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3 Laboratoire de probabilités, Université Pierre et Marie Curie, Tour 56, 3e étage, 4 place
Jussieu, F-75252 Paris Cedex 05, France

Received: 6 August 1996 / Revised version: 27 July 1998

Abstract. For a wide class of local martingales (Mt) there is a default func-
tion, which is not identically zero only when (Mt) is strictly local, i.e. not a
true martingale. This ‘default’ in the martingale property allows us to char-
acterize the integrability of functions of sups≤t Ms in terms of the integrabil-
ity of the function itself. We describe some (paradoxical) mean-decreasing
local sub-martingales, and the default functions for Bessel processes and
radial Ornstein–Uhlenbeck processes in relation to their first hitting and last
exit times.
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1. Introduction

In this paper we encounter a number of examples of strictly local martin-
gales, i.e. local martingales which are not martingales. A local martingale
(Mt) is a true martingale if and only if EMT = EM0 for every bounded
stopping time T . The quantity γM(T ) = EM0 −EMT quantifies the ‘strict’
local property of the local martingale and shall be called the ‘default’. The
corresponding γM shall be called the default function. This ‘default’ in
the martingale property allows us to characterize the exponents p for which
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E
[
sups≤t |Ms |p

]
< ∞ and more generally, those p for which certain fam-

ilies of semi-martingales (X
(α)
t : t ≥ 0) parameterized by α ∈ I satisfy:

sup
α∈I

E
[

sup
s≤t

|X(α)
s |p

]
< ∞ .

In §2.1 a representation for the default γM(T ) is given in terms of the
weak tail of sups≤T Ms , which shall be called the default formula. From this
we also see that a local martingale whose negative part (M−) belongs to
class DL is a true martingale if and only if γM(t) ≡ 0. In §3 the default
formula is generalized to perturbations of local martingales, especially to
semi-martingales. In particular we discuss under which conditions on a local
martingale (Mt), γM(T ) equals the weak tail of sups≤T |Ms |.

Strictly local martingales appear naturally in applications: for example,
the local martingale components found in many applications of Itô’s for-
mula are often strictly local martingales, especially when we are working
on noncompact spaces. On the other hand, the expectation of a stochastic
integral with respect to a martingale is often assumed to be zero, e.g. in a
number of probabilistic discussions related to partial differential equations.
A natural question is, then, whether the mean value function of a strictly
local martingale has any special property? In §3.2, local martingales with
mean value function m(t) given by an arbitrary continuous positive non-
increasing function m : R+ → R+ are constructed. Similarly we give
examples of strictly local sub-martingales, i.e. the sum of a strictly local
martingale and an increasing process, which are mean decreasing. (A local
sub-martingale (Xt) is said to be mean decreasingif EXt ≤ EXs whenever
t > s, and EXt∗ < EXs∗ for at least one pair of numbers t∗ > s∗.)

These results are applied to study the integrability properties of function-
als of Bessel processes and radial Ornstein–Uhlenbeck (O.–U.) processes.
First we calculate the default function γ for radial O.–U. processes, in terms
of the law of T0, the first time the process hits zero. Using the Girsanov the-
orem for last passage times, the law of T0, for a (4 − δ) dimensional O.–U.
process starting from a is in turn given by the last hitting time of a by a
δ-dimensional O.–U. process starting from 0. There is a brief analogous
discussion for O.–U. processes with non-linear drift. In §3.4 we give a re-
lated non-integrability result for general diffusions using techniques from
stochastic flows.

We would like to mention other topics where strictly local martingales
play an essential role, namely; asymptotics for the Wiener sausage (Spitzer
[18], Le Gall [11], see also section 2), and probabilistic proofs of the two
main theorems in Nevanlinna theory (K. Carne [3], A. Atsuji [1]). Strictly
local martingales have also come to play a role in mathematical finance as
discussed in Delbaen and Schachermayer [4]. See also Sin [17] who gives
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a class of stock price models with stochastic volatility for which the most
natural candidates for martingale measures yield only strictly local martin-
gales, and Ornstein–Uhlenbeck processes are given as volatility processes
in, e.g., Stein-Stein [19] and Heston [10]. See also Elworthy-Li-Yor [5],
Galtchouk-Novikov[7] and Takaoka [20] for related work. In fact Takaoka
[20] relates the weak tails of supt≤T |MT | and 〈M〉

1
2
T under ‘almost’ minimal

assumptions.
Finally, in order to avoid some possible confusion, let us stress that

our strictly local martingalesdo not bear any relation with Le Jan’s strict
martingales.

2. Strictly local martingales

Here we define a strictly local martingaleto be a local martingale which is
not a true martingale. Here are a couple of examples:

1. Let {Rt} be a δ-dimensional Bessel process, δ > 2. Then {R2−δ
t } is a

strictly local martingale. In fact ER2−δ
t is a strictly decreasing function

in t by direct calculation. Alternatively see (34).
2. More generally, let (Xt , t ≤ ζ ) be a regular transient diffusion on (0, ∞)

and s its speed measure such that (i) ζ = inf{t > 0 : Xt− = 0, or ∞}
(ii) s(0) = −∞, s(∞) < ∞. (iii). 0 is an entrance point for the diffusion
X. Then {s(Xt)} is a strictly local martingale. See Elworthy-Li-Yor [5].

2.1. The default formula

A. Let Xt be a stochastic process adapted to an underlying filtration (Ft ).
Recall that X belongs to class D if the family of random variables XS

where S ranges through all stopping times S is uniformly integrable. It is in
class DL if for each a > 0, {XS} is uniformly integrable over all bounded
stopping times S ≤ a. If T is a stopping time, we write XT

· = XT ∧·. Below
it will be convenient to decompose Xt into its positive and negative parts,
Xt = X+

t − X−
t .

We have the following maximal and limiting maximal equalities.

Lemma 2.1. Let Mt be a continuous local martingale withE|M0| < ∞.
Let T be a finite stopping time such that(MT )− is of classD. ThenMT ∧·
is bounded inL1 and

E
[
MT 1(supt≤T Mt<x)

]
+ xP

(
sup
t≤T

Mt ≥ x

)
+ E[M0 − x]+ = EM0 . (1)
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Furthermore,

lim
x→∞ xP

(
sup
t≤T

Mt ≥ x

)
= EM0 − EMT . (2)

If limt→∞ Mt exists and is finite, e.g. for a positive local martingale(Mt),
the stopping timeT does not need to be finite.

Note. A special case of the default formula appeared in Carne [3]. See
also Atsuji [1]. A complement to the default formula in terms of 〈X〉T is
presented in Elworthy-Li-Yor [5].

Proof.Let (Sn, n ∈ N) be a reducing sequence of stopping times for M·, i.e.
(Sn) increases to ∞ as n → ∞ and is such that each {Mt∧Sn

} is a uniformly
integrable martingale. Set Tx = inf{t ≥ 0 : Mt ≥ x}. First, assume M0 is a
constant. If x > M0 then Tx = inf{t > 0 : Mt = x} and

E
[
MTx∧T ∧Sn

] = EM0 . (3)

Letting n → ∞, we obtain:

E
[
MTx∧T

] = EM0 . (4)

This is (1):

E
[
MT 1(supt≤T Mt<x)

]
+ xP

(
sup
t≤T

Mt ≥ x

)
= EM0 .

On the other hand (1) is clearly true for x ≤ M0. In general for M0 an
integrable random variable, we take conditional expectations with respect
to F0 to get (1). Now MT is integrable by (4):

E|MT | ≤ lim
x→∞

E
(
MT ∧Tx

+ 2M−
T ∧Tx

) ≤ EM0 + 2EM−
T . (5)

Write

E
[
MT 1(supt≤T Mt<x)

]
= E

[
M+

T 1(supt≤T Mt<x)

]
− E

[
M−

T 1(supt≤T Mt<x)

]
and take the limit as x → ∞ in (1) to get

EMT + lim
x→∞ xP

(
sup
t≤T

Mt ≥ x

)
= EM0 . (6)

If limt→∞ Mt exists and is finite, the argument above holds for non-finite
T . �

B. For a stopping time T , set

γM(T ) = EM0 − EMT . (7)
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We call the quantity defined in (7) the defaultof the process (MT ) and the
limiting maximal equality (2) the default formula.

