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Abstract

Various types of long-term stable relationships that individuals uphold, including cooperation and competition
between group members, define social complexity in vertebrates. Numerous life history, physiological and cognitive
traits have been shown to affect, or to be affected by, such social relationships. As such, differences in
developmental modes, i.e. the ‘altricial-precocial’ spectrum, may play an important role in understanding the
interspecific variation in occurrence of social interactions, but to what extent this is the case is unclear because the
role of the developmental mode has not been studied directly in across-species studies of sociality. In other words,
although there are studies on the effects of developmental mode on brain size, on the effects of brain size on
cognition, and on the effects of cognition on social complexity, there are no studies directly investigating the link
between developmental mode and social complexity. This is surprising because developmental differences play a
significant role in the evolution of, for example, brain size, which is in turn considered an essential building block
with respect to social complexity. Here, we compiled an overview of studies on various aspects of the complexity
of social systems in altricial and precocial mammals and birds. Although systematic studies are scarce and do not
allow for a quantitative comparison, we show that several forms of social relationships and cognitive abilities occur
in species along the entire developmental spectrum. Based on the existing evidence it seems that differences in
developmental modes play a minor role in whether or not individuals or species are able to meet the cognitive
capabilities and requirements for maintaining complex social relationships. Given the scarcity of comparative studies
and potential subtle differences, however, we suggest that future studies should consider developmental
differences to determine whether our finding is general or whether some of the vast variation in social complexity
across species can be explained by developmental mode. This would allow a more detailed assessment of the
relative importance of developmental mode in the evolution of vertebrate social systems.
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Background
Studies that investigate vertebrate social life from various
perspectives (i.e. behavioural, neurobiological, physiological
and cognitive components) are on the leading edge of
scientific investigations both from an evolutionary and
mechanistic point of view (e.g. [1–7]). The general charac-
teristic that defines complex social systems in vertebrates is
that animals live in long-term stable groups of multiple

generations, which allows for repeated interactions with
differently familiar individuals. These interactions encom-
pass various forms of cooperation and competition over re-
sources, and require considerable learning over the course
of development [8]. As such, various factors, including life
history, physiology and brain structure, which may be asso-
ciated with potential differences in cognitive abilities, shape
individuals’ engagement in complex social interactions.
One often-neglected feature that may underlie variation

in the complexity of social systems is a differentiation of
species with respect to their developmental mode, i.e. the
‘altricial-precocial’ spectrum. Based on inferences from
indirect factors such as life history and brain size, several
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authors have recently hinted at a connection between
developmental modes, brain size and variation in the
complexity of social life, bonding systems and cognition
(e.g. [4, 6, 7, 9–17]). From a mechanistic point of view,
such a pathway from developmental mode to social com-
plexity seems plausible (see Fig. 1, “conventional view”),
but the explicit relationship between developmental mode
and social complexity has received limited attention.
Accordingly, we do not know if evolutionary history of so-
cial complexity supports this link nor, if it exists, the caus-
ality between developmental mode and social complexity.
One of our aims here is to survey the existing literature to
determine whether social complexity is related to variation

in developmental mode in mammals and birds, the two
most extensively studied vertebrate taxa in this regard.
The alterations in brain size with an alleged impact on

cognitive abilities in species along the altricial-precocial
spectrum have led to the prevalent notion that larger-
brained species also have a more complex social life (e.g.
[4–6, 18]). Alternatively, there is recent debate on whether
complex social life – indeed - requires large brains and
highly complex cognitive skills or whether similarly com-
plex sociality can be attained through variation in brain
composition (i.e. ‘cerebrotypes, see below) and/ or simpler
cognitive mechanisms (e.g. [1, 7, 19–21]). This dichotomy
in thinking requires a thorough assessment, which we

