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Abstract
The small integrin-binding ligand N-linked glycoprotein

(SIBLING) family consists of osteopontin, bone sialoprotein,

dentin matrix protein 1, dentin sialophosphoprotein and

matrix extracellular phosphoglycoprotein. These proteins

share many structural characteristics and are primarily located

in bone and dentin. Accumulating evidence has implicated

the SIBLING proteins in matrix mineralisation. Therefore,

in this review, we discuss the individual role that each of
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the SIBLING proteins has in this highly orchestrated

process. In particular, we emphasise how the nature and

extent of their proteolytic processing and post-translational

modification affect their functional role. Finally, we describe

the likely roles of the SIBLING proteins in clinical

disorders of hypophosphataemia and their potential thera-

peutic use.
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Introduction

The skeleton is a highly intricate and complex organ that has a

range of functions spanning from locomotion to ion

homoeostasis. It is structurally adapted to suit its function:

strong and stiff to withstand loading and yet light for

movement and flexible to prevent fracture. The organic

component of bone, termed the osteoid, comprises an

extracellular matrix (ECM) primarily composed of collagen

type I together with several non-collagenous proteins (NCPs).

One such family of NCPs is the small integrin-binding

ligand N-linked glycoprotein (SIBLING) family. This consists

of osteopontin (OPN), bone sialoprotein (BSP (IBSP)),

dentin matrix protein 1 (DMP1), dentin sialophosphoprotein

(DSPP) and matrix extracellular phosphoglycoprotein

(MEPE). It is likely that this protein family arose from the

secretory calcium-binding phosphoprotein family by gene

duplication due to their apparent common evolutionary

heritage, as is elegantly reviewed by Kawasaki & Weiss (2006),

Kawasaki et al. (2007), Kawasaki (2011) and Rowe (2012).

It is therefore somewhat surprising that the SIBLING proteins

have little intrinsic sequence homology and yet they share

the following characteristics: i) all are located to a 375 kb

region on the human chromosome 4q21 and mouse

chromosome 5q, ii) display similar exon structures,

iii) display an Arg-Gly-Asp (RGD) motif that mediates cell

attachment/signalling and iv) are principally expressed in
bone and dentin and are secreted into the ECM during

osteoid formation and subsequent mineralisation. These

similarities in SIBLING gene and protein structure have

been well illustrated in other reviews (Rowe et al. 2000,

Fisher et al. 2001, Fisher & Fedarko 2003, Qin et al. 2004,

Rowe 2004, 2012, Huq et al. 2005, Bellahcene et al. 2008).

All SIBLING proteins undergo similar post-translational

modifications such as phosphorylation and glycosylation, the

extent of which is crucial in determining their function

(Boskey et al. 2009). It has long been known that the

SIBLING proteins have an RGD sequence that facilitates cell

attachment and cell signalling by binding to cell surface

integrins (Fisher et al. 2001). More recently, work by Rowe

et al. (2000, 2004), primarily focused on MEPE, has identified

a new functional domain termed the acidic serine- and

aspirate-rich motif (ASARM) peptide, which is highly

conserved across species. This peptide is proving critical in

the functional activity of the SIBLING proteins, as is

evidenced by the ASARM hypothesis proposed by Peter

Rowe (Rowe 2004, David et al. 2010). This hypothesis

describes the role of the SIBLING ASARM peptides, the cell

membrane-associated glycoprotein phosphate-regulating

endopeptidase homologue, X-linked (PHEX) and fibroblast

growth factor 23 (FGF23) in bone renal phosphate (Pi)

homoeostasis and mineralisation. This hypothesis can be

used to explain numerous disorders of mineralisation inclu-

ding tumour-induced osteomalacia, autosomal-dominant
DOI: 10.1530/JOE-12-0143
Britain Online version via http://www.endocrinology-journals.org

Downloaded from Bioscientifica.com at 08/25/2022 06:17:25PM
via free access

http://dx.doi.org/10.1530/JOE-12-0143


K A STAINES and others . Role of SIBLING proteins in skeletal development242
hypophosphataemic rickets (ADHR) and X-linked hypopho-

sphataemic rickets (XLH) and will be discussed in more detail

in this review.

The SIBLING proteins have been extensively reviewed

individually; however, in the present review, we focus on

the role that each of the SIBLING proteins has on skeletal

matrix mineralisation and bone remodelling, as well as their

clinical relevance in disorders of bone matrix mineralisation

and bone remodelling (Denhardt & Guo 1993, Ganss et al.