Proposition 2.2. A local martingale{Mt} such thatE|M0| < ∞ and its
negative part belongs to class DL is a super-martingale. It is a martingale
if and only ifEMt = EM0, i.e.γM(t) = 0, for all t > 0.

Proof. The second statement is well known and follows from the above
discussions: {Mt} is a martingale if and only if γM(T ) = 0 for all bounded
stopping times T , the latter is equivalent to γM(t) = 0 for all t > 0. The
equivalence of the latter comes from formula (2):

γM(T ) = lim
x→∞ xP

(
sup
t≤T

Mt ≥ x

)
≤ lim

x→∞ xP

(
sup
t≤t0

Mt ≥ x

)
,

where t0 is an upper bound for T .
To prove {Mt} is a super-martingale, take two bounded stopping times

S ≤ T . We only need to prove EMS ≥ EMT . Let Nt = Mt+S , then {Nt} is
a local martingale with respect to the filtration {Ft+S}. So (2) gives:

lim
x→∞ xP

(
sup

t≤T −S

Nt ≥ x

)
= EN0 − ENT −S = EMS − EMT .

Thus EMS ≥ EMT and {M·} is a super-martingale. �

2.2. Integrability of functionals

A. Let F : R+ → R+ be defined by F(x) = ∫ x

0 dyf (y), for f a nonnega-
tive Borel function.

Proposition 2.3. Let {Mt} be a local martingale andT a stopping time
such that the default formula(2) holds withγM(T ) = EM0 − EMT finite.
If

∫ ∞ f (y)

y
dy < ∞, then

E
[
F(sup

s≤T

Ms)

]
< ∞ .

Furthermore if alsoγM(T ) > 0, then
∫ ∞ f (y)

y
dy = ∞ if and only if

E
[
F(sup

s≤T

Ms)

]
= ∞ .
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Proof.This follows from

E
[
F(sup

s≤T

Ms)

]
=

∫ ∞

0
f (y)P

(
sup
s≤T

Ms ≥ y

)
dy

and (2). �

B. As an example we look at the integrability of certain standard Brown-
ian and Bessel functionals. For δ ∈ R+, let {Rt} be a δ-dimensional Bessel
process. The expectation of a δ-dimensional Bessel process starting from
a will be denoted by E(δ)

a . The subscript may be omitted if no initial value
is specified. For δ ≥ 2, {Rt} is the unique non-negative solution to the
stochastic differential equation:

dρt = dβt + δ − 1

2ρt

dt ,

where {βt} is a 1-dimensional Brownian motion. For δ < 2 the situation
is different because the Bessel process (Rt : t ≥ 0) has a non-trivial set
of zeros. Moreover there is an increasing process Lt(R) whose support is
precisely this set of zeros, and such that R2−δ

t − Lt(R), t ≥ 0, is a local
martingale, in fact a martingale with moments of all orders. Thus for our
purposes the case δ < 2 is uninteresting and we shall restrict discussions
to δ ≥ 2. Furthermore { 1

Rδ−2
t

} is a local martingale for δ > 2 and when
δ = 2, log r is a scale function for Rt and (log Rt) is therefore again a local
martingale. This leads to:

Corollary 2.4. Let I = [r1, r2] be an interval withr1 > 0. Let t > 0 and
p > 0 we have

1. For δ > 2,

sup
a∈I

E(δ)
a sup

s≤t

(
1

Rδ−2
s

)p

< ∞. if and only ifp < 1 . (8)

This also holds fort ≡ ∞.
2. For δ > 2,

sup
a∈I

E(δ)
a

[∫ t

0

1

R
2(δ−1)
s

ds

] p

2

< ∞, if and only ifp < 1 .

3. For a 6= 0,

E(2)
a

[
sup
s≤t

| log
1

Rs

|p
]

< ∞, if and only ifp < 1

and

E(2)
a

[∫ t

0

ds

R2
s

] p

2

< ∞, if and only ifp < 1 .
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Proof.Since { 1
Rδ−2

t

} is a strictly local martingale, (8) is a direct consequence
of Proposition 2.3 if I contains a single point. It also holds for t = ∞
by the last sentence of Lemma 2.1, since limt→∞ 1

Rt
= 0. For genuine

intervals I using a corresponding result for a family of local martingales,
c.f. Proposition 3.5. For part 2, note that for δ 6= 2, (Rt)

−(δ−2) satisfies:

(Rt)
−(δ−2) = (R0)

−(δ−2) − (δ − 2)

∫ t

0

dβs

Rδ−1
s

(9)

The required result follows from the Burkholder-Davis-Gundy inequality
and (8) for each 0 ≤ t ≤ ∞.

For the case of δ = 2, we apply Proposition 2.3 to log 1
Rt

. First note that
the negative part of log 1

Rt
is uniformly integrable over finite times:[

log
1

Rt

]−
≡ log Rt1(Rt≥1) ≤ (Rt − 1)+ ≤ Rt .

Next we observe that {log 1
Rt

} is a strictly local martingale, since E(2)
a Rt

is strictly increasing in t and so

E(2)
a

[
log

(
1

Rt

)]
≤ − log E(2)

a [Rt ] < log
1

a
.

The required result follows. �

From Lemma 2.1 we also have, for a 2-dimensional Bessel process,

lim
r→∞ rP

{
inf
s≤t

log Rs ≤ −r

}
= E(2) log Rt − log a .

This is closely related to Spitzer’s asymptotics [18], although Spitzer presents
a different quantity on the right hand side; see also the estimate (0a) for
Wiener sausages in Le Gall[11], and (12) in Elworthy, Li and Yor[5].

Using Girsanov transform, the result of Corollary 2.4 extends to radial
Ornstein–Uhlenbeck processes of integer dimensions, as below.

Let n ≥ 2 be an integer. An n-dimensional radial Ornstein–Uhlenbeck
process {Rt} with parameter λ can be realized as the radial part of an n-
dimensional Ornstein–Uhlenbeck process {Ut} with parameter λ as the so-
lution to the stochastic differential equation:

Ut = x + Bt − λ

∫ t

0
Us ds, x ∈ Rn, λ ∈ R1 , (10)

which can be solved explicitly to give: Ut = e−λt
(
x + ∫ t

0 eλsdBs

)
. For

λ ≥ 0, the reciprocal { 1
Rn−2

t

} is a local sub-martingale as seen by Itô’s
formula:
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1

|Ut |n−2
= 1

|x|n−2
− (n − 2)

∫ t

0

〈Us, dBs〉
|Us |n + (n − 2)

∫ t

0

λ

|Us |n−2
ds (11)

for x 6= 0 (when x = 0, this is true with x replaced by Uε and the lower
limit 0 in the integrals replaced by ε, for any ε > 0 and so we have a local
sub-martingale for t > 0).

Proposition 2.5. Letn > 2, λ > 0, andRt = |Ut | be the radial part of an
n-dimensional O.–U. process, then forK a compact subset ofRn − {0},

sup
x∈K

−λE
(n)
|x|

[
sup
s≤t

(
1

Rs

)p]
< ∞ if and only ifp < n − 2 . (12)

Here we denote by−λEn
a the expectation of an-dimensional radial O.–U.

process with parameterλ, starting froma.

Proof.First note that when λ = 0, this is the Bessel case and (12) is true as
shown earlier. For λ > 0, the Girsanov transform gives:

−λE
(n)
|x| sup

s≤t

(
1

Rs

)p

= E
(

e−λ
∫ t

0 〈x+Bs,dBs〉− λ2

2

∫ t

0 |x+Bs |2ds sup
s≤t

1

|x + Bs |p
)

= E
(

e− λ
2 [|x+Bt |2−|x|2−nt]− λ2

2

∫ t

0 |x+Bs |2ds sup
s≤t

1

|x + Bs |p
)

≤ e
λ
2 (|x|2+nt)E

(
sup
s≤t

1

|x + Bs |p
)

which is bounded on K for p < n − 2 by (8). So when p < n − 2,

sup
x∈K

−λE
(n)
|x|

[
sup
s≤t

(
1

Rs

)p]
< ∞ .

