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The light emitted by stars and accreting compact objects through the history of the universe is
encoded in the intensity of the extragalactic background light (EBL). Knowledge of the EBL is
important to understand the nature of star formation and galaxy evolution, but direct measurements
of the EBL are limited by galactic and other foreground emissions. Here, we report an absorption
feature seen in the combined spectra of a sample of gamma-ray blazars out to a redshift of

z ~ 1.6. This feature is caused by attenuation of gamma rays by the EBL at optical to ultraviolet
frequencies and allowed us to measure the EBL flux density in this frequency band.

verse must have been reionized between

the epoch of cosmic recombination, when

the universe was only 300,000 years old (z ~ 1100),
and 1 billion years later (z ~ 6), as indicated ob-
servationally by the spectra of distant quasistellar
objects (/). However, the sources, modes, and na-
ture of this cosmic reionization are largely unknown
because most of this redshift range has yet to be
explored. Photoionization by ultraviolet (UV) ra-
diation, produced by the first stars and galaxies
of the universe, represents the primary suspect
for the ionizing process (2, 3). Direct detection of
the UV radiation fields is thus of fundamental
importance, but at present is extremely difficult (3).
An indirect but powerful means of probing
the diffuse radiation fields is through y-y absorp-
tion of high-energy gamma rays (4—6). In this
process, a gamma-ray photon of energy £, and
an extragalactic background light (EBL) photon
of energy Erp; annihilate and create an electron-
positron pair. This process occurs for head-on
collisions when, for example, £, * Egp; > 2(mecz)2,
where mec” is the rest mass energy of the elec-

The bulk of the intergalactic gas in the uni-

tron. This introduces an attenuation in the spectra
of gamma-ray sources above a critical gamma-
ray energy of E.q(z)~ 170(1 +2) > GeV (7, 8).

The detection of the gamma-ray horizon (i.e.,
the point beyond which the emission of gamma-
ray sources is strongly attenuated) is one of the
primary scientific drivers of the Fermi Gamma-
Ray Space Telescope (9—11). Several attempts
have been made in the past, but none detected
the long-sought EBL attenuation (/2—-14). So far,
limits on the EBL density have been inferred
from the absence of absorption features in the
spectra of individual blazars (13, 15), distant gal-
axies with bright gamma-ray emission powered
by matter accreting onto central, massive black
holes. Although this feature is indeed difficult to
constrain for a single source, we show that it is
detected collectively in the gamma-ray spectra
of a sample of blazars as a cutoff that changes
amplitude and energy with redshift. We searched
for an attenuation of the spectra of blazars in the 1 to
500 GeV band using the first 46 months of obser-
vations of the Large Area Telescope (LAT) on board
the Fermi satellite. At these energies, gamma rays

are absorbed by EBL photons in the optical to
UV range. Thanks to the large energy and redshift
coverage, Fermi-LAT measures the intrinsic (i.e.,
unabsorbed) spectrum up to ~100 GeV for any
blazar at z<0.2 and up to ~15 GeV for any redshift.
The LAT has detected >1000 blazars to date (6).
We restricted our search to a subset of 150 blazars
of the BL Lacertae (BL Lac) type that are signifi-
cantly detected above 3 GeV because of the ex-
pected lack of intrinsic absorption (/7). The sample
covers a redshift range of 0.03 to 1.6 (18, 19). The
critical energy is therefore always >25 GeV, which
means that the spectrum measured below this en-
ergy is unabsorbed and a true representation of the
intrinsic spectrum of the source. We thus determined
the intrinsic source spectrum relying on data be-
tween 1 GeV and the critical energy £ and ex-
trapolated it to higher energies. By combining all the
spectra, we were able to determine the average de-
viation, above the critical energy, of the measured
spectra from the intrinsic ones, which ultimately
provides a measurement of the optical depth t.,.
The analysis was performed using the Fermi
Science Tools (20). We determined the spectral
parameters of each blazar by maximizing the
likelihood of a given source model. The model
comprised the Galactic and isotropic diffuse com-
ponents and all sources in the second Fermi LAT
catalog (27) within a region of interest (ROI) of
15° radius. We modeled the spectra of the sources
in our sample as parabolic in the logarithmic space
of energy and flux [see equation 2 in (27) for a
definition]. Their spectra were modified by a
term ¢ *,,'"? that describes the absorption of
gamma-ray photons on the EBL. In the above,
we defined t,,(E2) = b x 7" (E.z), where the
" "‘MW(E ,z) is the optical depth predicted by EBL
models (7, 22-25) and b is a scaling variable, left
free in the likelihood maximization. In particular,
this allowed us to assess the likelihood of two im-
portant scenarios: (i) there is no EBL attenuation
(b=0), or (ii) the model prediction is correct (b = 1).
We combined the data from all the ROIs in a
global fit that determined the common parameter
b for a given EBL model (see table S1). All those
models with a minimal EBL density based on (or
compatible with) resolved galaxy counts (2, 7, 24-27)
were found to be acceptable descriptions of the
Fermi data (i.e., are consistent with » = 1 within ~
25%) (see also Fig. 1), yielding a significance of the
absorption feature of up to ~6 SD. Models that
predict a larger intensity of the EBL, particularly
in the UV (22, 23), would produce a stronger-than-
observed attenuation feature and are therefore
incompatible with the Fermi observations. Our mea-
surement points to a minimal level of the optical-
UV EBL up to redshift z ~ 1.6, which combined
with the upper limits (15, 28, 29) derived at lower
redshift (using observations of blazars at TeV
energies) on the near-infrared EBL highlights the
conclusion that most of the EBL intensity can
be explained by the measured galaxy emission.
Our measurement relies on the accuracy of
the extrapolation of the intrinsic spectra of the
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sources above the critical energy (30). This in
turn depends on a precise description of the
gamma-ray spectra by our source parametriza-
tion. To verify that this is the case and to ex-
clude the possibility that the detected absorption
feature is intrinsic to the gamma-ray sources (/7),
we performed the analysis in three independent
redshift intervals (z < 0.2, 0.2 <z<0.5,and 0.5 <
z<1.6). The deviations from the intrinsic spectra
in the three redshift intervals are displayed in Fig.
2. In the local universe (z < 0.2), EBL absorption
is negligible in most of the Fermi-LAT energy