Fig. 1 Schematic representation of the relationship between developmental mode [altricial offspring left, precocial offspring right], social brain size, social
cognition and social complexity. Whereas the influence of developmental mode on variation in the ‘social brain size’ and ensuing cognitive abilities and
the deduced effects on social complexity are well established (conventional view, light grey pathway; (e.g. [4, 6, 9–12, 14, 15, 17]), we emphasize a different
idea in this review, namely that social complexity may not be associated with developmental mode despite differences in brain size (dark grey pathway;
see Table 1). Whether socio-cognitive skills are similar or reduced in precocial and altricial species, however, cannot be determined due to the lack of
systematic studies addressing these questions (Displayed by ‘??’ as well as a dashed circle of social cognition in the right pathway)
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provide in this review. Our expectation is that complex so-
cial systems can similarly be found in birds and mammals
regardless of their developmental mode as complex social
behaviour is found throughout the entire animal kingdom.
Therefore, we will evaluate, whether social behaviours are
expressed similarly or differently in precocial and altricial
species. We aim to assess whether the inferred indirect link
of a relationship between developmental mode and social
complexity via variation in relative brain size is supported
or if there is a direct link between developmental mode and
social complexity independent of brain size variations
(Fig. 1). In this context, we will focus on similarities and dif-
ferences of the ‘social brain’, as it is now clear that the brain
circuits which regulate social behaviour in non-mammalian
vertebrates are homologous to those found in mammals
[22–25]. We will also summarize the ongoing debate about
whether coping in a social world requires high-level cogni-
tion [1, 7, 16, 21] and how variation in developmental
modes affects cognitive abilities.

The altricial precocial spectrum in mammals and birds
The altricial-precocial spectrum describes the degree of
behavioural and morphological maturation of offspring at
the moment of birth or hatching [26]. In precocial species,
young require limited parental care and are relatively ma-
ture, mobile and can either mainly feed self-sufficiently
(precocial birds) or forage independently from early on
while still being nursed (precocial mammals). Altricial
young, in contrast, are initially incapable of moving
around on their own and require extensive parental care,
like brooding or food provisioning. The most extreme de-
velopmental modes are super-precociality, where offspring
are completely independent immediately after hatching or
birth (as in e.g. megapodes, black-headed duck or wilde-
beest [27–29]), or super-altriciality, where offspring hatch
or are born more or less naked with their eyes closed (as
in e.g. cricetid rodents, canids [30], monotremes [31] and
marsupials [14, 32, 33], passerines or parrots [for review
[34]). A recent re-evaluation of the altricial-precocial clas-
sification of species by Ligon & Burt [35] denominated
8890 species out of the 9993 extant species of birds to
have altricial development [36]. The distribution of devel-
opmental modes in the ± 5420 mammal species is not as
straightforward [30], but seems to be correlated with body
size or mass, gestation period, and/or number of offspring:
larger mammals are more likely to produce very few
precocial young per litter [30, 37–40] whereas small
mammals are more likely altricial and produce more
young. One notable exception, amongst others, are bats
(Chiroptera), which presumably produce small altricial
litters due to adaptation for flight [41]. Starck & Ricklefs
[26] provide a detailed summary on the evolutionary
diversification of life histories in relation to the marked
variation in development mode, parental care and rate of

growth in primarily birds, with a short section devoted to
mammals. It is now well established that these different
developmental trajectories have long-term consequences
in various aspects of endocrine, reproductive or other
physiological mechanisms. In this review, we will, there-
fore, focus on another feature, i.e. the influence of
developmental modes on the complexity of social systems
and its underlying mechanisms only. We focus on several
important social and cognitive features (see Table 1;
detailed below) that we deem essential for complex
sociality, to determine if these can be found in avian and
mammalian species along the altricial-precocial spectrum.
As there is only a very limited number of studies available
that specifically incorporate the developmental mode in
questions pertaining to complex sociality, and because
social complexity is difficult to comparably quantify (but
see [42] for a recent review and new definition), we were
unable to perform a rigid meta-analysis. Specifically, we
first summarise the possible features that we assume
reflect social complexity. Second, we describe the cogni-
tive features that are considered to be necessary in order
to establish, maintain and manage complex social
relationships. Finally, we compiled a thorough collection
of studies connecting developmental mode with 15
different features of social complexity, including social
(e.g. affiliative behaviour or long-term bonds) and cogni-
tive (e.g. kin recognition) features of altricial and precocial
mammals and birds (see Tables 1 and 2 for definitions of
the features used in this review).