On the other hand note that (R2−n
t ) satisfies the stochastic differential

equation

dρt = −(n − 2)ρ
(1−n)/(2−n)
t dβt + (n − 2)λρt dt. (eλ)

and 1
|x+Bt |n−2 solves

dρt = −(n − 2)ρ
(1−n)/(2−n)
t dβt . (e0)

By the comparison theorem 1
Rt

≥ 1
|x+Bt | almost surely. Thus, if p ≥ n − 2,

−λE
(n)
|x| sup

s≤t

(
1

Rs

)p

≥ E sup
s≤t

(
1

|x + Bs |
)p

= ∞ ,

again by (8).

Remark.We leave to the reader the rather easy modification of the statement
and the proof of Proposition 2.5 in the case n > 2, n not an integer. See also
Section 3.3.
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3. The default formula for general processes

In complete generality note that if ξ, η, ρ are real valued random variables
with ξ ≤ η + ρ and Eρ < ∞, then

lim
x→∞ xP (ξ ≥ x) ≤ lim

x→∞ xP (η ≥ x) .

This will give us a perturbation result:

Lemma 3.1. Let Xt = Mt + Dt be the sum of two stochastic processes.
Then ifE sups≤t |Ds | < ∞,

lim
x→∞ xP (sup

s≤t

Xs ≥ x) = lim
x→∞ xP (sup

s≤t

Ms ≥ x)

and

lim
x→∞

xP (sup
s≤t

Xs ≥ x) = lim
x→∞

xP (sup
s≤t

Ms ≥ x) .

�

Consequently the weak tails of sups≤t Xs and sups≤t Ms are equal if they
exist and they exist at the same time. (By the weak tail, of a random variable
ξ , we mean limx→∞ xP (ξ ≥ x) if it exists.) In particular if (Mt) is a local
martingale, the weak tail of sups≤t Xs is related to the default function γM .
However the assumption on Dt can be much weakened when (Dt) is of
bounded variation.

Recall that a continuous semi-martingale(Xt : t ≥ 0) is a stochastic
process with canonical decomposition Xt = Mt + At into the sum of a
continuous local martingale Mt and a continuous adapted process At of
bounded variation (starting from 0). It is a local sub(super)martingale if At

is increasing (decreasing) in t . It is integrableif Xt is integrable for each t .

Lemma 3.2. Let Xt = Mt + At be a continuous semi-martingale with
E|X0| < ∞ andA0 = 0. LetT be a finite stopping time such that(XT )−

is of classD.

1. SupposeAt is a monotone process. Then

E
[
XT 1(supt≤T Xt<x)

]
+ xP

(
sup
t≤T

Xt ≥ x

)
+ E[X0 − x]+

= EX0 + E
[
AT ∧Tx

]
, (13)

whereTx = inf{t ≥ 0 : Xt ≥ x}. Furthermore ifEAT < +∞, then
XT ∧· is bounded inL1 and
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lim
x→∞ xP

(
sup
t≤T

Xt ≥ x

)
= EX0 − EXT + EAT . (14)

LetγX(T ) = EX0 −EXT +EAT . ThenγX(T ) is finite for local super-
martingales with(XT )− in class D.

2. For a generalA of finite variation if its increasing partA1
t satisfies

EA1
T < ∞, thenE(AT ) < ∞ and both(13) and(14) hold.

Proof.Let (Sn, n ∈ N) be a reducing sequence of stopping times for (Mt).
As in the proof of Lemma 2.1, we have:

E
[
XTx∧T ∧Sn

] = EX0 + E
[
ATx∧T ∧Sn

]
, (15)

first assuming M0 is a constant. Now the assumption on XT allows us to
take n → ∞ to get:

E
[
XTx∧T

] = EX0 + E
[
ATx∧T

]
, (16)

which gives (13). Both (16) and (13) hold for general M0 by taking condi-
tional expectation with respect toF0. Now, XT is integrable if EAT < +∞;
indeed by (16):

E|XT | ≤ lim
x→∞

E
(
XT ∧Tx

+ 2X−
T ∧Tx

) ≤ EX0 + EAT + 2EX−
T . (17)

Since E|XT | < ∞ we can take the limit as x → ∞ to get

EXT + lim
x→∞ xP

(
sup
t≤T

Xt ≥ x

)
= EX0 + EAT . (18)

In particular, if {Xt} is a local super-martingale with (XT )− in class D then
(18) holds and limx→∞ xP

(
supt≤T Xt ≥ x

)
is finite.

For part 2 note that the assumption on A implies the integrability of both
XT and AT , using (17), and thus the argument above is valid. �

Remarks.
(1). Assume A is of finite variation with A0 = 0. Note that M− ≤

X− + A+ ≤ X− + A1. If (XT
· )− belongs to class D, then so does (MT

· )−

provided that (A+)T is of class D or more generally A1
T is integrable. On

the other hand by Lemma 2.1 if (MT )− is in class D, the integrability of
AT is equivalent to that of XT .

(2). If (XT )− is of class D and EA1
T < ∞, by (1) above (MT )− is of

class D and so the lemma can be applied to both X and M to yield:

lim
x→∞ xP

(
sup
t≤T

Xt ≥ x

)
= lim

x→∞ xP

(
sup
t≤T

Mt ≥ x

)
. (19)



The importance of strictly local martingales 335

(3). If Mt is a strictly local martingale with (M−)T in class D and if
the limiting maximal equality (14) holds, then there is a bounded stopping
time S such that γX(S) > 0. Just note that γX(T ) = γM(T ) ≥ 0 for
all finite stopping times T and (Mt) is not a true martingale implies that
there is a bounded stopping time S such that EMS < EM0, i.e. γM(S) =
EM0 − EMS > 0.

On the other hand let Xt = Mt + At be the sum of a martingale and an
integrable increasing process. By going back to the proof of Lemma 3.2 it is
easily seen that (14) holds and γX(T ) ≡ 0 for all bounded stopping times T .

We now show how the lemma applies to X′ = |M| and X′′ = M , for M

a local martingale. Let {Lt(M)} be the local time at 0 of {Mt}. We first note
the double implication:

{(MT )− is of class (D) } (a)H⇒ {E(LT (M)) < ∞} (b)H⇒ {E (|MT |) < ∞} .

But there is no converse. Both (a) and (b) follow easily from Tanaka’s for-
mula and Fatou’s lemma. Note also that {E(LT (M)) < ∞} is equivalent to

{MS, S ≤ T stopping times} being bounded in L1 ,

and also to {M−
S , S ≤ T stopping times} being bounded in L1.

We now compare γ|M| and γM .

Proposition 3.3. Let (Mt : t ≥ 0) be a local martingale, with E(|M0|) <

∞. Then

1. if E(LT (M)) < ∞, one has

γ|M|(T ) = lim
x→∞ xP

(
sup
t≤T

|Mt | ≥ x

)
, (20)

where

γ|M|(T ) := E(|M0|) − E(|MT |) + E(LT (M)) .

2. if (MT )− is of class D, thenγ|M|(T ) = γM(T ).

Proof.The first assertion comes from Tanaka’s formula and the lemma, while
the second follows from the equality: E(M−

T ) = E(M−
0 )+ 1

2E(LT (M)). �

Corollary 3.4. [Rao[14], Aźema, Gundy and Yor [2]] Consider(Mt : t ≥
0), a local martingale, with E(|M0|) < ∞. If E(LT (M)) < ∞, then
γ|M|(T ) = 0 if and only if(MT ) is uniformly integrable, or equivalently

lim
x→∞ xP

(
(〈M〉T )

1
2 ≥ x

)
= 0 .

Proof. The first assertion follows easily from Scheffé’s lemma, while the
second condition is found in Azéma, Gundy and Yor ([2], Theorem 7). �
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Comments.