1999, Sodek et al. 2000, Fisher et al. 2001, Prasad et al. 2010).
Matrix mineralisation and bone remodelling

Endochondral ossification is a carefully orchestrated process

responsible for the formation and postnatal linear growth of

the long bones. It involves the replacement of a cartilage

scaffold by mineralised bone. Integral to this process is the

epiphyseal growth plate, a highly specialised cartilaginous

structure derived from a mesenchyme precursor that is

located between the head and the shaft of the bone. The

growth plate consists of chondrocytes arranged in columns

that parallel the axis of the bone surrounded by their ECM

that is rich in collagens, proteoglycans and numerous other

NCPs (Ballock & O’Keefe 2003, Mackie et al. 2008, 2011,

Gentili & Cancedda 2009, Heinegard 2009). The chon-

drocytes of the growth plate sit in distinct cellular zones of

maturation and proceed through various stages of differen-

tiation while maintaining their spatially fixed locations

(Hunziker et al. 1987). It is the terminally differentiated

hypertrophic chondrocyte that mineralises its surrounding

ECM, localised to the longitudinal septa of the growth plate

(Castagnola et al. 1988).

Chondrocyte, as well as osteoblast, mineralisation of the

ECM is widely accepted to involve membrane-limited matrix

vesicles (MVs) within which calcium (Ca2C) and inorganic Pi

accumulate to initiate the biphasic process of mineralisation

(Anderson 2003). When sufficient concentrations of both

exist, Ca2C and Pi begins to precipitate to form hydro-

xyapatite (HA) crystals. This initial stage of mineralisation is

followed by the penetration of HA crystals through the MV

trilaminar membrane and the modulation of ECM compo-

sition, promoting the propagation of HA outside of the MVs

(Anderson 1995, 2003, Wu et al. 2002, Golub 2011).

Mineralisation of the ECM is a tightly regulated process

such that concentrations of Ca2C and Pi are permissive for

effective mineralisation and that the levels of mineralisation

inhibitors such as inorganic pyrophosphate (PPi) and matrix

gla protein are balanced. Extracellular PPi is a well-recognised

and potent inhibitor of mineralisation that is regulated by

ALP (Meyer 1984). In bone, ALP is an ectoenzyme located

on the cell membrane’s outer surface of osteoblasts and

chondrocytes as well as on the membrane of their MVs

(Anderson 1995). Classically, ALP was thought to generate

the Pi required for HA formation; however, it has since been

shown to also hydrolyse PPi, thus achieving a ratio of Pi/PPi
Journal of Endocrinology (2012) 214, 241–255
permissive for HA crystal formation and growth (Moss et al.

1967, Majeska & Wuthier 1975, Hessle et al. 2002, Anderson

2003). PPi inhibits the enzymatic activity of ALP, offering a

feedback loop by which mineralisation is regulated (Addison

et al. 2007).

Other regulators of ECM biomineralisation include

nucleotide pyrophosphatase phosphodiesterase 1 (NPP1)

and the ankylosis protein (ANK) that work in synergy to

increase extracellular PPi levels. While NPP1 ectoplasmically

generates PPi from nucleoside triphosphates, ANK mediates

its intracellular to extracellular channelling (Hakim et al. 1984,

Terkeltaub et al. 1994, Ho et al. 2000). Analysis of mutant

mice deficient in ALP function (Akp2K/K (AlplK/K)), which

were surprisingly found to exhibit normal levels of bone

mineralisation at birth, led us to search for other phosphatases

that might also contribute to bone mineralisation, and this

led to our description of PHOSPHO1 (Houston et al. 2002).

As its discovery and characterisation, PHOSPHO1 has been

proposed to play a crucial role in the accumulation of Pi

within the MVand bone mineralisation (Houston et al. 2002,

Stewart et al. 2006, Roberts et al. 2007, 2008, MacRae et al.

2010, Huesa et al. 2011). PHOSPHO1 has a non-redundant

functional role during bone mineralisation, and the ablation

of both PHOSPHO1 and ALP results in the complete

lack of bone mineralisation throughout the whole skeleton

(Yadav et al. 2011).

Mineralisation of the ECM not only facilitates the

deposition of HA but also enables vascular invasion, a

significant phase in endochondral ossification and the

development of the skeleton. Hypertrophic chondrocytes

express factors such as vascular endothelial growth factor

(VEGF) that induce vascular invasion, allowing the infiltra-

tion of osteoclasts and differentiating osteoblasts that resorb

the cartilaginous mineralised matrix and replace it with

trabecular bone respectively (Zelzer et al. 2002). This process

of bone remodelling continues throughout life and is

responsible for the annual replacement of w10% of the

adult skeleton (Frost 1990). Tight regulation of this process

maintains an equilibrium such that disorders of bone mass,

such as osteoporosis or osteopetrosis, do not occur (Manolagas

2000). During bone resorption, osteoclasts adhere to the bone

surface forming a tight connection and allowing efficient

resorption through extracellular acidification (Palokangas

et al. 1997, Mellis et al. 2011). Like bone formation, this is

under tight control by a variety of autocrine, paracrine, and

endocrine factors and is thought to be primarily regulated by

the terminally differentiated osteoblast, the osteocyte (Hill

1998, Manolagas 2000, Henriksen et al. 2009).
The SIBLING family of proteins

The SIBLING family of proteins consists of OPN, BSP,

DMP1, DSPP and MEPE, all of which share common

characteristics. Despite this, they display differential tissue

distributions and functions that are highly dependent on their
www.endocrinology-journals.org
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post-translational modifications. The key role that each of the

SIBLING proteins plays in biomineralisation is described in

detail below (Fig. 1).
Matrix extracellular phosphoglycoprotein

MEPE, originally identified as a substrate for PHEX, is

primarily expressed by osteocytes as well as by osteoblasts

(Nampei et al. 2004). In the mouse skeleton, Mepe is detected

as early as 2 days post partum, and several regulators of this

expression have been documented in the literature (Lu et al.