Arguments for and against linking social complexity with
developmental mode
There are recent claims that the manner and quality of
social relationships depends on the developmental mode
[5, 6, 10, 17, 43] due to the link of developmental mode
and brain development. In mammals, expansion of the
cerebral cortex plays a major role in managing social inter-
actions, whereas in birds and seemingly socially complex
marsupials, social interactions are regulated by the homolo-
gous enlarged telencephalon [43–46], but with keeping in
mind that hardly any information on the social system of
marsupials is available. The general pattern in birds is that
adults in altricial species have relatively large brains com-
pared to adults of precocial species, whereas at hatching
the pattern is reversed [47, 48]. Precocial offspring possess
relatively large brains due to the fact that neural growth in
precocial species takes place in the egg, while in altricial
species it occurs after hatching ([47] for review). Due to
their extended post-hatching development, altricial bird
species might therefore be more skilled in managing social
interactions given their larger brains. On the other hand,
relative brain size in mammals does not seem to be corre-
lated with developmental mode per se [49], but rather is
negatively correlated with litter size in altricial species and a
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reduction in birth rate in precocial species ([14] for review,
[50, 51]). The proposed explanation for this pattern is that
precocial mammals develop slower and reach sexual matur-
ation later in life than altricial young [51].
Arguments against a relationship between social com-

plexity, brain size variation and developmental mode
stem from studies that measured the size of multiple
brain regions in a multivariate context in mammals and
birds [15, 52–54]. These so-called ‘cerebrotypes’ are de-
fined by comparing the proportional size of different
parts of the brain to total brain size. Developmental
mode does not seem to have a strong effect on cerebro-
types, as altricial and precocial species are represented
in each avian- [12, 54] and mammalian-specific [52]
cerebrotype.
Another aspect that supports the notion of similar so-

cial complexity in altricial and precocial species are the
underlying neuro-endocrinological and molecular mech-
anisms, which play a central role in the regulation of
maternal and other socio-sexual behaviours. These
mechanisms involve a range of neuropeptides (e.g. β-
endorphin, corticotrophin-releasing factor, oxytocin and
arginine-vasopressin as well as the avian homologues
mesotocin and arginine-vasotocin) and are highly con-
served throughout vertebrates of all developmental
modes [30, 55–58]. Oxytocin mediates several forms of
affiliative behaviours, including parental care, and
grooming [3, 59–64], the formation of a pair-bond [65,
66], as well as the establishment of the exclusive bond
between mothers and offspring [67]. Oxytocin is also
known for its positive impact on the development of
trust and recognition of familiar individuals in rodents
[68] and estrildid finches [61]. Likewise, the ‘social be-
haviour network’- brain regions that control social be-
haviour - is also very highly conserved across the
vertebrates [22, 69] irrespective of developmental mode.
Precocial and altricial species thus possess a similar
neuro-endocrinological tool kit, which is an essential
prerequisite for acquiring similarly complex social be-
haviour. In the following sections, we will review to what
extent these similarities and differences in brain struc-
tures and physiology translate into similarities or differ-
ences in social complexity and cognition.

Compilation of data
We collected data for this review searching the Web of
Science to find publications whose title, abstract or key
words included any of the following terms: developmen-
tal mode/ altricial/ precocial, social system/ social com-
plexity, mammal, bird. We omitted any studies, in which
developmental mode and sociality were not defined in
the main text. We double-checked information on every
publication that seemed suitable for this review, by
searching the web for additional information on the

correctness of developmental mode and social system on
any species given, and excluded species in which these
issues were equivocal. We then searched the remaining
publications for terms characterizing either social com-
plexity or cognitive features (see Table 2) and compiled
relevant publications in Table 1. Whenever possible, we
cited published reviews, which contain a wealth of infor-
mation on various taxa. Finally, we specifically searched
for information about social and cognitive features still
missing from the table to fill in any missing table cells.
In cases where many studies pertained to one topic, we
did not list all studies but listed a diverse array of species
showing this specific characteristic. Note therefore that
our list of species is not exhaustive.