1. Note that under the condition E(LT (M)) < ∞ we have, in complete
generality: γ|M|(T ) = γM+(T ) + γM−(T ) and γM(T ) = γM+(T ) −
γM−(T ). Scheffé’s lemma again shows that, under the same condition
the equality γ|M|(T ) = γM(T ) is in fact equivalent to γM−(T ) = 0 and
to (MT )− being of class D.

2. An example where γ|M|(T ) and γM(T ) differ is T1 = inf{t : Lt(B) > 1},
where Lt(B) is the local time at 0, of a Brownian motion (B·), and
M· = B·. Then: γ|B|(T1) = 1 and γB(T1) = 0. Another example which
is even more directly related to our first comment is T2 = inf{t : Bt = 1},
M = B; then γ|B|(T2) = 1, and γB(T2) = −1.

3. Assume for simplicity M0 = 0. One may wonder under which ‘minimal
condition’ on MT the formula (20) is valid. However it is not enough to
just have LT (M) − |MT | integrable. Take indeed, T = inf{t : |Bt | =
1 +Lt(B)} and M = B. Then, LT (B)−|BT | = −1, which cannot hold
together with (20).

3.1. Integrability of functionals

As for strictly local martingales, there is also an integrability criterion for a
more general family of stochastic processes: Let F : R+ → R+ be defined
by F(x) = ∫ x

0 dyf (y), for f a nonnegative Borel function. Then

lim
y→∞ yP

(
sup
s≤T

Xs ≥ y

)
> 0

implies that the finiteness of
∫ ∞ f (y)

y
dy is equivalent to that of

E
[
F(sups≤T Xs)

]
.

Proposition 3.5. Let {Xα
t } be a family of semi-martingales with decompo-

sitionXα
t = Mα

t + Aα
t .

1. Let T be a stopping time such that for each{Xα
t } (13) holds. (e.g.

if [(Xα)T ]− is of class D.) Supposesupα E[Xα
0 ], supα E[(Xα

T )] and
supα E[Aα

T ] are all finite. Then
∫ ∞ f (y)

y
dy < ∞ implies

sup
α

EF

(
sup
s≤T

Xα
s

)
< ∞ .

2. Conversely if for someα0, the default satisfies0 < γα0(T ) < ∞, then∫ ∞ f (y)

y
dy = ∞ implies

EF

(
sup
s≤T

Xα0
s

)
= ∞ .
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Proof.First

sup
α

EF

(
sup
s≤T

Xα
s

)
= sup

α

∫ ∞

1

f (y)

y
· yP

(
sup
s≤T

Xα
s ≥ y

)
dy

+ sup
α

∫ 1

0
f (y) P

(
sup
s≤T

Xα
s ≥ y

)
dy .

By (13),

sup
α

∫ ∞

1

f (y)

y
· yP

(
sup
s≤T

Xα
s ≥ y

)
dy

= sup
α

∫ ∞

1

f (y)

y

[
E[Xα

0 ] − E[Xα
0 − x]− + EAα

T ∧T α
y

+ E(Xα
T )1{supt≤T Xα

t <y}

]
dy

≤ sup
α

∫ ∞

1

f (y)

y

[
E[Xα

0 ] + EAα
T + E(Xα

T )
]
dy ,

which is finite if
∫ ∞ f (y)

y
dy is. Here T α

y is the first time Xα
t takes value y.

For the converse part just notice that

EF

(
sup
s≤T

Xα0
s

)
=

∫ ∞

0

f (y)

y
· yP

(
sup
s≤T

Xα0
s ≥ y

)
dy .

�

Example.Let α ∈ R and δ > 2. Observe that,

(Rt)
−α = (R0)

−α − α

∫ t

0

dβs

R1+α
s

+ 1

2
α(α + 2 − δ)

∫ t

0

ds

Rα+2
s

. (21)

So { 1
Rα

t
} is a local sub-martingale if α ≥ δ − 2 or α < 0. It is a super-

martingale otherwise. We can now follow the discussion of Corollary 2.4
to consider integrability properties of

∫ ∞
0 { 1

Rα
t
} dt for α 6= δ − 2.

First recall Corollary 2, identity (2.c) in Yor [24]:∫ ∞

0

ds

Rα
s

law= 2

(α − 2)2
Z δ−2

α−2
,

where Zν is a Gamma variable with parameter ν. See (39) below for the law
of Zν . So
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∫ ∞

0

ds

Rα
s

< ∞ a.s. (22)

if and only if α > 2, and for α > 2, p ≥ 0

E(δ)
a

[∫ ∞

0

ds

Rα
s

]p

< ∞, a > 0 , (23)

if and only if p < δ−2
α−2 .

In fact (22) can be seen more directly. For α = 2, 1
log t

∫ t

0
ds
R2

s
converges

a.s., as t → ∞, to a constant, using an ergodic theorem relative to the scaling
property on path space [Revuz and Yor [15]: Exercise (1.17), Chap. XIII, p.
522 and Exercise (3.20), Chap. X, p. 430]: let (Wt) be the Brownian path,
then

Tc : Wt :→ 1√
c
Wct

leaves the Wiener measure invariant and is ergodic since W and W ◦ Tc are
asymptotically independent.

If α < 2, by scaling,

1

t1− α
2

∫ t

0

ds

Rα
s

law=
∫ 1

0

du

R̃α
u

,

where R̃ is a Bessel process starting from 0. And for 2 < α < δ,

E
[∫ ∞

1

ds

Rα
s

]
=

(∫ ∞

1

ds

s
α
2

)
E

(
1

Rα
1

)
< ∞ .

So (22) holds in this case also. For α ≥ δ use the transience property of the
process to see the conclusion.

The finiteness of the expectation of the stochastic integral in (22) also
follows alternatively from (8) and (9).

Proposition 3.6. Let δ > 2. For β < 2,

sup
a∈R+

E(δ)
a

[∫ t

0

ds

R
β
s

]k

< ∞, for any0 < k < 1 . (24)

For β = 2, (24) holds with subsets bounded away from0:

sup
ε≤a<∞

E(δ)
a

[(∫ t

0

ds

R2
s

)k
]

< ∞, for anyk ∈ (0, 1), ε > 0 . (25)
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Proof.Recall that if Xt = Mt + At is a continuous sub-martingale then for
any stopping time T and k > 0 and some constant ck (Corollaire 3, p. 13 in
Yor [21]),

E[(AT )k] ≤ ckE[sup
s≤T

(Xs)
k] . (26)

This is a consequence of the Garsia-Neveu lemma discussed in the same
reference. In (21), take α = β − 2 and set

A
(β)
t = 1

2
(β − 2)(β − δ)

∫ t

0

ds

R
β
s

,

M
(β)
t = (2 − β)

∫ t

0

dβs

R
β−1
s

.

So (Rt)
2−β = (R0)

2−β + M
(β)
t + A

(β)
t . We check Proposition 3.5 applies to

show the right hand side of (26) is finite. First the bracket

〈M(β)〉t = (2 − β)2
∫ t

0

ds

R
2(β−1)
s

< ∞ .

In fact E〈M(β)〉t < ∞ by direct calculation using polar coordinates and the
fact that 2(β − 1) < 2. We see that {R2−β

t } is a sub-martingale satisfying
the conditions of Proposition 3.5 with initial value a in a compact set. For
k < 1 set F(x) = xk in Proposition 3.5. The required (24) now follows
since by a stochastic monotonicity argument the supremum there is attained
at the point x = 0.

For β = 2, we use Itô’s formula for the logarithmic function:

log Rt = log R0 +
∫ t

0

dβs

Rs

+ δ − 2

2

∫ t

0

ds

R2
s

, (27)

where {βt} is again a one-dimensional Brownian motion. The same argu-
ment yields (25) and the supremum there is attained at ε = 0. �

3.2. Some paradoxical examples

A process (Mt) is said to satisfy (LB) if, for any t , {MT : T ≤ t, T stopping
times} is bounded in L1.