2004). The addition of FGF2 to osteoblasts downregulates

Mepe levels in a dose-dependent manner. The mechanism of

action is part through the MAPK pathway (Zhang et al. 2004).

Furthermore, osteoblasts stimulated by bone morphogenetic

protein 2 (BMP2) also display a decreased Mepe expression

level (Siggelkow et al. 2004). Recently, it has been shown that

Wnt3a, a canonical Wnt signalling stimulator, induces

this BMP2 signal and also as has its own direct stimulatory

effects on Mepe expression through b-catenin and LEF1

(Cho et al. 2011).
Figure 1 A schematic figure detailing the (A) e
family of proteins: dentin sialophosphoprotein (D
sialoprotein (BSP), matrix extracellular phosphog
MEPE is expressed by osteoblasts and the termina
dashed arrow), the osteocyte. MEPE directly inh
through its cleavage product, a small acidic seri
undergoes post-translational phosphorylation. M
of osteoclasts. OPN has similar functional effect
along with BSP, it is also expressed by osteoclast
and is proving pivotal in diseases of increased b
osteoclastogenesis. DMP1 and DSPP are both ex
numerous fragments. While DSPP promotes bio
DMP1 inhibits it. The full details of the cleavage
roles in biomineralisation are detailed in Table 1
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The first evidence for a direct role of MEPE in bone

mineralisation came from the increased mRNA expression

levels of Mepe seen during osteoblast matrix mineralisation

(Petersen et al. 2000, Argiro et al. 2001). The development of

a Mepe null mouse further fuelled the proposed role of MEPE

in mineralisation. This mouse model had increased bone mass

with associated increased numbers and thickness of trabe-

culae. The mineral apposition rate (MAR) was dramatically

increased as was the activity of Mepe null osteoblasts in culture

(Gowen et al. 2003). Conversely, the overexpression of MEPE

in mice, under the control of the col1a1 promoter, leads to

a growth and mineralisation defect due to a decrease in

bone remodelling. Mepe transgenic mice displayed wider

epiphyseal growth plates and expanded primary spongiosa

and a significant decrease in the MAR (David et al. 2009).

Like the other SIBLING proteins, the activity of MEPE is

dependent on its state of cleavage and its phosphorylation.

Recent work has identified the 2.2 kDa ASARM peptide of

MEPE as the functional component of MEPE. This ASARM

peptide is highly conserved across the SIBLING proteins,

and in MEPE it is located immediately downstream of a
xpression and (B) function of the SIBLING
SPP), dentin matrix protein 1 (DMP1), bone
lycoprotein (MEPE) and osteopontin (OPN).
lly differentiated osteoblast (indicated by the
ibits hydroxyapatite (HA) formation in bone
ne- and aspirate-rich motif (ASARM) that
EPE also inhibits the numbers and activities
s to MEPE in bone mineralisation; however,
s. BSP is well established as a HA nucleator
one formation as it increases
pressed by bone and both are processed into
mineralisation in both bones and teeth,
products of the SIBLING proteins and their
.
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cathepsin B cleavage site (Rowe et al. 2000). The

administration of the MEPE–ASARM peptide in vitro and

in vivo can inhibit the uptake of Pi. This is likely through a

decreased expression of the type II sodium-dependent Pi

cotransporter NPT2a, or through the promotion of FGF23

expression, a potent inhibitor of Pi (Liu et al. 2007, Dobbie

et al. 2008, Marks et al. 2008, Martin et al. 2008, David et al.

2010, Shirley et al. 2010). It has, however, been suggested that

MEPE may have a direct effect on matrix mineralisation

outwith the supply and demand of Pi. The ASARM peptide

of MEPE inhibits mineralisation by osteoblasts by directly

binding to HA crystals (Addison et al. 2008, Martin et al.

2008). Integral to this inhibitory effect is the post-translational

phosphorylation of the ASARM peptide at three serine

residues. In osteoblasts, it appears that without this

phosphorylation, the ASARM peptide has no effect on

mineralisation (Addison et al. 2008, Martin et al. 2008). This is

not the only evidence for a role for MEPE in the promotion

of mineralisation. Recently, it has been shown that a

truncated form of MEPE, which has the ASARM peptide

removed, can promote bone mineralisation in culture and in

mice (Sprowson et al. 2008). Furthermore, a mid-terminal

fragment of MEPE (termed ‘AC100’) has been shown to

enhance cell binding, through the stimulation of focal adhesion

kinase and ERK (Hayashibara et al. 2004). Taken together,

these results highlight the importance of post-translational

processing in determining the functional role of MEPE.