Comparing features of social complexity and elaborate
social relationships in precocial and altricial species
In vertebrates, the complexity of social systems is not re-
lated to the actual number of individuals per group, but
rather to the variety of associations and elaborate inter-
actions that group members engage in [70] or, as Berg-
man & Beehner [42] recently termed it ‘ the number of
differentiated relationships’. It is described best by the
maintenance of individualized long-term, mutual, dyadic
‘valuable relationships’ (sensu [71]). Valuable relation-
ships are characterised by close proximity between
bonded partners, the provision of social support, low
rates of aggression and the occurrence of affiliative be-
haviours, particularly also after conflicts have occurred
[71]. Hence, for a comparative study, a pivotal question
to assess social complexity is how to measure the
strength and/or quality of bonds between individuals
[17, 72–74], as not all measures are comparable or, per-
haps, of equal importance across species. Therefore, it is
especially important to assess a suite of features that
may reflect social complexity to make broad inferences
about the role of certain factors in explaining that com-
plexity [42]. For example, certain affiliative tactile behav-
iours, such as feeding or grooming others, are often
used as indicators of close bonds between individuals
and are expressed similarly in altricial and precocial
mammals [75], but are, in contrast to altricial birds, un-
common or absent in many precocial birds [76]. How-
ever, both altricial and precocial species express social
bonds in a variety of other ways, including vocal and vis-
ual displays ([76–81] for a mammalian review) and
chemical [82] cues, increased tolerance and spatial prox-
imity [83–85]. In particular, the spatial association be-
tween individuals is often used as a proxy for
determining social relationships ([86–88], but see [89]).
As such, it is now evident from social network analyses
[90, 91] that close proximity indeed is a legitimate meas-
ure for close affiliative bonds ([92–95], but see [96]).
Nearness between individuals that maintain social bonds
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is found in species of all developmental modes (Table 1).
In sum, both altricial and precocial birds and mammals
resort to a large variety of displaying affiliative bonds.
The lack of any one of these above indicators of social
bonds, however, does not necessarily infer weak and/or
low quality affiliative relationships between precocial or
altricial mammals or birds, since other forms of express-
ing relationships may be in place [85].
Valuable relationships may occur among pair partners,

direct family members or distantly related kin [86, 97, 98]
as well as between unrelated individuals [71, 99] and may
involve coalition and alliance formation [100, 101], com-
munal defence [102, 103], communal or cooperative
breeding [98, 104–110], conflict resolution [74, 111–115],
and social support ([116, 117] and references therein) (see
Table 1 for a complete overview). We found support for
all these aspects in both altricial and precocial mammals
and birds (Table 1). However, whether they occur equally
frequently among altricial and precocial species cannot be
determined from the available literature.
One notable exception where detailed information on

the actual distribution in relation to developmental mode
is available is cooperative breeding in birds. Cooperative
breeding systems are more common in altricial (11% of
7698 species, including many passerines) than in precocial
(4% of 789 species) birds [35, 104, 118]. This is presum-
ably due to the extended need of parental care in altricial
nestlings, offering the opportunity for subordinates to in-
crease reproductive success of the breeders through
helping ([36, 119], but see [120–123] for examples of co-
operative breeding in precocial birds). Although there are
several precocial bird species that breed cooperatively,
there is a lack of information on their detailed social struc-
ture. The only two cases in which we found thorough in-
formation, i.e. the white-winged trumpeters (Psophia
leucoptera) and dusky moorhen (Gallinula tenebrosa), in-
dicate a polyandrous mating system [122–124]. The male-
biased sex ratio in these groups is either due to defence of
large permanent territories in order to supply sufficient re-
sources [124], or limited numbers of nest sites [123],
which created opportunities for cooperative breeding. In
contrast, cooperative breeding in mammals is generally
rare (<5% species; [125]) and where it does occur,
cooperative breeding appears to be independent of the
developmental mode [125]. The classic example is prob-
ably found in mole rats (rodent infraorder Hystricognathi),
which contain solitary, social and a minimum of two
eusocial taxa [126]. In the eusocial species, the Damara
mole rat (Fukomys damarensis) gives birth to precocial
young [127], whereas offspring of the naked mole rat
(Heterocephalus glaber) have been described as altricial
[128]. Overall, the independence of developmental mode
in cooperatively breeding mammals is presumably due to
the fact that precocial offspring in mammals (in contrast

to birds) still need substantial parental care (e.g. nursing).
Thus, extended parental care seems to facilitate coopera-
tive breeding, although the pattern in mammals is less
clear than in birds.
Overall, we show that social features are exhibited by