Proposition 3.7. Let {M ′
t } and {M ′′

t } be two orthogonal continuous local
martingales starting from1 satisfying(LB). Then{Nt} defined byNt =
M ′

t − M ′′
t is a local martingale, and it is a martingale if and only if{M ′

t }
and{M ′′

t } are.
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Proof. Recall from Corollary 3.4 that a local martingale {Mt} satisfying
(LB) is a martingale if and only if

lim
x→∞ x P

(
〈M〉1/2

t ≥ x
)

= 0 .

Clearly {Nt} is a local martingale satisfying (LB) and it is a martingale
if the other two are. But

〈M ′〉1/2
t ≤ 〈N〉1/2

t

since

〈N〉t = 〈M ′〉t + 〈M ′′〉t .

So {M ′
t } and {M ′′

t } are martingales if {Nt} is. �

In the above proposition if {M ′
t } and {M ′′

t } are taken to be independent
copies of a strictly local martingale, then {Nt} is a strictly local martingale
with mean zero. More generally given m(·), any non-negative continuous
non-increasing function of t , we can find a strictly local martingale with
m(·) as its expectation:

Proposition 3.8. If m : R+ → (0, 1] is a continuous non-increasing non-
negative function withm(0) = 1, then there exists a non-negative local
martingale{Mt} such thatm(t) = EMt .

Proof.Let {Rt} be a 3-dimensional Bessel process starting from 1 and

r3(t) = E
[

1

Rt

]
.

Then r3 is a strictly decreasing function, see e.g. (30) below. Define

Mt = 1

Rr−1
3 [m(t)]

.

Clearly {Mt} so defined is a local martingale and EMt = m(t). �

Corollary 3.9. Given a functionm(t) of bounded variation, there is a local
martingale havingm(t) as its expectation.

Note that if m(t) is of bounded variation, then there exists two non-
decreasing positive functions f (+) and f (−) such that m(t) = f (+) − f (−).
And there are two non-negative local martingales M(+) and M(−) such that
f (+)(t) = EM(+)(t) and f (−)(t) = EM(−)(t). In fact
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Corollary 3.10. Given{Mt} an integrable local martingale withM0 = 0
and satisfy(LB) there is a functionf0 ≥ 0 such that for every pair of
continuous non-increasing non-negative functions withf (+), f (−) ≥ f0

andEMt = f (+)(t) − f (−)(t) there exists a decompositionMt = M
(+)
t −

M
(−)
t such that{M(+)

t } and{M(−)
t } are local non-negative martingales with

EM
(+)
t = f (+)(t), EM

(−)
t = f (−)(t).

Proof.Set m(t) = EMt . Assume first that {Mt} is non-negative. By Propo-
sition 3.8 we can find a non-negative local martingale M

(−)
t with EM

(−)
t =

f (−)(t). Set M
(+)
t = Mt + M

(−)
t . For general M there is the Krickeberg

decomposition Mt = M
p
t − Mn

t with {Mp
t }, {Mn

t } continuous, integrable
non-negative local martingales [Revuz-Yor [15]: Exercise 1.49, Chap. IV,
p. 136]. Suppose that f (−) ≥ EMn

t . From above we can decompose M
p
t

as M
p
t = M

p+
t − M

p−
t with EM

p+
t = f (+)(t). Set M

(+)
t = M

p+
t and

M
(−)
t = M

p−
t + Mn

t . �

Finally we give some examples of paradoxical local sub-martingales.

1. If {Mt} is a positive strictly local martingale with M0 = 1, then Xt

defined by Xt = Mt + 1
2 (1 − EMt) has γ (t) = 1 − EMt > 0 for all t .

2. Another example of mean decreasing local sub-martingales is { 1
Rn−2

t

} for
Rt = |Ut | the O-U process with parameter λ and Ut defined by (10).
For x = 0, t > 0 and n = 3 this can be seen from the representation of
Ut : Ut = e−λt B̂a(t) for a(t) = e2λt−1

2λ
where B̂· is a Brownian motion. So

E 1
Rt

= eλtE 1
|B̂a(t)| =

√
2λ√

1−e−λt
, which is decreasing in t .

3. Take two positive increasing functions u(t) and v(t) on R+ such that
v(t)

(
√

u(t))
n−2 is decreasing in t . Let Bt be an n-dimensional Brownian mo-

tion. Then the process defined by Xt = v(t)

|Bu(t)|n−2 is a mean decreasing
sub-martingale, since

EXt = v(t)(√
u(t)

)n−2

(
E

1

|B1|n−2

)
.

3.3. Application to radial Ornstein–Uhlenbeck processes

Let δ > 1 and λ ∈ R. Consider a radial Ornstein–Uhlenbeck process of
dimension δ and parameter λ, namely the solution to the equation:

dRt = dβt + δ − 1

2Rt

dt − λRt dt, Rt ≥ 0 , (28)
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where {βt} is a one dimensional Brownian motion. Denote by −λEδ
a the

expectation of a δ-dimensional radial O.–U. process with parameter λ.
In part A the default function for a radial Ornstein–Uhlenbeck process

for the case δ ∈ R is calculated in terms of the first hitting time T0, and
in Part D in terms of the last exit times (using a Girsanov theorem for last
passage times from part C). (For δ < 2, γ (t) = 0 since sups≤t R

2−δ
s has

finite expectation, thus a true sub(super) martingale. In part B the law T0 is
obtained for such δ.)

A. In the following we give an explicit expression of the default function
γ (t) for radial Ornstein–Uhlenbeck processes.

Let Yt be the canonical process on C(R+, R) and T0 = inf{t : Yt = 0}.
Denote by −λP (δ)

a and −λWa respectively the distribution of a δ-dimensional
radial O.–U. process (Rt) and that of a 1-dimensional O.–U. process, with
parameter λ and initial value a. The corresponding expectations will be
respectively −λE(δ)

a and −λEa . And E denotes the usual expectation with
respect to the probability measure P .

If λ = 0, all the superscripts on the left will be omitted. Then it is known,
for a > 0 and δ = 3

P (3)
a

∣∣
Ft

= 1

a
Yt∧T0 · Wa |Ft

, (29)

which expresses the BES(3) process as the Doob h-transform of Brownian
motion for h(x) = x and so

E(3)
a

(
1

Yt

)
= 1

a
Wa (T0 > t) . (30)

In particular this shows how E(3)
a

(
1
Yt

)
decreases in t .

For a general δ-dimensional Bessel process, δ > 2, there is an analogous
result:

P (δ)
a

∣∣
Ft

=
[

1

a
Yt∧T0

]δ−2

· P (4−δ)
a |Ft

. (31)

For both (29) and (31), a quick proof is obtained by using Girsanov theorem.
See also (2.c, p. 514 in Yor [22]). Here is a result generalizing these to the
case λ 6= 0:

Lemma 3.11. For a > 0, λ ∈ R, and2 < δ < ∞,

−λ P (δ)
a

∣∣
Ft

=
[

eλt

a

]δ−2

· [
Yt∧T0

]δ−2 · −λP (4−δ)
a

∣∣
Ft

. (32)
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In particular,

−λP (3)
a |Ft

=
[

eλt

a

]
Yt∧T0 ·−λ Wa|Ft

. (33)

Proof. Applying the Girsanov theorem to (28), as we did in our proof of
Proposition 2.5, and using (31) we get:

(−λ)P (δ)
a

∣∣
Ft

= exp

(
−λ

∫ t

0
Ys dβs − λ2

2

∫ t

0
Y 2

s ds

)
· P (δ)

a |Ft

= exp

(
−λ

2
[Y 2

t − a2 − δt] − λ2

2

∫ t

0
Y 2

s ds

)
· P (δ)

a |Ft

= exp

(
−λ

2
[Y 2

t − a2 − δt] − λ2

2

∫ t

0
Y 2

s ds

)
·
[
YT0∧t

a

]δ−2

·P (4−δ)
a |Ft

=
[

eλt

a

]δ−2 [
YT0∧t

](δ−2) ·(−λ) P (4−δ)
a |Ft

.

�

Remark.Note that δ′ = 4 − δ is negative for δ > 4. This is allowed since
the process is stopped when it reaches zero. Moreover there is also a well
defined concept of Bessel processes of dimension δ′ < 0. See Revuz and
Yor [15]; Exercise (1.49), Chap. X, p. 430.