The interaction between MEPE and PHEX is well

documented in the literature. PHEX plays a central role in

the protection of MEPE from proteolytic cleavage by

cathepsin B; it can bind to MEPE and prevent the release of

the ASARM peptide (Guo et al. 2002). The Hyp mouse, a

spontaneous Phex knockout model, has an increased

expression of cathepsin D, an upstream activator of

cathepsin B (Rowe et al. 2006). This therefore suggests that

PHEX can alter the activation of cathepsin B and therefore

the cleavage of MEPE to the ASARM peptide. Furthermore,

PHEX can bind to free ASARM peptides, therefore

neutralising their activity by sequestration and hydrolysis

(Liu et al. 2007, Addison et al. 2008, Martin et al. 2008).

Recently, it has been shown that sclerostin (SCL), a potent

inhibitor of the canonical Wnt signalling pathway, may act

through the MEPE–PHEX axis, highlighting its significance

in biomineralisation (Atkins et al. 2011).

Mepe transgenic mice display a decrease in ALP enzyme

activity in both the growth plate and the primary spongiosa

(David et al. 2009). In vivo, the addition of the phosphorylated

ASARM peptide also reduced the number of ALP-positive

cells in an osteoblast cell culture model (Martin et al. 2008).

However, this remains controversial as normal ALP activity

has been reported in osteoblasts treated with phosphory-

lated ASARM peptide (Addison et al. 2008). In the

MEPE-overexpressing mouse, vascularisation is increased, as

is VEGF expression, highlighting a role for MEPE in

angiogenesis, an important stage in endochondral ossification

(David et al. 2009). Consonant with angiogenesis is the
Journal of Endocrinology (2012) 214, 241–255

Downloaded from Bioscientifica.com at 08/25/2022 06:17:25PM
via free access



K A STAINES and others . Role of SIBLING proteins in skeletal development246
infiltration of osteoclasts for bone resorption. Interestingly,

mice administered with recombinant MEPE or transgenic for

MEPE had a significant decrease in the numbers and activity

of osteoclasts (Hayashibara et al. 2007, David et al. 2009).

This therefore suggests that MEPE is highly relevant to both

bone mineralisation and Pi homoeostasis. Future studies

should focus on the interactions between MEPE and the Wnt

signalling pathway due to its known implications in bone and

cartilage mechanobiology.
Osteopontin

OPN, also known as secreted phosphoprotein 1 (SPP1), is a

34 kDa protein, originally identified as the bridge between

the cells and HA in the ECM of bone (Sodek et al. 2000).

The protein and gene structures, as well as the localisation, of

OPN are well described in several excellent reviews

(Denhardt & Guo 1993, Sodek et al. 2000, Fisher et al.

2001). In bone, OPN is produced by osteoblasts and

osteocytes, as well as osteoclasts (Dodds et al. 1995, Sodek

et al. 1995, Zohar et al. 1997). It has also been localised to

hypertrophic cartilage of the growth plate (Landis et al. 2003).

Several studies have documented the inhibitory role of

OPN in HA formation and growth (Boskey et al. 1993, 2012,

Hunter et al. 1994). It has also been shown to inhibit

mineralisation in vascular smooth muscle cells (Wada et al.

1999, Jono et al. 2000). This inhibitory role of OPN is

confirmed further by analysis of the Opn knockout mouse

that has increased mineral content and size, as shown by

Fourier transform infrared spectroscopy analysis in two

different lines of OpnK/K mice at two different ages (Boskey

et al. 2002). More specifically, it has recently been shown that

the ASARM peptide of OPN inhibits ECM matrix

mineralisation by binding to HA crystals (Addison et al.

2010, Boskey et al. 2012). Furthermore, a recent study by

Boskey et al. showed the C- and N-terminal fragments of

OPN, in this study, derived from milk OPN to promote

de novo HA formation. Conversely, a central fragment

inhibited it as is similar to bone OPN (Boskey et al. 2012).

This highlights the importance of the post-translational

fragmentation of OPN in determining its function. The

study by Addison et al. (2010) also showed that, like MEPE,

the ability of the OPN-ASARM to inhibit mineralisation is

dependent on its phosphorylation at specific serine residues.

The importance of post-translational phosphorylation is

further confirmed when examining the interaction between

OPN, ALP and PPi. Several studies have shown that ALP

dephosphorylates OPN, thus preventing much of its

inhibitory activity on HA formation and growth (Boskey

et al. 1993, Hunter et al. 1994, Jono et al. 2000). Furthermore,

PPi directly upregulates Opn expression in osteoblasts, and

therefore the hydrolysis of PPi by ALP will have a significant

effect on the expression levels of OPN (Addison et al. 2007).

This is in concordance with the Enpp1-deficient mouse

in which PPi deficiency brings about a deficiency

in OPN ( Johnson et al. 2003). The Akp2-deficient mouse
Journal of Endocrinology (2012) 214, 241–255
displays a similar decreased PPi and OPN with an associated

hypomineralisation. This hypomineralisation can be partially

rescued by the double knockout: the Akp2K/K/OpnK/K

mouse (Harmey et al. 2006). Although previous studies have

implicated a Pi-dependent mechanism (Beck et al. 2000, Beck

& Knecht 2003), work by Addison et al. has implicated the

MAPK signalling pathways responsible for the regulation of

OPN by PPi.