both altricial and precocial mammal and bird species.
Although differences may exist with regard to coopera-
tive breeding systems, it is likely that this is driven by
the greater need for help (e.g. feeding offspring) in altri-
cial compared to precocial species, and that this link is
unlikely driven by differences in brain size or the cap-
acity for social complexity [129]. It should be mentioned
that there is a dispute on whether cooperative breeding
should be considered as socially complex, as generally
cooperative breeders possess a more stable group com-
position than fission-fusion societies [130]. This is sup-
ported by the idea of Isler & van Schaik [51], who
suggest that cooperative breeding in mammals seems in-
dependent of advanced cognitive abilities, but that an
evolutionary change towards allo-parental care might be
a precursor for enlargement of the brain. Still, coopera-
tive breeding requires managing social relationships, al-
though social life may require different skills in various
social systems. For cooperative breeders, this includes,
for example, the ability to recognise group members,
dominance, or kin. Furthermore, even if there might be
more complex social systems, cooperative breeding
warrants a discussion in this review, as it is the social
system with the most detailed information on its distri-
bution in relation to developmental mode.

Comparing features of social cognition in precocial and
altricial species
Social life may require a need to anticipate, appropriately
respond to, cooperate with, or manipulate the behaviour
of others. Consequently, behavioural flexibility and some
essential cognitive skills are vital (see [131] for a recent
review). Accordingly, being part of a complex social
environment has frequently been assumed to require high-
level cognitive skills and a large brain [4, 15, 18, 43, 132–
134], although this relationship may not be as firm as sug-
gested. Larger brains certainly are bigger associative tools
with a greater capacity to engage in pattern-recognition
and completion, but this does not need to be ‘cognitive’ as
usually interpreted. Being longer-lived and more socially
complex may require superior pattern-recognition skills as
there will be more patterns to be recognised. Accordingly,
longer-lived and more socially complex animals will be
exposed to larger variability and unpredictability over the
course of their life, but this is something different from the
kinds of ‘cognitive skills’ that are conventionally given
emphasis to and may be achieved not (only) via brain size
but also neuronal circuitry. In precocial primates, for
example, cooperatively breeding Callitrichidae (marmosets
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and tamarins) outperform their closest relatives, independ-
ently breeding squirrel- and capuchin-monkeys (Cebidae),
in socio- but not non-socio cognitive contexts [135] despite
the fact that they possess relatively small brains [136, 137].
Similarly, the lack of a relationship between cooperative
breeding and relative brain size in the parvorder Corvida
[138] argues against such a link. In neither example, how-
ever, can we deduce the influence of developmental mode
on social cognition as all representatives of the Corvida are
altricial and all representatives of the Callitrichidae are pre-
cocial, and comparable data for closely related species that
display the opposite developmental mode are not available.
The view that birds are incapable of complex cognitive

tasks due to their mainly striatal forebrain has been out-
dated since it is now clear that the brain circuits, which
regulate social behaviour in non-mammalian vertebrates,
are homologous to those found in mammals [22–25]. As
the ‘social brain’ hypothesis [4] posits that social complex-
ity and brain size go hand in hand, the developmental
mode may, therefore, affect social complexity, particularly
in birds. However, the view that complex social interac-
tions indeed require a large brain has recently been chal-
lenged [1, 7, 16, 21, 46], which may imply that the
relationship between social complexity and developmental
mode is less clear as well (see Fig. 1). Social behaviour,
which appears cognitively demanding [139], might be
achieved through simpler associative mechanisms [21,
140], or probably through a combination of associative
learning and more cognitively complex explanations. Fur-
thermore, complex behaviour has been suggested to
emerge even from relatively simple nervous systems, and
to be the product of not only processes occurring in the
brain but of the entire body and the environment [141].
We now will present examples of cognitive abilities we
deem crucial for navigating efficiently in a social world,
thereby, again, distinguishing between altricial and preco-
cial mammals and birds. Notably, we consider abilities as
cognitive irrespective of whether they are presumably sim-
ple or complex, following the definition of Shettleworth
(pg. 4 [140]) describing cognition as “the mechanisms by
which animals acquire, process, store and act on informa-
tion from the environment ”, which therefore comprises
perception, learning, memory, and decision-making.