From the above lemma we now calculate the default function γ (t) for
the sub(super)-martingale

{
R2−δ

t

}
starting from a > 0.

Proposition 3.12. Let λ ∈ R, and2 < δ < ∞. For the reciprocal{ 1
Rδ−2

t

}
of aδ-dimensional, radial Ornstein–Uhlenbeck process of parameterλ, the
default function is

γδ(t) =
[

1

a

]δ−2

· −λE(4−δ)
a

[
e(δ−2)λT01T0≤t

]
. (34)

Proof.Write R2−δ
t = Mt + At as the sum of the local martingale

Mt = −(δ − 2)

∫ t

0

dβs

Rδ−1
s

and the monotone process

At = (δ − 2)

∫ t

0

λ

Rδ−2
s

ds .
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First by (32)

(−λ)E(δ)
a

(
1

Rδ−2
t

)
=

[
eλt

a

]δ−2

· −λP 4−δ
a (T0 > t)

and

E[At ] ≡ (δ − 2)E
∫ t

0

λ

Rδ−2
s

ds

= (δ − 2)λ

∫ t

0

[
eλs

a

]δ−2

· (−λ)P 4−δ
a (T0 > s)ds < ∞ .

Consequently the default function satisfies

γδ(t) =
[

1

a

]δ−2

− E[R2−δ
t ] + E[At ]

=
[

1

a

]δ−2

−
[

eλt

a

]δ−2

· −λP 4−δ
a (T0 > t) +

[
1

a

]δ−2

·−λE4−δ
a

∫ t∧T0

0
d

(
e(δ−2)λs

)

=
[

1

a

]δ−2

· −λE4−δ
a

[
exp((δ − 2)λT0)1T0≤t

]
.

�

B. For completeness we look briefly at the case δ < 2: an expression for
the law of T0 of a δ, δ < 2, dimensional radial Ornstein–Uhlenbeck process
shall be given.

Recall a δ-dimensional radial Ornstein–Uhlenbeck Rt can be represented
as

Rt = e−λt R̂uλ(t) , (35)

for {R̂t} a δ-dimensional Bessel process starting from the same initial point
x and

uλ(t) =
∫ t

0
e2λs ds = e2λt − 1

2λ
.

As before,T0 denotes the first hitting time of 0 by our (canonical) process.
Let T̂0 = inf{t ≥ 0 : R̂t = 0}. Note for {R̂t} the point 0 is reached almost
surely and is instantaneously reflecting.
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Lemma 3.13. Let 0 < δ < 2. For a δ-dimensional radial O.–U. process
expressed by(35) with parameterλ:

e2λT0 = (1 + 2λT̂0)
+, λ ∈ R1 . (36)

Proof.For λ non-negative, the equality

uλ(T0) = T̂0 , (37)

follows readily from (35). And similarly, if λ < 0, write µ = −λ and
observe that

1 − e2µT0

2µ
= (T̂0 ∧ 1

2µ
) . (38)

The required result follows. �
Let β = 4 − δ (0 < δ < 2). Set ν = β

2 − 1, and Zν a Gamma variable
with parameter ν, i.e.,

P(Zν ∈ dt) = tν−1e−t

0(ν)
dt (39)

and let {R̂β
t } and {R̂(4−β)

t } be respectively the β-dimensional Bessel process
starting from 0 and the (4 − β)-dimensional Bessel process starting from
a. Define

L̂β
a = sup{t ≥ 0 : R̂

β
t = a} . (40)

Proposition 3.14. Let 0 < δ < 2. If T0 is the first time aδ-dimensional
radial O.–U. process, starting froma parameterized byλ ∈ R1, hits zero,
then

e2λT0 law=
(

1 + λ
a2

Zν

)+
. (41)

In particular for λ negativeP(T0 = ∞) = P(Zν < −λa2).

Proof. By D. Williams’ time reversal theorem (see e.g. Revuz-Yor [15]
(Corollary (4.6), Chap. VII, p.316, and Exercise (1.23), Chap. XI, p.451),
Pitman-Yor [13], Getoor-Sharpe [9], or Sharpe [16]), the distribution of
{R̂β

L̂
β
a −t

, 0 ≤ t ≤ L̂
β
a } is equivalent to that of {R̂(4−β)

t : 0 ≤ t ≤ T̂0}.
In particular T̂0

law= L̂
β
a and e2λT0 =

(
1 + 2λL̂

β
a

)+
. On the other hand the

distribution of L̂
β
a is given by Yor [24], Le Gall [11], Getoor-Sharpe [9]:

L̂β
a

law= a2

2Zν

. (42)
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So e2λT0 = (1 + λa2

Zν
)+ by (36). �

C. To give an expression of γδ(t) in terms of the last exit time (part D),
we first prove the following theorem.

Let Qx and Px be two families of transient diffusions taking values in
R+. Let σ and s be respectively the scale functions corresponding to Qa

and Pa (with σ(∞) = s(∞) = 0), and α1 and α2 the diffusion coefficients.
Define La to be the last time the canonical process {Yt} hits a. Let FLa

be
the σ -field generated by {HLa

: H previsible}.
Lemma 3.15 (Girsanov theorem for last passage times).Suppose both
scale functions are regular and the transition semigroups have densities.
SupposeQx |Ft

= Dt · Px |Ft
. Then, if σ(a) 6= 0 ands ′(a) 6= 0

Qx |FLa
= h(a)DLa

· Px |FLa
. (43)

Hereh(a) = σ ′(a)

σ (a)
· s(a)

s ′(a)
· α1(a)

α2(a)
.

Proof. Let Qt(x, dy) and Pt(x, dy) be the corresponding transition func-
tions. Write Qt(x, dy) = qt (x, y)dy and Pt(x, dy) = pt(x, y)dy. Then it
is known that (p. 326 in Pitman and Yor [13])

Qx(La ∈ dt) = −1

2

σ ′(a)

σ (a)
α1(a)qt (x, a) dt .

Thus

Qx(La ∈ dt) = h(a)
qt (x, a)

pt(x, a)
Px(La ∈ dt) . (44)

On the other hand, take H previsible. Then

EQx
{Ht |Yt = a}Qx(Yt ∈ da) = EPx

{HtDt |Yt = a}Px(Yt ∈ da) , (45)

since for any bounded Borel function f :

EQx
[f (Yt)Ht ] =

∫
f (a)EQx

{Ht |Yt = a}Qx(Yt ∈ da)

and

EQx
[f (Yt)Ht ] =

∫
f (a)EPx

{HtDt |Yt = a}Px(Yt ∈ da) .
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Therefore, by the existence of regular conditional probability

EQx
(HLa

) =
∫

Qx(La ∈ dt)EQx
(HLa

|La = t)

=
∫

Qx(La ∈ dt)EQx
(Ht |La = t)

=
∫

Qx(La ∈ dt)EQx
(Ht |Yt = a), by the Markov property

=
∫

Qx(La ∈ dt)
pt (x, a)

qt (x, a)
EPx

(HtDt |Yt = a)

= h(a)

∫
Px(La ∈ dt)EPx

(HtDt |Yt = a)

= h(a) EPx
[HLa

DLa
] ,

by reversing the first three steps. �

D. Now assume δ > 2. For a δ-dimensional radial O.–U. process with
parameter λ ∈ R+ there is a ‘time reversal’ type result: let La be the last
time a δ-dimensional radial O.–U. process, starting from 0, hits a.

Proposition 3.16. Letλ ≥ 0 andδ > 2, then for any bounded measurable
functionF on path space,

−λE(4−δ)
a [F(Yt : t ≤ T0)] = h(a) · λEδ

0

[
F(YLa−t , t ≤ La)e

2λLa
]

, (46)

whereh is a deterministic function.