Analysis of the OpnK/K mouse has also indicated a role for

OPN in the function and activity of osteoclasts. In these mice,

there is an increase in osteoclast production, which could be a

compensatory mechanism for the observed disabled motility

and resorption activity of the osteoclast cells (Rittling et al.

1998, Chellaiah et al. 2003). Further studies have attempted to

elucidate the precise role of OPN in bone resorption and have

implicated CD44, a major cell surface receptor for

hyaluronate (Aruffo et al. 1990) and a receptor for OPN

(Suzuki et al. 2002, Chellaiah et al. 2003).

The loading of the skeleton in daily function results in the

continuous modelling and remodelling of the skeleton (Frost

1990). This loading upregulates OPN expression in bone

in vivo, and more recently it has been shown that the cyclical

loading of rabbit joints has shown increased cellular OPN

expression in the cartilage as well (Terai et al. 1999, Morinobu

et al. 2003, Gross et al. 2005, King et al. 2005, Fujihara et al.

2006). This upregulation in response to loading has also been

shown in in vitro cell cultures, and it is thought that MAPKs

are involved in the transduction of the stimulus for OPN

expression (Klein-Nulend et al. 1997, Owan et al. 1997,

You et al. 2001). These intriguing results provide some clues

into the molecular mechanisms underpinning adaptive

bone remodelling.
Bone sialoprotein

BSP is a 70–80 kDa protein for which its gene and protein

structures have been extensively reviewed (Ganss et al. 1999).

The localisation of BSP is unique to the SIBLING family of

proteins as it is exclusively located to the mineralised tissues

such as bone, dentin and mineralising cartilage (Bianco et al.

1991, Chen et al. 1991). In bone, it is expressed in abundance

by osteoblasts, as well as by osteoclasts, osteocytes and

chondrocytes (Fisher & Fedarko 2003, Gordon et al. 2007).

During embryogenesis, BSP is first expressed at the onset of

bone formation, thus suggesting it to be a strong candidate for

a role in HA nucleation (Chen et al. 1992). This certainly

seems convincing as numerous studies have documented BSP,

which is localised to MVs, to be involved in the initial

formation of HA (Harris et al. 2000, Fisher et al. 2001,

Tye et al. 2003, Wang et al. 2006, Nahar et al. 2008). Indeed,

the Bsp null mouse displays shorter, hypomineralised bones

with associated higher trabecular bone mass with low bone

turnover (Malaval et al. 2008). Moreover, it has been shown

that as little as 9 nM BSP is required to nucleate HA,

and recently the overexpression of BSP in osteoblasts has

been shown to enhance mineralisation (Hunter et al. 1996,
www.endocrinology-journals.org
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Gordon et al. 2007). Similarly, osteoblast cultures grown in

the presence of an anti-BSP antibody exhibit reduced

mineralisation (Cooper et al. 1998, Mizuno et al. 2000). This

nucleation potency is increased on BSP binding to collagen,

suggesting a cooperative relationship (Baht et al. 2008).

The role of BSP as a HA nucleator is thought to involve the

membrane-bound enzyme, ALP. Indeed, in the presence of

BSP, high levels of ALP activity can promote the initiation of

mineral deposition (Wang et al. 2006). This is further

confirmed in BSP-overexpressing cell cultures that have a

higher ALP activity (Valverde et al. 2008). It is likely that,

like the other SIBLING proteins, the function of BSP is

highly dependent on its post-translational modification

(Stubbs et al. 1997).

BSP increases osteoclastogenesis and therefore bone

resorption, making it crucial in the homoeostasis of bone

remodelling (Ross et al. 1993, Raynal et al. 1996, Malaval et al.

2008, Valverde et al. 2008). This has been further examined in

BSP transgenic mice in which an uncoupling of bone

formation and resorption resulted in an osteopenia-like

phenotype (Valverde et al. 2008). Furthermore, serum BSP

expression in bone diseases characterised by excessive bone

resorption, e.g. Paget’s disease, is abnormally high (Valverde

et al. 2008). This highlights the need to investigate whether

antibodies to BSP could decrease the pathological bone loss

observed in the Bsp transgenic mouse and as such be an

important therapeutic target for patients with bone diseases

characterised by high BSP.
Dentin sialophosphoprotein

The role of DSPP in biomineralisation has recently been

reviewed (Prasad et al. 2010). Although originally thought to

be exclusively expressed by dentin, DSPP is also expressed in

bone, cementum and in non-mineralising tissues including

the lung and kidney (Qin et al. 2002, Baba et al. 2004, Alvares

et al. 2006, Ogbureke & Fisher 2007, Verdelis et al. 2008).