band (Ei > 120 GeV). The lowest redshift in-
terval therefore reveals directly the intrinsic spec-
tra of the sources and shows that our spectral
parametrization is accurate (/8). The absorption
feature is clearly visible above the critical energy
in the higher redshift bins. Its amplitude and mod-
ulation in energy evolve with redshift as expected
for EBL absorption. In principle, the observed
attenuation could be due to a spectral cutoff that
is intrinsic to the gamma-ray sources. The absence
of a cutoff in the spectra of sources with z < 0.2
would require that the properties of BL Lacs change

REPORTS

with redshift or luminosity. It remains an issue of
debate whether such evolution exists (3/-34). How-
ever, in case it were present, the intrinsic cutoff would
be expected to evolve differently with redshift than
we observe. To illustrate this effect, we fitted the
blazar sample assuming that all the sources have an
exponential cutoff at an energy E,. From source
to source, the observed cutoff energy changes be-
cause of the source redshift and because we as-
sumed that blazars as a population are distributed
in a sequence such as that proposed in (3/-34).
E, was fitted to the data globally like b above. As
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Fig. 2. Absorption feature present in the spectra of
BL Lac objects as a function of increasing redshift
(data points, from top to bottom). The dashed curves
show the attenuation expected for the sample of
sources by averaging, in each redshift and energy bin,
the opacities of the sample [the model of (7) was
used] and multiplying this average by the best-fit
scaling parameter b obtained independently in each
redshift interval. The vertical line shows the critical
energy E;; below which < 5% of the source photons
are absorbed by the EBL. The thin solid curve repre-
sents the best-fit model, assuming that all the sources
have an intrinsic exponential cutoff and that blazars
follow the blazar sequence model of (32, 33).

apparent from Fig. 2, it appears difficult to reconcile
the observed feature with an intrinsic character-
istic of the blazars’ spectra. We therefore associate
the spectral feature to the EBL absorption.
Atenergies < 100 GeV, gamma rays observed at
Earth and coming from redshift > 1 interact mostly
with UV photons of > 5 electron volts. An UV back-
ground in excess of the light emitted by resolved
galaxies can be produced locally by active galactic
nuclei (AGN) or at higher redshift (z~ 7 to 15) by
low-metallicity massive stars (35). By comparing the
results from the best-fit EBL models, we measured
the UV component of the EBL to have an intensity
of 3(+1) nW m 2 sr ' atz~ 1. A contribution to
the UV background from AGN as large as the one
predicted by (36) (i.e., ~ 10 n'W m s ') and used
in the EBL model of (22) is thus excluded by our
analysis at high confidence. However, the recent
prediction (37) of the UV background from AGN
(=2nW m 2 st 1) is in agreement with the Fermi
measurement. Direct measurements of the extra-
galactic UV background are hampered by the
strong dust-scattered Galactic radiation (38). The

agreement between the intensity of the UV back-
ground as measured with Fermi and that due to
galaxies individually resolved by the Hubble
Space Telescope (39) 3 + 1 nW m 2 sr ' versus
2939 nW m 2 sr ', respectively) shows that the
room for any residual diffuse UV emission is small.
This conclusion is reinforced by the good agree-
ment of the Fermi measurement and the estimate
of the average UV background, at z > 1.7, of 2.2
to 4.0 nW m 2 sr ' using the proximity effect in
quasar spectra (40).

Zero-metallicity population-III stars or low-
metallicity population-II stars are thought to
be the first stars to form in the universe and
formally marked the end of the dark ages when,
with their UV light, these objects started ion-
izing the intergalactic medium (47). These stars,
whose mass might have exceeded 100 times
the mass of our Sun (M), are also believed to
be responsible for creating the first metals and
dispersing them in the intergalactic medium
(42—44). A very large contribution of population-
I1I stars to the near-infrared EBL had already been
excluded by (/5). Our measurement constrains,
according to (45, 46), the redshift of maximum
formation of low-metallicity stars to be at z > 10
and its peak comoving star-formation rate to be
lower than 0.5 M Mpc > year . This upper limit is
already of the same order of the peak star-formation
rate of 0.2 to 0.6 Ms Mpc > year ' proposed by
(47) and suggests that the peak star-formation rate
might be much lower, as proposed by (48).
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