Proof.First, the Girsanov-Maruyama theorem and the time reversal theorem
for Bessel processes give:

−λE(4−δ)
a [F(Yt : t ≤ T0)]

= E(4−δ)
a

[
F(Yt : t ≤ T0) exp

(
λ
2 [a2 + (4 − δ)T0] − λ2

2

∫ T0

0 Y 2
s ds

)]
= Eδ

0

[
F(YLa−t , t ≤ La) exp

(
λ
2 [a2 + (4 − δ)La] − λ2

2

∫ La

0 Y 2
s ds

)]
.

(47)
Apply Lemma 3.15 to obtain:

−λE(4−δ)
a [F(Yt : t ≤ T0)] = h(a) · λEδ

0

[
F(YLa−t , t ≤ La)e

2λLa
]

.

�

As a consequence the default function γδ discussed in part A also takes the
following form:



348 K. D. Elworthy et al.

Proposition 3.17. Let λ ≥ 0 and δ > 2. For a δ-dimensional radial
Ornstein–Uhlenbeck process with parameterλ, the default function is given
by:

γδ(t) =
[

1

a

]δ−2

· h(a) · λEδ
0

[
eδλLa 1(La≤t)

]
, t ≥ 0 . (48)

Corollary 3.18. For λ ≥ 0 andδ > 2, we have:

−λP (4−δ)
a (T0 ∈ du) = (

h(a) e2λu
)

λP δ
0 (La ∈ du) , (49)

and−λE(4−δ)
a

[
e−2λT0

] = (
λEδ

0[e2λLa ]
)−1 = h(a).

From (47) we can calculate the law of T0 via

−λP (4−δ)
a (T0 ∈ du)

= Eδ
0

[
La ∈ du, exp

(
λ

2
[a2 + (4 − δ)La] − λ2

2

∫ La

0
Y 2

s ds

)]
(50)

and a particular case of Lévy’s formula in Yor [23] (p. 18):

E
(δ)
0

{
e− λ2

2

∫ u

0 Y 2
s ds |La = u

}
= E

(δ)
0

{
e− λ2

2

∫ u

0 Y 2
s ds |Yu = a

}

=
[

λu

sinh(λu)

] δ
2

e− a2

2u
(λu coth(λu)−1) .

Recall, (42), that La has the same law as a2

2Zν
for Zν a Gamma variable

with parameter ν = δ
2 − 1. So the density φa(t) of La is given after a

straightforward calculation (see Getoor [8]) by, see (39):

φa(t) = aδ−2

2ν0(ν)

[
1

t

] δ
2

e− a2

2t . (51)

Thus

−λP (4−δ)
a (T0 > t)

= Eδ
0

[
1(La>t)e

λ
2 [a2+(4−δ)La]

[
λLa

sinh(λLa)

] δ
2

e− a2

2La
(λLa coth(λLa)−1)

]

=
∫ ∞

t

aδ−2

2ν0(ν)
· e

λa2

2 · e
λ
2 [(4−δ)t−a2 coth (λt)] ·

[
λ

sinh (λt)

] δ
2

dt ,

using the above formula (51) for φa .
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Corollary 3.19. For a > 0, λ > 0 andδ > 2,

−λP (4−δ)
a (T0 ∈ dt) = aδ−2

2ν0(ν)
· e

λa2

2 · e
λ
2 [(4−δ)t−a2 coth (λt)] ·

[
λ

sinh (λt)

] δ
2

dt .

In particular for δ = 3 we get

−λWa(T0 ∈ dt) = a · e
λa2

2√
2π

· e
λ
2 [t−a2 coth (λt)] ·

[
λ

sinh (λt)

] 3
2

dt . (52)

Remarks.(i) Note for δ = 3, (52) can be obtained directly from

−λWa(T0 > t) = Ea

[
1(T0>t)e

λ
2 [a2+T0]− λ2

2

∫ T0
0 Y 2

s ds
]

and the fact that for a one-dimensional Brownian motion starting from a

Wa(T0 ∈ dt) = a√
2πt3

e− a2

2t dt , (53)

e.g. see p. 107 of Revuz and Yor [15].
(ii) If the O.–U. process considered has integer dimension δ = n and with
λ > 0, then uλ(T0)

law= La as shown previously. There is a closed form
expression for the law of T0:

−λP (4−δ)
a (T0 ∈ dt) = λP δ

0 (La ∈ dt)e2λt φa(uλ(t))

φa(t)
, (54)

in terms of φa (see (51)), following from the observation that

−λP (4−δ)
a (T0 ∈ dt) = e2λtφa(uλ(t)) dt .

(iii) For discussions on the asymptotics see the next section.

F. Generalized O.–U. processes.Let λ be a non-negative function on R+

and consider equation (10) with λ there replaced by the function λ (|x|):

Xt = x + Bt −
∫ t

0
λ(|Xs |)Xs ds, x ∈ Rn . (55)

This equation has a global solution, which we call a generalized O.–U.
processand keep the notation introduced for constant λ. For δ > 2 the
equation

dRt = dβt + δ − 1

2Rt

dt − λ(Rt)Rt dt, Rt ≥ 0 , (56)

gives rise to the corresponding δ-dimensional radial O.–U. process. The
next result follows from a similar proof to that of lemma 3.11.
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Lemma 3.20. For a > 0 and2 < δ < ∞,

−λP (δ)
a

∣∣
Ft

=
[
Yt∧T0

a

]δ−2

· e
∫ t

0 (δ−2)λ(Ys)ds ·(−λ)P 4−δ
a |Ft

. (57)

In particular,

−λP (3)
a |Ft

= 1

a
Yt∧T0 · e

∫ t

0 λ(Ys)ds ·(−λ)Wa|Ft
, (58)

for (−λ)Wa the law of the solution todXt = dβt −λ(|Xt |)Xtdt starting from
a. Here, βt is a one-dimensional Brownian motion.

Assume λ is bounded. From the lemma we observe that for the local
sub-martingale |Xt |2−δ = Nt + At starting from a > 0 we have

E
1

|Xt |δ−2
=

[
1

a

]δ−2

·(−λ)E4−δ
a

(
e
∫ t

0 (δ−2)λ(Ys)ds1(T0>t)

)
.

Here is a result analogous to proposition 3.12:

Corollary 3.21. For a > 0, 2 < δ < ∞. The default function for the
reciprocal{ 1

Rδ−2
t

} of a δ-dimensional radial generalized O.–U. process is:

γ (t) =
[

1

a

]δ−2

·(−λ)E4−δ
a

(
e
∫ T0

0 (δ−2)λ(Ys)ds1(T0≤t)

)
.

We now obtain some tail asymptotics using the previous result. Note
that the semigroup Pt induced by the n-dimensional Ornstein–Uhlenbeck
process satisfies ∫

Ptf dµ =
∫

f dµ ,

for each f in L1 where µ is the measure given by µ(dx) = e−2
∫ |x|

0 rλ(r)drdx.
Suppose λ is bounded below by a positive number, then by the ergodic
theorem,

lim
t→∞ E

1

|Xt |n−2
=

∫
Rn[ 1

|x| ]
n−2µ(dx)∫

Rn µ(dx)
.

But by corollary 3.21,

E
1

|Xt |n−2
=

[
1

a

]n−2

·−λE(4−n)
a e

∫ t

0 (n−2)λ(Ys)ds · 1(T0>t) .
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If λ is a constant, limt→∞ E
(

1
|Xt |n−2

)
= λ

n
2 −1

0( n
2 )

. So −λP (4−n)
a (T0 > t) is

decreasing exponentially in t at rate −(n − 2)λ:

lim
t→∞

1

t
log

[−λWa(T0 > t)
] = −(n − 2)λ .

More precisely,

−λWa(T0 > t) = P

(
Zν <

a2

2uλ(t)

)
= 1

0(ν)

∫ a2/2uλ(t)

0
xν−1e−x dx

∼ a2ν

0(ν + 1)

λν

e2λνt
as t → ∞ .