Analysis of the Dspp knockout mouse reveals defects in

dentin mineralisation (Sreenath et al. 2003), as well as bone

hypomineralisation (Verdelis et al. 2008). In humans, a

mutation in the DSPP gene results in dentinogenesis

imperfecta, characterised by dentin hypomineralisation and

significant tooth decay (Kim et al. 2005). Of particular interest

are the variations in the mineralisation properties observed at

different ages in the DsppK/K mouse. At 5 weeks of age, these

mice displayed accelerated mineralisation, while at 9 months

of age significant changes in bone structural properties were

observed. This therefore suggests that DSPP has roles not only

in the initial mineralisation of bone but also in the

remodelling of the skeleton and therefore on bone turnover

(Verdelis et al. 2008).

DSPP is proteolytically processed to two fragments: dentin

phosphoprotein and dentin sialoprotein (DSP), both of which

have important functions in mineralisation. Interestingly, a

third fragment called dentin glycoprotein (DGP) has been

identified as being cleaved from the C-terminal end of DSP
www.endocrinology-journals.org
by matrix metalloproteinase 2 (MMP2) and MMP20

(Yamakoshi et al. 2005). It has been suggested that the

proteolytic processing of DSPP to DPP, DSP and DGP is the

activating stage in the mechanism of DSPP function (Zhang

et al. 2001, Qin et al. 2004, Prasad et al. 2010). The cleavage

of DPP from DSPP is catalysed by a group of zinc

metallopeptidases that includes BMP1, and it is this fragment

of DSPP that contains the ASARM peptide (Tsuchiya et al.

2011). Various studies have shown DPP to be important in

the formation and growth of HA as it has a strong affinity to

Ca2C when bound to collagen fibrils (Boskey et al. 1990,

Saito et al. 1997, He et al. 2005). The phosphorylation of DPP

is believed to be crucial to its function as removal of the

phosphate groups results in a loss of its role in HA promotion

(Saito et al. 1997). On the other hand, although DSP has been

shown to be involved in the initiation of mineralisation, it

appears not to have a functional role in the maturation of the

tissue (Suzuki et al. 2009). The mechanism by which DSPP

regulates HA formation is thought to involve the canonical

BMP2 signalling pathway as BMP2 has been shown to

increase Dspp expression via BMPR Smads, Runx2 and DIx5

(Iohara et al. 2004, Chen et al. 2008, Cho et al. 2010).

The vast information obtained about the DPP and DSP

fragments over the past few decades serves to strengthen

knowledge on the role of DSPP in biomineralisation. Future

studies should focus on the recently identified DGP fragment

and its specific functional role, as well as further detailing the

mechanisms of DSP and DPP functions.
Dentin matrix protein 1

DMP1 was first cloned from dentin and has since been

identified in dentin, bone and cementum as well as in other

non-mineralised tissues (George et al. 1993, MacDougall et al.

1998, Sun et al. 2011). In bone, DMP1 is primarily expressed

not only by osteocytes but also by osteoblasts and

hypertrophic chondrocytes (Toyosawa et al. 2001, Fen et al.

2002, Feng et al. 2003).

The first evidence of a role for DMP1 in biomineralisation

was its promotion of ECM mineralisation in MC3T3 cells

overexpressing DMP1 (Narayanan et al. 2001). The gener-

ation of a Dmp1-null mouse has further fuelled the potential

role of DMP1 in bone mineralisation. The knockout mice

have significantly lower mineral content when compared

with their control counterparts (Ling et al. 2005). Interest-

ingly, the re-expression of DMP1 in these Dmp1 null mice

rescues the skeletal defects seen (Lu et al. 2011).

Additionally, the Dmp1-deficient mice displayed a severe

defect in cartilage formation as is similar to the human

hereditary hypophosphatemic disease autosomal recessive

hypophosphatemic rickets (ARHR) that is caused by

mutations in Dmp1 (Feng et al. 2006, Farrow et al. 2009).

These mice display a highly widened growth plate, suggesting

an impairment of mineralisation at the chondro-osseous

junction. Indeed, this cartilage defect results in a phenotype

resembling dwarfism with chondrodysplasia (Ye et al. 2005).
Journal of Endocrinology (2012) 214, 241–255
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It has since been shown that the distorted growth plates seen

in the Dmp1 null mouse are in fact due to disorganisation as

opposed to growth plate enlargement (Sun et al. 2010).

Interestingly, the Dmp1 null mouse displays increased serum

FGF23 levels and associated hypophosphataemia (Feng et al.

2006). Correction of this hypophosphataemia, by a high Pi

diet, restored the Dmp1 null mouse growth plate defect (Feng

et al. 2006). Furthermore, the DMP1K/K and FGF23K/K

double knockout mice display growth plate widths similar to

that seen in the single Fgf23 null mouse (Liu et al. 2008). This

therefore suggests that the defective cartilage mineralisation

observed in the Dmp1 null mouse is not simply a direct

consequence of the lack of DMP1. More recently, a transgenic

mouse has been developed the expresses a mutant form of

Dmp1. The substitution of Asp213 with Ala213 blocks the

processing of mouse Dmp1. Crossing this transgenic mouse

with the Dmp1 null mouse recovered the growth plate

disorganisation seen in the null mouse alone (Sun et al. 2011).