Recognizing others
Probably the most vital prerequisite of social complexity is
the ability of individuals to recognise others, particularly
where multiple individuals with differing intentions inter-
act with one another repeatedly. Such social recognition is
an underlying assumption of behaviours including nepo-
tism ([142] for review), several forms of cooperation [143,
144], deception [145, 146] or direct reciprocity [144, 147].
Once again, there is an ongoing debate as to whether the
ability to recognise others is cognitively demanding, as it

can either be achieved through cognitively simpler means,
such as differentiating between more or less familiar indi-
viduals (‘class level recognition’ ([148], but see [149]), or
through recognition of unique individual features (true in-
dividual recognition), which is thought to require specific
cognitive adaptations [150]. As both class level recognition
or true individual recognition involve cues produced by
the signaller as well as perception by the receiver and a
specific behavioural response [149], we consider both to
require cognitive skills albeit variation in the degree of
complexity.
Kin recognition is important for the evolution of social

behaviour in many species [151], as it permits indirect
benefits of cooperation when individuals improve fitness
of relatives [152, 153] or avoidance of kin competition or
inbreeding [154–157]. The most commonly studied forms
of kin recognition consist of three domains: parent-
offspring recognition [158–162], offspring-parent recogni-
tion [163–165] and sibling recognition [154, 166–169].
Our survey of the literature indicates that these appear
commonly in both precocial and altricial birds and mam-
mals (Table 1). Parent-offspring recognition, based on fa-
miliarity or on phenotypic traits, seems to be well
developed in cooperative breeders [151, 170–173] pre-
sumably because kin-selected benefits often drive the care
of others’ offspring [174]. Studies on offspring-parent rec-
ognition seem to indicate that being able to identify par-
ents is particularly important in precocial species [26, 163,
175], because there is a higher potential to lose contact
with the parent if the offspring is not confined to a nur-
sery, e.g. nest or burrow. Sibling recognition has been
studied quite intensively and identified in mammals, par-
ticularly rodents, and to a lesser extent in both altricial
and precocial avian systems ([166, 176], for review [168]).
Regardless of developmental mode, some birds and mam-
mals can also recognise unfamiliar kin based on pheno-
typic traits [155, 156, 177, 178]. Thus, developmental
mode in both mammals and birds seems insignificant in
the ability to recognise other individuals.

Long-term memory
Another useful skill of social animals may be the ability to
retain information on group members or outcomes of
previous interactions over extended periods of time [179].
Although there are not many studies on social memory,
those conducted to date seem to indicate that the mode of
development has no influence on either the duration that
animals may remember socially relevant individuals [180–
184] or on keeping track of hierarchical relationships
[185–187]. In an extensive literature search, we found only
one study that specifically compared learning memory
and memory retention (‘recall memory’) in a colour
discrimination task in an altricial (domestic Bengalese
finch, Lonchura striata domestica) and a precocial (blue-
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breasted quail, Coturnix chinensis)) bird [188]. Recall
memory is considered to be more cognitively demanding
as it is important to remember attributes or relationships
between items, relative to recognition memory, where it is
enough simply to remember what was seen before. Quails
performed poorly in the learning task and failed in the
memory retention task, whereas finches scored more
highly in the learning task, and retained the ability to dis-
criminate between colours correctly for 45 days, which
suggests an influence of developmental mode [188]. How-
ever, as this work was performed with domesticated spe-
cies, it is difficult to determine if this would also hold true
for the closest wild relatives. There is only contradictory
information on the social system of closely related Japa-
nese quail (C. japonica) in the wild [189], but the closest
relative of the hybridised Bengalese finch, the white-
rumped munia (L. striata), is social. The result of the
above-mentioned experiment might be a consequence of
cognitive skills that are related to sociality, rather than the
developmental mode, as, for example, highly social greylag
geese (Anser anser) memorise dyadic relationships in a
hierarchical colour series for approximately one year
[187]. Furthermore, there might be other potential causes
for differences in learning memory or memory retention
in the two species than developmental mode. For such
studies to be conclusive they need to provide a higher
number of replicate species, which preferably have a more
similar biology. This would allow to isolate the effect of
developmental mode from other potential effects on the
variable studied.

