adaptations over time (e.g., by manipulating
session volume, frequency, and/or intensity).

Detraining

Following cessation of training, some evidence sug-
gests older adults can maintain dynamic strength for
several months (86). For example, after 24 wk of
RT, only minor changes occurred with 3 wk of
detraining, although improvements in walking
speed remained elevated (63). Over longer periods,
RT adaptations are gradually lost (83, 146). Main-
tenance of muscle strength and size can be pre-
served on a minimal dose (one set) after 12 wk of
RT (151). In one study, both young and older adults
were followed for 32 wk after 16 wk of 3 days/wk RT
and were assigned to either no training, 1 day/wk
at 1/3 the initial weekly exercise volume (3 sets), or
1 day/wk at 1/9 the initial weekly exercise volume
(one set) (13). Without a maintenance dose, loss of
RT-induced muscle mass gains was detected in
both age groups after only 8 wk of detraining,
whereas decrements in 1RM were not detected
until 32 wk of detraining. The investigators also
found that a maintenance dose of 1/3 or 1/9 the
volume preserved strength in both age groups, but,
among older adults, only the higher maintenance
dose preserved the RT-induced increases in mus-
cle mass, whereas young adults effectively pre-
served gains in mass on both doses (13). Exercise
intensity may also play an important role in prevent-
ing detraining, with one study demonstrating that
strength and mobility were preserved throughout 2
years of detraining following high-intensity RT (82%
1RM) but not after lower-intensity RT (55% 1RM)
(47). Thus the minimal effective dose for increasing
and then preserving muscle mass in older adults is
likely a very manageable number of muscular
contractions.

Response Heterogeneity

Although all individuals garner some degree of
beneficial adaptations to RT, there is appreciable
variability in responsiveness to RT when strictly
defined as the magnitude of whole muscle or myo-
fiber hypertrophy (1, 4, 23, 32, 44, 70) (FIGURE 3).
One approach to classifying and studying re-
sponse heterogeneity is to group responders us-
ing K-means clustering, a method introduced
several decades ago (73) and first applied to exer-
cise response heterogeneity in 2007 (7). We have
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used this method to group subjects by myofiber
hypertrophy after a training stimulus (7, 114, 149)
and validated the method in subsequent trials (142,
144). Important considerations for clustering include
exercise prescription (i.e., a given individual’s re-
sponse might be poor on a given RT prescription but
very good on another) and baseline phenotype [i.e.,
individuals with poorer muscle mass at the outset
may improve more by a regression to the mean
phenomenon (22)]. A number of non-modifiable
(e.g., sex, race, ethnicity, age, genotype) and mod-
ifiable (e.g., co-morbidities, functional capacity,
diet, medications, sleep) factors may influence re-
sponse heterogeneity, but each has yet to be fully
explored. To our knowledge, no studies have dem-
onstrated differences in response heterogeneity in
response to RT as a direct influence of any of these
factors in isolation. Once again, this highlights the
potential impact of future GWAS-PheWAS applica-
tions to RT trials. Although the causes of response
heterogeneity are not fully understood, strategies
to attenuate the range of heterogeneity or reduce
the number of non-responders may leverage opti-
mization of exercise dose, nutrition, and possibly
pharmaceutical adjuvants. For example, response
heterogeneity to traditional 3 days/wk RT pro-
grams has been noted in older adults (142), but
recent work using 2 days/wk of high-resistance
concentric-eccentric training and 1 day/wk low-
resistance, high-velocity, concentric-only training
showed meaningful improvements in thigh muscle
mass and myofiber CSA in a high proportion of
older adult participants (144).

Another yet poorly understood component of
variability in response to RT is an apparent result
of advancing age. Although adults aged 60 –75 yr
still possess a robust, albeit attenuated, hypertro-
phic ability following 16 wk of RT (13, 78, 153),
octogenarians and very old adults often display a
limited or blunted hypertrophic capacity (59, 127,
139). Overall, although response heterogeneity
presents a challenge for investigators, it also serves
as an opportunity to explore its mechanistic basis,
highlighting the importance of continued research
into subcellular adaptations to exercise training.

Knowledge Gaps Ripe for Future
Research
Mechanistic Knowledge Gaps

Discovery-oriented research may reveal previously
unknown molecular transducers of adaptations to
RT unique to the individual and perhaps common
linkages among phenotypic groups (e.g., age, sex,
disease status, or medication profile), creating op-
portunities to design prescriptions with greater
precision. Numerous molecular mapping tools re-
main largely unexplored in the context of exercise

in aging muscle, including but not limited to
metabolomics, microbiomics, and ribosome biol-
ogy. Still, the more commonly used platforms (e.g.,
RNA-Seq, miRNA-Seq) receive preferential atten-
tion in aerobic training study designs, leaving
many questions to be answered through RT inter-
ventions. For example, the molecular basis of the
range of adaptability to short-term RT remains in-
completely understood. Examination of transient,
exercise-induced changes in gene transcription,
translation, and regulatory factors (e.g., methyl-
ation, histone modification, gene silencing, and
alternative splicing) may provide insight into po-
tential deficiencies in aging skeletal muscle in gen-
eral or among individuals or subgroups that might
be rescued by tailored exercise prescriptions with
or without pharmaceutical adjuvant therapies.

Clinical Knowledge Gaps

The benefits of preserving muscle mass through RT
during aging extend well beyond strength and
power [e.g., heightened exercise tolerance (72); de-
creased difficulty in activities of daily living (65);
enhanced cognition, memory, and mood (12, 91,
94); reduced disease susceptibility (25); improved
surgical outcomes (53); and prolonged indepen-
dence (150) and lifespan (140)], but several un-
knowns remain. Future studies should be designed
to examine the benefits of long-term (i.e., lifelong)
resistance exercise training, as has become a re-
cent fascination in the endurance exercise and ag-
ing literature (20, 60, 99, 100). Since the popularity
of RT as a structured exercise prescription is a

FIGURE 3. Response heterogeneity to progressive resistance exercise
training in older adults
Potential causes of heterogeneity include both non-modifiable (e.g., age, sex, race,
genotype) and modifiable (e.g., exercise dose, behavioral and environmental factors,
phenotype) factors (5). Titrating the exercise dose has been effective in reducing the
number of low responders (144).
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relatively recent phenomenon, lagging slightly be-
hind the running boom and other aerobic training
trends, individuals with a lifelong RT training back-
ground will soon begin to reach retirement age. It
would provide considerable insight to investigate
not only the skeletal muscle benefits but other
health outcomes with lifelong RT. Short-term RT
studies have previously demonstrated consider-
able success in inducing a range of non-muscle
health benefits (12, 65, 72, 91, 94). It is attractive to
speculate that lifelong RT may not only enhance
the degree of these benefits but also prevent other
age-related declines that show limited reversibility
with short-term exercise training.

In addition to muscle- and performance-specific
adaptations to long-term RT and acute responses
to a single exposure, it is beneficial to continue to
pursue an understanding of the behavioral deter-
minants of participation in and adherence to an RT
regimen. For example, aging athletes who are aer-
obically inclined may engage in RT to forestall
overuse injuries, whereas others may be more mo-
tivated by non-muscle adaptations to RT (e.g.,
body composition changes, cognitive function, mo-
bility difficulty, psychological well-being). Through
continued pursuit into the molecular basis of RT
adaptation, optimization of exercise prescription,
and approaches to maximize awareness and ad-
herence, we expect RT to strengthen its position as
an effective tool for maximizing healthspan in the
aging population. �
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