Like other SIBLING proteins, the proteolytic processing

of DMP1 appears essential to its function and localisation.

In bone and dentin, DMP1 is processed to two fragments: one

37 kDa fragment originating from the NH2-terminal and

one 57 kDa fragment originating from the COOH-terminal

(Qin et al. 2003). In DMP1, it is the COOH-terminal fragment

that contains the ASARM peptide (Martin et al. 2008). The

full-length DMP1 is expressed at much lower levels than its

fragments, which themselves have different localisation patterns

in bone (Huang et al. 2008, Maciejewska et al. 2008). In the

growth plate, while the NH2-terminal fragment is localised

to the resting, proliferation and pre-hypertrophic zones, the

COOH-terminal fragment is found in the calcification front

and ossification zone (Maciejewska et al. 2008).

The localisation of the COOH-terminal fragment is

consistent with areas that are targets for the vascular invasion

of the cartilage, a significant phase in matrix mineralisation.

DMP1 has been postulated to play a role in angiogenesis as

treatment with DMP1-induced vascular endothelial cadherin

(VE-cadherin) and inhibited the VEGFR2 activity, therefore

suggesting DMP1 to be an inhibitor of VEGF-induced

angiogenesis (Pirotte et al. 2011). The direct role of DMP1 on

HA formation is highly dependent on its processing and its

post-translational modification. When phosphorylated, full-

length DMP1 has been shown to inhibit the formation and

growth of HA; however, its dephosphorylated form and its

two fragments are well-established nucleators of HA

formation (He et al. 2003, Tartaix et al. 2004, Gericke et al.

2010). Thus, native DMP1 inhibits mineralisation unless it

becomes cleaved or dephosphorylated, in which case it

initiates mineralisation (Tartaix et al. 2004).

In addition to the ASARM peptide, signalling pathways are

involved in DMP1 function and have recently been

investigated in osteoblasts. Wu et al. (2011) showed that

DMP1, through the activation of the avb3 integrin, activated

the downstream effectors of the MAPK pathway, ERK and

JNK (Wu et al. 2011). Concomitant to this is the stimulation

of phosphorylated JNK translocation coupled with an
Journal of Endocrinology (2012) 214, 241–255
upregulation of phosphorylated c-jun activation (Wu et al.

2011). Furthermore, it has been shown that the internal-

isation of DMP1 not only results in a release of stored Ca2C

but also activates p38 MAP kinase (Eapen et al. 2011). Dmp1

null mice have distinct abnormalities in the morphology and

maturation of their osteocytes (Feng et al. 2006). The two

DMP1 fragments also display differing localisation patterns in

osteocytes (Maciejewska et al. 2009), suggesting that

osteocytes may play a critical role in ECM mineralisation

that involves DMP1. This is further supported by the

stimulation of DMP1 expression in response to mechanical

loading (Gluhak-Heinrich et al. 2007). Furthermore, the

deletion of DMP1 leads to a dramatic increase in Fgf23

expression in the osteocytes, likely due to the defects seen in

osteoblast–osteocyte transition (Feng et al. 2006, Qin et al.

2007). FGF23, a hormone produced by osteoblasts and

osteocytes, has allowed the definition of bone as an endocrine

organ as it targets the kidney to regulate Pi homoeostasis. This

therefore suggests that DMP1 can control Pi levels, as is

consistent with the hypophosphataemia observed in the

Dmp1 null mouse (Ye et al. 2005, Feng et al. 2006). This

important discovery has allowed the further development of

the ASARM hypothesis and has implicated DMP1 as central

to biomineralisation and Pi homoeostasis.
The ASARM hypothesis and bone diseases

Accumulating evidence has implicated the members of the

SIBLING family of proteins in bone and mineralisation

diseases. Their varying involvements in the process of matrix

mineralisation make them potentially attractive candidates

for therapeutic targets and therapies.

XLH is the most common form of inherited rickets,

characterised by defective bone and tooth mineralisation,

growth retardation and defective renal reabsorption of Pi

(Carpenter et al. 2011). Mutations in PHEX have been

associated with XLH in humans and have led to the

development of the Hyp mouse (Holm et al. 1997).

Hypophosphataemia alone is insufficient to explain the

bone defect seen in the Hyp mouse as correction of the

hypophosphataemia failed to correct the mineralisation defect

observed (Ecarot et al. 1992, Rowe et al. 2006). Furthermore,

when osteoblast cells from the Hyp mouse are grown in

culture, they have defective ECM production and thus

reduced mineralisation (Xiao et al. 1998). This therefore

suggests that PHEX has multiple substrates that are involved

in regulating mineralisation directly and this has allowed the

creation of the ASARM hypothesis, as previously mentioned

and as has recently been elegantly reviewed (Rowe 2004,

2012, David et al. 2010). The ASARM hypothesis is based on

the concept of a minhibin, an unknown secreted factor that is

a substrate for PHEX and therefore would accumulate in the

Hyp mouse and in patients with XLH.