Remembering and deducing relationships
In social animals, it may pay to not only identify others
but also to understand social relationships between other
group members, such as who shares a bond with, or
who is related to, whom. There are examples of these
‘third party’ relationships in altricial and precocial birds
and mammals (Table 1), but the limited number of stud-
ies does not allow for claims about whether third party
recognition is more prevalent in one developmental
mode or the other.
Another advantageous skill would be the ability to deduce

the nature of unknown relationships from known ones
through indirect evidence, a feature known as transitive
inference (TI, [190]). Although transitive inference can be
useful in various domains, it is particularly beneficial in the
context of social dominance, as it may allow individuals to
deduce their dominance relationships with other group
members without having to interact with each one of them
directly. Once thought as a cognitively-demanding feature
of logical thinking and reasoning, it is now recognised that
transitive inference can also be achieved through relatively
simple associative mechanisms ([191] and [192] for reviews)
or probably through a combination of both [193, 194].

Transitive inference has been described across a range of
taxa, ranging from fish to primates ([195], Table 2), and al-
though it has been described in altricial birds and mammals
as well as precocial birds (Table 1), it has not been tested
specifically in any precocial mammal. Therefore, overall, we
cannot make firm conclusions about the role of the develop-
mental mode in the ability to deduce unknown relation-
ships. However, the available evidence supports the notion
that like for earlier-mentioned features, developmental mode
seems to play an ancillary role, but we urge future studies to
focus on this phenomenon in a wide range of species.

Social learning
Numerous studies indicate that individuals pay attention
to -and learn from- group members [196–203]. Social
learning allows for more appropriate responses to envir-
onmental or social cues in various contexts in the future.
Both social mammals and birds take advantage of the
knowledge of others, irrespective of the developmental
mode (Table 1). The lack of a thorough differentiation
with respect to developmental modes in the context of
social learning tactics, however, does not allow for a de-
cisive evaluation of either the frequencies or variation in
altricial and precocial species.

Other cognitive skills
There are several other cognitive skills in the social domain
that may be worth investigating with respect to the devel-
opmental modes, (e.g. tactical deception [145, 204–208]
and other Machiavellian-like behaviours [133, 205, 209]),
but we focussed here on the ones we deemed most crucial.
As with several of the cognitive skills described above,
many of the non-described features have not been studied
systematically across the altricial – precocial spectrum, and
have been investigated predominantly in ‘large-brained’
mammals and birds. Therefore, at present, we lack the
taxonomic breadth to draw sound conclusions about the
influence of the developmental mode on any of the cogni-
tive abilities. This clearly also includes some of the features
that are listed in this review.

Conclusion
Our review of the existing literature shows that many
mammal and bird species are skilled in a wide range of
contexts in the social domain and the existence of these so-
cial skills in both altricial and precocial species suggests that
social skills are generally irrespective of species’ develop-
mental trajectories. It remains to be investigated if certain
aspects of the complexity of various social systems are
more common in one developmental mode or the other,
and what the evolutionary reason might be. To the best of
our knowledge, the only quantitative assessment available is
on avian cooperative breeding systems.
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There is a need for explicit comparative investigations on
variation of the social features in altricial versus precocial spe-
cies to unravel similarities or differences in, e.g. the complex-
ity as well as the quality of bonds displayed in these systems.
This includes an evaluation of the different types of affiliative
behaviours displayed by altricial versus precocial species to
determine whether outwardly different behaviours, in fact,
signal, for example, similar strengths of social bonds.
Likewise, both altricial and precocial species are profi-

cient in basic abilities of their social cognition despite
established differences in brain size. As this has not been
studied systematically, it remains to be determined if this
is accomplished via the same underlying mechanisms.
That we are in need of integrative studies on sociality,
cognition and its accompanying communicative skills in
order to decipher how the social environment may form
behaviour and brain adaptations for social complexity
was recently proposed by Sewall (2015) [131]. We sug-
gest adding to this claim also the indispensable needs to
take the developmental trajectories into account. The
only study to specifically test cognitive abilities in rela-
tion to developmental mode [188] was done in only two
species of domesticated birds, which may or may not re-
flect the natural social environment. Studies in closely
related altricial and precocial rodents might be especially
suitable for a comparative study in this context.
Altogether, from a qualitative point of view there is little

reason to assume that the developmental mode affects social
complexity or its underlying cognitive capacities. We do,
however, need more quantitative and comparative studies on
social complexity in altricial and precocial animals. Yet, as
Barrett et al. recently stated, “brains evolved as behaviour-
control systems designed to help animals move around in,
and engage actively with the world” [8]. Indeed, despite the
well-established variation in brain size and structure, both
altricial and precocial species appear to be able to effectively
meander through their complex social world [210].
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