3.4. A non-integrability result for general diffusions

The integrability properties of local martingale functionals are related to
criteria for strong p-completeness of stochastic flows. Let (Xx

t ) be the solu-
tion to a stochastic differential equation (s.d.e.) with Cr coefficients, r ≥ 2,
on an n-dimensional complete Riemannian manifold starting from x and
ζ(x) the explosion time. The s.d.e. is said to be strongly p-complete, for
1 ≤ p ≤ n, if {Xx

t } is jointly continuous in time and space for all time
when restricted to a smooth p-simplex. See [12]. Roughly speaking strong
p-completeness means the flow sends a Cr−1 p-dimensional submanifold
to a Cr−1 submanifold. When p = n, this is equivalent to saying that the
solution flow has a Cr−1 version, i.e. a version which is jointly continuous
in time and space (and hence Cr−1 in space) almost surely. Let {TxFt} be
the derivative flow related to the s.d.e.. The basic criterion is as follows: A
s.d.e. is strongly p-complete if for each compact subset K of M ,

sup
x∈K

E
[

sup
s≤t

|TxFs |p+δ1t<ζ(x)

]
< ∞, some δ > 0 . (59)

Here | − | denotes the Riemannian norm and δ can be taken to be zero for
p = 1. In particular there is no explosion if (59) holds for p = 1 (and under
somewhat weaker conditions [12]).

For example consider dXt = dBt on Rn−{0} for {Bt} an n-dimensional
Brownian motion starting from 0. This is an example from one of the very
few known classes of non-explosive stochastic differential equations which
has no solution flow. See Elworthy [6]. Furthermore it was shown by a
direct argument, that it is strongly (n−2)-complete but not strongly (n−1)-
complete (Li [12]).
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To test the criterion on this example, we first choose a conformal Rie-
mannian metric on Rn such that Rn − {0} is a complete metric space. The
criterion takes the following form:

sup
x∈K

E
[

sup
s≤t

ρ(Xx
s )

p+δ

]
< ∞ (60)

for a class of functions ρ, as shall be described in detail later. Since we know
this s.d.e. on Rn − {0} is not strongly (n − 1)-complete, (60) will not hold
for p = n − 1. This foretells the non-integrability of certain functionals of
diffusion processes described below.

A. Let α0, α1, . . . , αm be C2 maps from Rn to Rn, and {Bi
t }m1 be m

independent linear Brownian motions. We consider the s.d.e. (in Itô form)
on Rn:

dXt =
m∑
1

αi(Xt)dBi
t + α0(Xt) dt (61)

and make the assumption

sup
x∈K

E 1t<ζ̄ (x) sup
s≤t

|TxFs |p < ∞, for all compact K in Rn − {0} and p ≥ 1 ,

(62)
where ζ̄ (x) is the explosion time of (Xx

t ) as a process on Rn−{0}. The above
condition holds if the coefficients of the s.d.e. have linear growth with their
first derivatives having sub-logarithmic growth, i.e. |Dαi(x)| ≤ c(1+ln |x|)
for each i. See [12].

Proposition 3.22. Let p > n − 1 and {Xx
t } be the solution to equation

(61). Assume that the coefficients do not vanish identically at0, and that
(62) holds. Ifρ : (0, ∞) → (0, ∞) is aC2 function such that∫ 1

0
ρ(s) ds = ∞ , (63)

then for some compact setK ⊂ Rn − {0}
sup
x∈K

E 1t<ζ̄ (x) sup
s≤t

ρ(|Xx
s |)p = ∞ . (64)

Proof. First note that the s.d.e. (61) is not strongly (n − 1)-complete on
Rn − {0}. If it were it would be strongly complete by [ [12], Theorem 2.3]
and there would be a flow F̄t of diffeomorphisms of Rn − {0} onto open
subsets of Rn − {0}, continuous in t ∈ [0, ∞), with F̄0 the identity map.
These will map the unit sphere Sn−1 to a random codimension 1 submanifold
Sn−1

t which will be the boundary of an open neighbourhood Dt of the origin.
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Now (61) on Rn has a local flow {Ft(x) : t ≥ 0} which must restrict to
F̄t and consequently must also be global (c.f. the proof of Theorem 2.3 in
[12]). But then Ft will map the open unit disc to Dt and this implies that
Ft(0) = 0, for each t , contradicting the non-vanishing of the coefficients
at 0.

On the other hand using the function ρ we may define a Riemannian
metric on Rn − {0} by:

|v|x = ρ(|x|)|v|, v ∈ Tx

(
Rn − {0}) . (65)

This is a complete metric on Rn −{0} under condition (63). For this metric
we have:

E 1t<ζ̄ (x) sup
s≤t

|TxFs |pFs(x) ≤ E 1t<ζ̄ (x) ·
(

sup
s≤t

[ρ(|Xx
s |)]p|TxFs |p

)

≤
[
E 1t<ζ̄ (x) sup

s≤t

[ρ(|Xx
s |)]pα

] 1
α

×
[
E 1t<ζ̄ (x) sup

s≤t

|TxFs |pβ

] 1
β

for conjugate numbers α, β > 1. Thus condition (62) implies that

sup
x∈K

E 1t<ζ̄ (x) sup
s≤t

|TxFs |pFs(x) < ∞

if supx∈K E 1t<ζ̄ (x) sups≤t [ρ(|Xx
s |)]p

′
is finite for some p′ > p. Now, from

(59), the finiteness of the first quantity for compact sets K for a number
p > n− 1 implies the s.d.e. (61), when considered on Rn −{0}, is strongly
(n − 1)-complete. However strong (n − 1)-completeness implies strong
completeness, by [12], and this does not hold. Consequently (64) is true for
p > n − 1. �

B. Finally we compare Proposition 3.22 and condition (59) with the
results of §3.3.

Let λ be a positive number and consider the Ornstein–Uhlenbeck equa-
tion dXt = dBt − λXt dt on Rn − {0}, n > 2. It has solution

Xx
t = xe−λt +

∫ t

0
e−λ(t−s) dBs ,

and TxFt(v) = e−λtv. This equation is known to be strongly (n − 2)-
complete but not strongly (n − 1)-complete by a direct argument from the
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definition. Let ρ : R+ → R+ be a C2 function and define a Riemannian
metric on Rn − {0} by (65). Then

E sup
s≤t

|TxFs |pXx
s

= E sup
s≤t

e−λsp

(
ρ(|Xx

s |)
ρ(|x|)

)p

(66)

and so

e−λtpE sup
s≤t

(
ρ(|Xx

s |)
)p ≤ [ρ(|x|)]pE sup

s≤t

|TxFs |pXx
s

≤ E sup
s≤t

(
ρ(|Xx

s |)
)p

,

and the integrability of sups≤t |TxFs |p is equivalent to that of sups≤t ρ(|Xx
s |p).

Define: G(y) = ρ(y
1

2−n ). Then G(|x|2−n) = ρ(|x|), and

E sup
s≤t

[
ρ(|Xx

s |)
]p = E sup

s≤t

[
G(|Xx

s |2−n)
]p

.

From Proposition 3.5, E sups≤t

[
G(|Xx

s |2−n)
]p

is finite if and only if∫ ∞
1

dy

y
([G(y)]p)′ is finite. This is seen to be equivalent, after integration

by parts, to ∫ 1

0

ρ(z)p

z3−n
dz < ∞ . (67)

Now for n ≥ 3, p < n − 2 and ρ(|x|) = 1
|x| , (67) holds and

sup
x∈K

E sup
s≤t

ρ(|Xx
s |)p < ∞ (68)

for K any compact subset of Rn − {0} by the discussions in section 3.3.
Thus for n ≥ 3, criterion (59) with ρ(y) = 1

y
is strong enough to imply

the strong (n − 3)-completeness of the Ornstein–Uhlenbeck equation on
Rn − {0} but not the (known) strong (n − 2)-completeness. Also for n = 3
and ρ(y) = 1

y
(64) holds for p ≥ n − 2, not just for p > n − 1. This is also

true for higher dimensions: for λ = 0 this can be checked by Proposition 3.5
and when λ 6= 0 by applying the one-dimensional comparison theorem for
s.d.e.’s to see that the radial O.–U. process {|Xx

t |} satisfies: |Xx
t | < |x +Bt |

for each t . This suggests that it should be possible to extend the values of
p for which Proposition 3.22 holds and also to sharpen criterion (59) for
strong p-completeness.
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