MEPE was first identified as a potential substrate for

PHEX; however, in vitro studies have failed to demonstrate
www.endocrinology-journals.org
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PHEX-dependent hydrolysis of MEPE (Guo et al. 2002).

It has also been suggested that PHEX is likely responsible for

the cleavage of DMP1 and DSPP, as it has a strong preference

for cleaving bonds at the N-terminal of these two SIBLING

proteins (Qin et al. 2004). However, analysis of the Hyp

mouse indicated no differences in Dmp1 and Dspp expression

in comparison with their WT controls, suggesting that DMP1

and DSPP are in fact properly processed in the Phex-deficient

mouse (Zhang et al. 2010). In addition to this, there is an

accumulation of SIBLING ASARM peptides in the Hyp

mouse and patients, thus challenging the hypothesis that the

SIBLING proteins are substrates for PHEX. Instead, it

appears that it is the ASARM peptide that PHEX digests

(Addison et al. 2008, 2010), and the rise in SIBLING

ASARM peptides in the Hyp mouse and XLH therefore

further implicates them as substrates for PHEX (Bresler et al.

2004, Martin et al. 2008, Boukpessi et al. 2010).

It also appears that PHEX regulates Fgf23 expression as

increased Fgf23 expression is observed in the Hyp mouse and

patients with XLH (Liu et al. 2006). Accordingly, Fgf23

knockout reversed the hypophosphataemia observed in Hyp

mice (Sitara et al. 2004). Although initial studies appeared to

confirm FGF23 as a substrate for PHEX, this has not been

shown since (Bowe et al. 2001). Interestingly, a similar

increase in FGF23 expression is observed in models of loss

of DMP1, along with associated ARHR (Feng et al. 2006,

Lorenz-Depiereux et al. 2006). This has led to the suggestion

that a PHEX–DMP1 interaction is responsible for orche-

strating mineralisation through decreasing FGF23 expression.

Furthermore, current paradigm suggests that ASARM

peptides can competitively displace this PHEX complex

and this would therefore increase FGF23 activity, as is seen

in the Hyp mouse and in patients with XLH (David et al.

2010, Martin et al. 2011, Rowe 2012).

Additionally, the accumulation of ASARM peptides can

directly inhibit NaC-dependent Pi uptake in the kidney, as

has been shown both in vivo and in vitro, thus exacerbating

the upregulation of FGF23 expression, the downregulation

of 1,25(OH)2D3 and the inhibition of hypophosphataemia

observed in XLH, ARHR and ADHR (Rowe et al.

2004, Dobbie et al. 2008, Marks et al. 2008, David et al.

2010, Shirley et al. 2010). The decrease in 1,25(OH)2D3

provides a feedback loop for increased PHEX expression

through the increased expression of a 100 kDa transcription

factor, a requirement for this PHEX expression (Ecarot &

Desbarats 1999).

This regulatory loop of ASARM, PHEX and FGF23

expression and function highlights the multiple and complex

functions of the SIBLING ASARM peptides in both Pi

homoeostasis and matrix mineralisation in disease and

health. It is therefore vital that we endeavour to fully establish

the interactions within this hypothesis to allow future

therapeutic developments.

Certainly, much remains to be learnt regarding the in vivo

role of the SIBLING proteins and the ASARM peptide in

bone diseases. This is not just in disorders related to Pi
www.endocrinology-journals.org
homoeostasis but also to other bone diseases such as

osteoporosis and osteoarthritis (OA). Indeed, there are close

links between the SIBLING proteins and OA, with serum

BSP and OPN levels significantly correlating with OA disease

severity (Petersson et al. 1998, Hasegawa et al. 2011).

Furthermore, microarray data and gene analysis studies have

highlighted MEPE and DMP1 as being differentially expressed

in OA tissues (Hopwood et al. 2007, Sanchez et al. 2008). The

interaction between MEPE and SCL, as described previously,

is an exciting development due to the known anabolic effects

of the SCL-neutralising antibodies on osteoporosis (Li et al.

2009, 2010, Atkins et al. 2011). This could therefore warrant

investigation into the potential therapeutic use of MEPE in

osteoporosis and potentially in OA due to the ever emerging

role of SCL in this debilitating disease (Power et al. 2010, Chan

et al. 2011, Delgado-Calle et al. 2011).
Conclusions

The aim of this review is to present an overview of the role of

each member of the SIBLING family of proteins in matrix

mineralisation. The SIBLING proteins are principally found

in bone and dentin and are secreted into the ECM during its

formation and subsequent mineralisation. It is apparent that

the functional role of the SIBLING proteins is highly

dependent on their state of cleavage and their post-

translational modification (Table 1). Furthermore, the

identification of the ASARM peptide, which is present across

the SIBLING proteins, is proving critical in the functional

activity of the SIBLING proteins. Future investigations

should focus on determining the underpinning interactions

between the SIBLING proteins and their place within the

current ASARM hypothesis. This will allow the investigation

into their potential therapeutic application to disorders of

mineralisation including disorders of hypophosphataemia,

osteoporosis and OA.
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